Q1 was usually very well done, with a fair few 20/20 answers received.

Q2 With two exceptions, the arithmetic in the simplex method proved too tricky. The answer to the final part can be achieved by exhaustive evaluation, as there are very few legally possible integer values. Mostly this question was again very well done, but here were no 20/20 answers.

Q3. The class divided into two: a small group which had basically understood the material (and basically got everything right), and a much larger group which had clearly understood little (and was basically annihilated). The moral is that it is not possible to approach a topic in Theoretical Computer Science as you would, say, learning a programming language: you have to understand the issues, not simply match patterns.

A) This was completely standard textbook material. Most at least managed this.
B) Almost no students got full marks here. It is just a matter of remembering the notes. Many candidates did not give examples of logics.
C) Saying that Co-C is the "complement of C" gained no marks.
D) The question obviously asked students to demonstrate an understanding of the asymmetric acceptance conditions for non-deterministic Turing machines. Few did.
E) Quite a few candidates could actually do this.
F) Quite a few candidates could actually do this.

Q4. This question was done very well, and generated a high average.

A), b), c) d) This textbook material was generally correctly reproduced.
E) There was a good level of understanding of the fact that "NP-hard" relates to decision problems, whereas TSP is not, strictly, a decision problem.
F) I was pleased how well this was done. Candidate after candidate remembered the correct reduction of HAMILTONIAN to TSP-FEASIBILITY and demonstrated that he understood what this meant.