Fundamentals of Computer Engineering

Date: Friday 18th January 2019
Time: 14:00 - 16:00

This is an online examination. Please answer all Questions.

© The University of Manchester, 2019

This is a CLOSED book examination

The use of electronic calculators is permitted provided they are not programmable and do not store text
Section A contains Multiple Choice Questions and is restricted
Section B

Answer both questions

14. a) What is the difference between blocking and non-blocking assignments in Verilog? In what type of Verilog block will you find blocking or non-blocking assignments? For what type of circuit should you use non-blocking assignments? What data type is associated with variables assigned using blocking and non-blocking assignments? (5 marks)

b) What is a multiplexer? Is a multiplexer a combinatorial or sequential logic device? Produce a Verilog statement, using a continuous assignment, that provides the functional operation of a 2:1 multiplexer. (4 marks)

c) Discuss the operation of the D-type flip-flop, paying particular attention to the role of the inputs for everyday operation. (2 marks)

d) The following Verilog module implements a simple D-type flip-flop design. Produce a modified module description that incorporates an additional input control signal which controls on which rising edges of the clock the flip-flop is updated. (3 marks)

```verilog
module ff_1bit(input D, clk, output reg Q, Qbar);

always @ (posedge clk)
begin
    Q <= D;
    Qbar <= ~D;
end

dendmodule
```

e) Produce a Verilog description of a 16-bit register. The register has a clock enable input that is active-low and an active-low reset signal that acts asynchronously. (6 marks)
15. a) Figure Q15.1 shows one possible implementation of the MU0 datapath. Briefly discuss the roles of the following components in the operation of MU0:

i. the PC, \(\text{(1 mark)} \)
ii. the IR, \(\text{(1 mark)} \)
iii. the Control. \(\text{(1 mark)} \)

![Figure Q15.1](image)

b) In MU0 an instruction is executed over two stages: fetch and execute. Briefly describe what happens in each of these two stages. \(\text{(3 marks)} \)

c) If the external clock to MU0 has a frequency of 20 MHz, how long will it take to execute a single instruction? \(\text{(1 mark)} \)

d) Figure Q15.2 illustrates the MU0 instruction format and the MU0 instruction set.

Provide a sequence of MU0 instructions which can be used to add the data values stored at two memory locations, &0A0 and &0A1, and store the result at memory address &0A2. \(\text{(3 marks)} \)

If your first instruction is held in memory address &010, what will be the value held in the PC after your last instruction has been executed? \(\text{(1 mark)} \)
The MU0 arithmetic logic unit, ALU, contains a ripple carry adder. Briefly discuss the limitations of the ripple carry adder design. (2 marks)

The MU0 ALU contains a preconditioner that configures the two 16-bit inputs, input_X and input_Y, to form the two 16-bit inputs to the ALU, output_X and output_Y, for the required ALU operation, as shown in figure Q15.3. The four operations are determined by the input control bus M as shown in the table in Figure Q15.4, which also shows the value of Cin for each operation.

As a designer you are required to complete the design of the preconditioner unit as a Verilog module. The module is defined for you as:

```verilog
module precon(input [15:0] input\_X, input\_Y, input [1:0] M, input Cin, output reg [15:0] output\_X, output\_Y);

// your behavioural code here
endmodule
```

Produce the Verilog behavioural code to describe the operation of the preconditioner unit in setting the outputs, output_X and output_Y, to perform the required operations. (7 marks)
Figure Q15.3

<table>
<thead>
<tr>
<th>M[1:0]</th>
<th>Action</th>
<th>Cin</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Add</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>Sub</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>Inc (X+1)</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>Pass (=Y)</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure Q15.4

END OF EXAMINATION

Page 11 of 11