Two hours

Examination definition sheet is available on pages 6 to 10 of this examination paper.

UNIVERSITY OF MANCHESTER
SCHOOL OF COMPUTER SCIENCE

Automated Reasoning and Verification

Date: Wednesday 31st May 2017
Time: 14:00 - 16:00

Please answer any THREE Questions from the FOUR Questions provided

Use a SEPARATE answerbook for each QUESTION.

This is a CLOSED book examination

The use of electronic calculators is NOT permitted

[PTO]
1. (Orderings, structural CNF transformation, splitting)

(a) Give an example of: i) a well-founded ordering; ii) a non well-founded ordering. Explain your answers. (2 marks)

(b) Consider two orderings: \((X_1, \succ_1)\) and \((X_2, \succ_2)\).

 i. Define the lexicographic combination \(\succ_{\text{lex}}\) of \(\succ_1\) and \(\succ_2\). (2 marks)

 ii. Show that if \(\succ_1\) and \(\succ_2\) are well-founded then \(\succ_{\text{lex}}\) is also well-founded. (4 marks)

(c) Show how to transform the following formula into clausal normal form using structural transformation:

\[
\ldots((x_1 \rightarrow x_2) \rightarrow x_3) \rightarrow \ldots) \rightarrow x_k
\]

How many clauses the resulting clausal normal form contains? (7 marks)

(d) Consider the following formula:

\[
\neg(p \leftrightarrow (q \lor \neg r)) \land (p \rightarrow \neg r) \land (q \rightarrow r)
\]

Apply the splitting algorithm to this formula and draw a splitting tree. Is this formula satisfiable? If this formula is satisfiable give a model of this formula. (5 marks)
2. (Propositional formalisation, DPLL, LTL, model checking)

(a) Consider propositional variables p_1, \ldots, p_n. Express the following properties in propositional logic:

i. at least two variables are true,

ii. at most two variables are true,

iii. exactly two variables are true.

(3 marks)

(b) Apply DPLL to the set of clauses S below, assuming the following sequence of decision literals:

$q^d \land \neg m^d \land \ldots \land v^d \ldots$

Apply backjumping (BJ) and lemma learning (LL) whenever possible. Write down explanations for backjumping and lemma learning. Is this set of clauses satisfiable?

(10 marks)

\begin{align*}
\neg q \lor \neg p \\
p \lor m \lor u \\
\neg v \lor p \lor \neg s \\
s \lor \neg v \lor p
\end{align*}

(c) Using LTL formulas express the following path properties:

i. Always, if F holds then always after that $\neg F$ holds.

ii. Starting from some state F always holds.

iii. Sometime in the future F holds and until then $\neg G$ holds.

iv. F holds in at least two states.

v. $\neg F$ holds infinitely often.

(5 marks)

(d) Explain the main advantage of k-induction compared to bounded model checking.

(2 marks)
3. (Translation from English to first-order logic, clausal form, unification, Herbrand interpretations)

(a) Consider a first-order language with one unary predicate symbol S, three binary predicate symbols K, D, \approx, two constants a, b, and a supply of variables x, y, z, \ldots. Assume that

- $S(x)$ means x is a sportscar
- $K(x, y)$ means x knows y
- $D(x, y)$ means x drives y
- $x \approx y$ means x and y are identical
- a means Adam
- b means Ben

Express each of the following sentences as formulas. (4 marks)

i) Ben knows someone who drives a sportscar.
ii) Not everyone knows someone who drives a sportscar.
iii) The only one Adams knows who drives a sportscar is Ben.

(b) i) Transform the following formula to clausal form.

$$\neg \left[\exists x(P(x) \land \forall y(Q(y) \rightarrow S(x, y))) \right]$$

Justify every step in the transformation. (5 marks)

ii) Is the formula satisfiable? Briefly explain why. (2 marks)

(c) Consider the following atoms

$$P(x, f(x, y)) \quad P(g(a), z)$$

and suppose $\sigma = \{x / g(a), y / a, z / f(a, a)\}$, where x, y, z denote variables.

i) Is σ a unifier of the two atoms? Explain your answer. (2 marks)

ii) Is σ a most general unifier of the two atoms? Explain your answer. (1 mark)

iii) If your answer was no, apply our unification algorithm based on the \Rightarrow_U-rules to compute the most general unifier. (Note that the \Rightarrow_U-rules are given at the end of the exam paper.) (2 marks)

(d) Assume the signature Σ is given by one constant a, one unary function symbol f and one unary predicate symbol P.

