
Two hours

Implementing System-on-Chip Designs

Date: Tuesday 14th January 2020

Time: 09:45 - 11:45

© The University of Manchester, 2020

Please answer all THREE Questions
Each question is worth 20 marks

The use of electronic calculators is NOT permitted

UNIVERSITY OF MANCHESTER
DEPARTMENT OF COMPUTER SCIENCE

[PTO]

This is a CLOSED book examination

COMP32211

Page 1 of 6



COMP32211

1. a) In SoC design, what is a “netlist”? (2 marks)

b) Explain why pipelining functions will usually increase their latency. (2 marks)

c) Give two distinct reasons why VLSI designers may be concerned with the power

used by an ASIC. (2 marks)

d) The ‘C’ in CMOS stands for “complementary”; what does this mean in terms of

transistors in a CMOS gate and why is it beneficial in the logic operation?

(2 marks)

e) Source-level test coverage can be derived from simulation runs. Give one aspect

of verification of an implementation that such a tool can help with and one aspect

which would not be detected at this level. (2 marks)

f) Here is a badly written fragment of Verilog:

always @ (posedge clk) ccc <= bbb;

always @ (posedge clk) bbb = aaa;

If aaa is 1, bbb is 2 and ccc is 3 at one moment, what is the value of ccc after the

next rising edge of clk?

Explain your reasoning. (2 marks)

g) Figure 1 shows a CMOS ‘complex’ gate. Sketch a schematic showing an arrangement

of MOS transistors which will implement this function.

Ensure that the ‘type’ (i.e. pMOS or nMOS) of each transistor is clear.

(2 marks)

Figure 1: CMOS complex gate: ‘or2andi’

h) You are designing a digital filter for a system-on-chip; this requires many successive

multiply-accumulate operations on 16-bit operands at high speed. What considerations

go into your choice of an appropriate microarchitecture for the multiplier? Suggest

an appropriate choice of multiplier design. (2 marks)

i) Why might part of a system-on-chip might be power gated? Illustrate, with a figure

or otherwise, how this might be implemented. (2 marks)

j) What is a ‘scan chain’ in an SoC? What can it contribute to a design and why is it

a convenient model? (2 marks)

Page 2 of 6



COMP32211

2. a) Describe, with truth tables or otherwise, the difference(s) between the Verilog

comparison operations “==” and “===”. (2 marks)

b) What is the advantage of the “===” comparison for verification? (1 mark)

c) When testing a known peripheral module on a bus a handshake sequence may be

employed, as shown in the timing diagram (fig. 2).

Figure 2: Timing diagram

Figures 3 & 4 show two ways verification code could drive the ‘req’ signal for this

module.

@ (posedge clk) req <= #1 1’b1;

@ (posedge clk);

@ (posedge clk) req <= #1 1’b0;

Figure 3: First Verilog example

while (ack !== 1’b0) @ (posedge clk);

req <= #1 1’b1;

while (ack === 1’b0) @ (posedge clk);

req <= #1 1’b0;

Figure 4: Second Verilog example

Would both of these code fragments generate the same input as shown in fig. 2?

State any assumptions you make. (1 mark)

d) Which of these verification code fragments (figs. 3 & 4) provides a more flexible

test and why? (2 marks)

e) Suggest a way to make your favoured example an even better verification test.

(2 marks)

f) In the Verilog examples, what (if anything) do the “#1” delays contribute to the test

process?

Give any reasons you can think of. (2 marks)

Page 3 of 6 [Next page →]



COMP32211

g) The handshake shown in figure 2 provides an interface between units with the same

clock signal. What additional problem(s) might you expect if the req and ack

signals were generated from units using different clock signals?

How might you alleviate or eliminate such problem(s)? (4 marks)

h) If the communicating units in the previous part of this question are also powered

using different supply voltages what other problem(s) might be encountered?

How might you alleviate or eliminate such problem(s)? (4 marks)

i) Why are multiple supply voltage domains sometimes used on an SoC?

(2 marks)

Page 4 of 6



COMP32211

3. a) Figure 5 shows a buffered multiplexer which you have to implement. The labelled

buffers are guaranteed large enough to accommodate any expected data, which

arrive in bursts of several kilobytes interspersed with idle gaps. The two sources

are independent so data may arrive from each simultaneously.

Figure 5: Buffer architecture

Why would the buffers be built from SRAM rather than D-type flip flops?

(2 marks)

b) It is possible to build dual-port SRAM – where two independent operations can be

made simultaneously – but the area-per-bit is about greater than that of a single-port

SRAM and accesses are slower.

You have to implement the buffers shown in figure 5. Your component library has

available macros for:

• A 4 K single-port SRAM with a 32-bit word length and a minimum cycle time

of 4 ns.

• A 2 K dual-port SRAM with a 32-bit word length and a minimum cycle time

of 5 ns. This can perform two simultaneous access cycles.

Each of these macros occupies a very similar silicon area: 5000 µm2.

To implement the required capacity for each buffer shown, what is the area occupied

using:

i) single-port SRAM macros

ii) dual-port SRAM macros (2 marks)

You can assume that interconnection area is negligible compared to the macro size.

c) Ignoring capacity in this part of the question, for a single channel, what would be a

buffer’s peak throughput in Mbytes/s achievable using:

i) one single-port SRAM macro

ii) one dual-port SRAM macro (6 marks)

Page 5 of 6 [Next page →]



COMP32211

d) The required buffer bandwidth throughput is a 900 Mbytes/s (per channel). Suggest

how you could provide this with the SRAM macros available. (4 marks)

e) It turns out that the area available will restrict the design to using only single-port

SRAM macros if the required capacity is to be provided. How might this be done

whilst still providing a throughput comparable with that achievable with dual-port

SRAMs?

Highlight any characteristics of the problem which constrain your design and any

you can exploit in creating your solution. (6 marks)

Page 6 of 6

END OF EXAMINATION




