Two hours

UNIVERSITY OF MANCHESTER
SCHOOL OF COMPUTER SCIENCE

Advanced Algorithms I

Date: Thursday 23rd January 2014
Time: 09:45 - 11:45

Please answer any THREE Questions from the FIVE Questions provided

This is a CLOSED book examination

The use of electronic calculators is NOT permitted
1. Stable marriages.

 a) Let B and G be finite, non-empty sets of the same cardinality. Assume that each element of B is associated with a total preference ordering for the elements of G, and each element of G is associated with a total preference ordering for the elements of B. What is meant by a stable matching between B and G? (2 marks)

 b) Describe the Gale-Shapley algorithm for generating stable matchings. (6 marks)

 c) Let $B = \{b_1, b_2, b_3\} \text{ and } G = \{g_1, g_2, g_3\}$. For each $i \ (0 \leq i < 3)$, let the preferences of b_i be given by $g_{i+1} > g_i > g_{i-1}$ (where arithmetic in subscripts is modulo 3); and similarly, for each $j \ (0 \leq j < 3)$, let the preferences of g_j be given by $b_{j+1} > b_j > b_{j-1}$. What matching will the Gale-Shapley algorithm produce in this case? (Assume that, as usual, the elements of B do the ‘proposing’.) Why is this not good news for the elements of G? (4 marks)

 d) Give an example of a stable matching with equitable outcomes for B and G. Demonstrate that your matching really is stable. (4 marks)

 e) It is sometimes said that the Gale-Shapley algorithm produces stable matchings that are optimal for the elements of B. Explain what this means. Why is there only one such matching? (4 marks)

a) Define a flow network. In the context of a flow network, what is a flow, and what is the value of that flow? (4 marks)

b) Let $G = (U, V, E)$ be a bipartite graph. What is a perfect matching for G? (2 marks)

c) Explain how, given a bipartite graph $G = (U, V, E)$ with $|U| = |V| = n$, we can construct a flow network with the property that the maximal integral-valued flows for that network with value n correspond exactly to the perfect matchings for G. (You should use a diagram in your explanation.) (4 marks)

d) Let $U = \{u_1, u_2\}$, $V = \{v_1, v_2\}$ and $E = \{(u_1, v_1), (u_1, v_2), (u_2, v_1)\}$. Draw the corresponding flow network N in this case. (4 marks)

e) Let f_0 be the zero flow for this network (i.e. flow of 0 along every edge). Draw the auxiliary directed graph N_{f_0}, and clearly highlight an augmenting path in this network through the vertices corresponding to u_1 and v_1. (2 marks)

f) Augment f_0 along this path, and let the new flow be f_1. Draw the auxiliary directed graph N_{f_1}, and clearly highlight an augmenting path in this network. (2 marks)

g) Let the new flow be f_2. Show how a perfect matching for G can be extracted from f_2. (2 marks)
3. Linear programming.

a) Maximize \(x + y \) subject to the constraints

\[
\begin{align*}
y &\leq 13 - \frac{3}{10}x \\
x &\leq 15 - \frac{1}{2}y \\
x &\geq 0 \\
y &\geq 0.
\end{align*}
\]

(12 marks)

b) Suppose we are given a linear programming problem in the form

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b,
\end{align*}
\]

where the variables are allowed to range over \(\mathbb{R} \). Show that this problem may be transformed into one in standard form:

\[
\begin{align*}
\text{maximize} & \quad (c')^T w \\
\text{subject to} & \quad A'w \leq b' \\
& \quad w \geq 0,
\end{align*}
\]

and give expressions for \(A' \) and \(c' \). (4 marks)

c) Let \(G = (V, E) \) be a directed graph, \(s, t \) vertices of \(G \), and \(c \) a function \(c : E \to \mathbb{R}^+ \). Express the problem of maximizing flow in the flow network \((V, E, s, t, c) \) as a linear programming problem. (4 marks)
4. Reductions.

 a) Explain what is meant by a *many-one polynomial time reduction*. (4 marks)

 b) Define the problems SAT and k-SAT, for k a positive integer. (4 marks)

 c) Give a many-one polynomial time reduction from SAT to 3-SAT, showing the correctness of your reduction. (4 marks)

 d) Define the problem INTEGER LINEAR PROGRAMMING FEASIBILITY. (4 marks)

 e) Give a many-one polynomial time reduction from SAT to INTEGER LINEAR PROGRAMMING FEASIBILITY, showing the correctness of your reduction, and deduce a lower complexity bound for INTEGER LINEAR PROGRAMMING FEASIBILITY. (4 marks)
5. Space complexity.

a) State the Immerman-Szelepcsényi theorem. (4 marks)

b) Define the problem DIRECTED GRAPH REACHABILITY. For what familiar complexity class is this problem known to be complete? (4 marks)

c) Let S be the set of propositional formulas of the forms

\[p \]
\[\neg p \]
\[p \rightarrow q \]

where p and q are proposition letters. Define the problem S-SAT as follows:

Given: a finite set Φ of formulas of S.
Output: Y if Φ is satisfiable, N otherwise.

For any finite set Φ of formulas of S, define the directed graph $G_{\Phi} = (V_{\Phi}, E_{\Phi})$ by taking V_{Φ} to be the set of proposition letters mentioned in Φ, and E the set $\{(p, q) \mid p \rightarrow q \in \Phi\}$. Show carefully that Φ is satisfiable if and only if there do not exist formulas $p \in \Phi$ and $\neg q \in \Phi$ such that q is reachable from p in V_{Φ}. (8 marks)

d) What can you conclude from the above facts about the complexity of S-SAT? Explain your reasoning. (4 marks)