Consider the following Herbrand interpretation.

$$I = \{P(f(a))\}$$

Determine if the following clauses hold in I. Briefly explain your answers. (4 marks)

i) $I \models \neg P(a)$

ii) $I \models P(f(a))$

iii) $I \models \neg P(x) \lor P(f(x))$

iv) $I \models \neg P(x) \land P(f(y))$
4. (Bookwork, model construction, orderings, ordered resolution, subsumption deletion)

(a) Give a brief explanation of two of the following. (4 marks)
 i) first-order clause
 ii) Herbrand interpretation
 iii) refutationally complete
 iv) tautology deletion

(b) Let N be the following set of ground clauses.

 1. $\neg Q \lor \neg Q \lor P(f(b)) \lor R$
 2. $P(b) \lor P(a) \lor P(b)$
 3. Q
 4. $\neg P(a) \lor Q$
 5. $\neg P(a) \lor \neg Q \lor P(f(a))$
 6. $\neg P(b)$

 i) Assume the ordering on atoms be defined by

 \[P(f(b)) \succ P(f(a)) \succ P(b) \succ P(a) \succ R \succ Q. \]

 Sort the clauses in N with respect to \succ_C. (Note that \succ_C is defined at the end of the exam paper.) (2 marks)

 ii) Construct the candidate model I_N^\succ as described in lectures for the set N above (and nothing else). (4 marks)

(c) Let \succ be a total and well-founded ordering on ground atoms such that: if the atom A contains more symbols than B, then $A \succ B$.

Let N be the following set of clauses.

\[P(x, f(x)) \lor P(f(f(x)), x) \]
\[\neg P(x, y) \lor \neg P(f(x), z) \]

Use ordered resolution Res^\succ, where \succ is an atom ordering defined as above (no literal is selected), to either derive the empty clause or obtain a saturated set of clauses.

In your derivation indicate the maximal literals in every clause and justify each step. (6 marks)

(d) For each of the following statements state whether it is true or false. In each case give a brief explanation. (4 marks)

 i) $C = P(x, z) \lor \neg R(z, b)$ subsumes $D = P(f(y), y) \lor \neg R(y, b) \lor P(y, y)$
 ii) $C = P(x, z) \lor \neg R(z, b)$ subsumes $D' = P(f(y), y) \lor \neg R(a, b) \lor P(y, y)$
Examination definition sheet

Structural transformation. Lemma: $F[G]$ is satisfiable $\iff F[n_G] \land (n_G \leftrightarrow G)$ is satisfiable. provided n_G is a (fresh) propositional variable not occurring in $F[G]$. n_G can be seen as a name for G. **Structural CNF Transformation:** introduce names recursively for every non-literal subformula in the original formula.

DPLL rules.

Unit Propagate (UP):

$$U \parallel S, \Rightarrow_{UP} U\ell \parallel S$$

if $$\begin{cases} I_U \models \neg C, & \text{for } C \lor \ell \in S \\ \ell \text{ is undefined in } I_U \end{cases}$$

Decide (D):

$$U \parallel S \Rightarrow_D U\ell^d \parallel S$$

if $$\begin{cases} \ell \text{ is undefined in } I_U \end{cases}$$

Backtrack (B)

$$U\ell^dV \parallel S \Rightarrow_B U\ell \parallel S$$

if $$\begin{cases} I_{U\ell^dV} \models \neg C, & \text{for } C \in S, \\ V \text{ contains no decision literals} \end{cases}$$

Unsat (\bot)

$$U \parallel S \Rightarrow_{\bot} \bot \parallel S$$

if $$\begin{cases} I_U \models \neg C, & \text{for } C \in S, \\ U \text{ contains no decision literals} \end{cases}$$

Backjumping (BJ)

$$U\ell^dV \parallel S \Rightarrow_{BJ} Ue \parallel S$$

if $$\begin{cases} I_{U\ell^dV} \models \neg C, & \text{for } C \in S, \\ U \land S \models e, \\ e \text{ is undefined in } U. \end{cases}$$

Lemma Learning (LL):

$$U \parallel S \Rightarrow_{LL} U \parallel S \cup \{C\}$$

if $$\begin{cases} S \models C \\ C \text{ is set-reduced} \end{cases}$$
LTL semantics.

Let $\pi = s_0, s_1, s_2 \ldots$ be a sequence of states and F be an LTL formula. F is true on π, denoted by $\pi \models F$, defined by induction on F as follows. For all $i = 0, 1, \ldots$ denote by π_i the sequence of states $s_i, s_{i+1}, s_{i+2} \ldots$ (note that $\pi_0 = \pi$).

- $\pi \models \top$ and $\pi \not\models \bot$.
- $\pi \models p$ if $s_0 \models p$.
- $\pi \models F_1 \land \ldots \land F_n$ if for all $j = 1, \ldots, n$ we have $\pi \models F_j$;
- $\pi \models F_1 \lor \ldots \lor F_n$ if for some $j = 1, \ldots, n$ we have $\pi \models F_j$.
- $\pi \models \neg F$ if $\pi \not\models F$.
- $\pi \models F \rightarrow G$ if either $\pi \not\models F$ or $\pi \models G$;
- $\pi \models F \leftrightarrow G$ if either both $\pi \not\models F$ and $\pi \not\models G$ or both $\pi \models F$ and $\pi \models G$.
- $\pi \models \Box F$ if $\pi_1 \models F$;
- $\pi \models \Diamond F$ if for some $i = 0, 1, \ldots$ we have $\pi_i \models F$;
- $\pi \models F \mathsf{U} G$ if for some $k = 0, 1, \ldots$ we have $\pi_k \models G$ and $\pi_0 \models F, \ldots, \pi_{k-1} \models F$.

Two LTL formulas F and G are called equivalent, denoted $F \equiv G$, if for every path π we have $\pi \models F$ if and only if $\pi \models G$.
Herbrand models. The Herbrand universe T_Σ (over Σ) is the set of all ground terms over Σ.

A Herbrand interpretation I (over Σ) is a set of ground atoms over Σ.

Truth in I of ground formulae is defined inductively by:

\[
I \models \top \quad I \not\models \bot \\
I \models A \text{ iff } A \in I, \text{ for any ground atom } A \\
I \models \neg F \text{ iff } I \not\models F \\
I \models F \land G \text{ iff } I \models F \text{ and } I \models G \\
I \models F \lor G \text{ iff } I \models F \text{ or } I \models G
\]

Truth in I of any quantifier-free formula F with free variables x_1, \ldots, x_n is defined by:

\[
I \models F(x_1, \ldots, x_n) \text{ iff } I \models F(t_1, \ldots, t_n), \text{ for every } t_i \in T_\Sigma
\]

Truth in I of any set N of clauses is defined by:

\[
I \models N \text{ iff } I \models C, \text{ for each } C \in N
\]

Construction of candidate models. Let N, \succ be given.

For all ground clauses C over the given signature, the sets I_C and Δ_C are inductively defined with respect to the clause ordering \succ by:

\[
I_C := \bigcup_{C \succ D} \Delta_D \\
\Delta_C := \begin{cases}
\{A\}, & \text{if } C \in N, \ C = C' \lor A, \ A \succ C' \text{ and } \\
I_C \not\models C \\
\emptyset, & \text{otherwise}
\end{cases}
\]

We say that C produces A, if $\Delta_C = \{A\}$.

The candidate model for N (wrt. \succ) is given as

\[
I_N := \bigcup_{C \in N} \Delta_C.
\]

We also simply write I_N, or I, for I_N, if \succ is either irrelevant or known from the context.
Orderings. Let \((X, \succ)\) be an ordering. The multi-set extension \(\succ_{\text{mul}}\) of \(\succ\) to (finite) multi-sets over \(X\) is defined by
\[
S_1 \succ_{\text{mul}} S_2 \text{ iff } S_1 \neq S_2 \text{ and } \\
\forall x \in X, \text{ if } S_2(x) > S_1(x) \text{ then } \\
\exists y \in X : y \succ x \text{ and } S_1(y) > S_2(y)
\]

Suppose \(\succ\) is a total and well-founded ordering on ground atoms. \(\succ_L\) denotes the ordering on ground literals and is defined by:
\[
\text{[\text{\neg}]}A \succ_L [\text{\neg}]B, \text{ if } A \succ B \\
\neg A \succ_L A
\]
\(\succ_C\) denotes the ordering on ground clauses and is defined by the multi-set extension of \(\succ_L\), i.e. \(\succ_C = (\succ_L)_{\text{mul}}\).

Maximal literals. Let \(\succ\) be a total and well-founded ordering on ground atoms.
A ground literal \(L\) is called [strictly] maximal wrt. a ground clause \(C\) iff
\[
\text{for all } L' \text{ in } C: \quad L \succeq L' \quad [L > L']
\]
A non-ground literal \(L\) is [strictly] maximal wrt. a (ground or non-ground) clause \(C\) iff there exists a ground substitution \(\sigma\) such that
\[
\text{for all } L' \text{ in } C: \quad L\sigma \succeq L'\sigma \quad [L\sigma > L'\sigma]
\]
If \(L\) is [strictly] maximal wrt. a clause \(C\) then we say that \(L\) is [strictly] maximal in \(L \lor C\).

The \(\Rightarrow_U\)-rules of the unification algorithm.

Orientation: \(\quad t = x, E \Rightarrow_U x = t, E \quad \text{ if } t \notin X \)

Trivial: \(\quad t = t, E \Rightarrow_U E \)

Disagreement/Clash: \(\quad f(\ldots) = g(\ldots), E \Rightarrow_U \bot \)

Decomposition: \(\quad f(s_1, \ldots, s_n) = f(t_1, \ldots, t_n), E \Rightarrow_U s_1 = t_1, \ldots, s_n = t_n, E \)

Occur-check: \(\quad x = t, E \Rightarrow_U \bot \quad \text{ if } x \in \text{var}(t), x \neq t \)

Substitution: \(\quad x = t, E \Rightarrow_U x = t, E\{x/t\} \quad \text{ if } x \in \text{var}(E), x \notin \text{var}(t) \)
Ordered resolution with selection calculus $Res_S^>$. Let \succ be an atom ordering and S a selection function.

Ordered resolution with selection rule:

\[
\frac{C \lor A \quad \neg B \lor D}{(C \lor D)\sigma}
\]

provided $\sigma = \text{mgu}(A, B)$ and

(i) $A\sigma$ strictly maximal wrt. $C\sigma$;

(ii) nothing is selected in C by S;

(iii) either $\neg B$ is selected,

or else nothing is selected in $\neg B \lor D$ and $\neg B\sigma$ is maximal wrt. $D\sigma$.

Ordered factoring rule:

\[
\frac{C \lor A \lor B}{(C \lor A)\sigma}
\]

provided $\sigma = \text{mgu}(A, B)$ and

(i) $A\sigma$ is maximal wrt. $C\sigma$ and

(ii) nothing is selected in C.

Redundancy. Let N be a set of ground clauses and C a ground clause. C is called *redundant* wrt. N, if there exist $C_1, \ldots, C_n \in N$, $n \geq 0$, such that

(i) all $C_i \prec C$, and

(ii) $C_1, \ldots, C_n \models C$.

A general clause is *redundant* wrt. N if each ground instance $C\sigma$ of C either belongs to $G_\Sigma(N)$ or is redundant wrt. $G_\Sigma(N)$.

N is called *saturated up to redundancy* (wrt. $Res_S^>$) iff every conclusion of an $Res_S^>$-inference with non-redundant clauses in N is in N or is redundant (i.e.

\[
Res_S^>(N \setminus \text{Red}(N)) \subseteq N \cup \text{Red}(N),
\]

where $\text{Red}(N)$ denotes the set of clauses redundant wrt. N).