
PGT Exam Performance Feedback
2016/2017 Semester 1

Please see the attached report.Comments

61511 Software Engineering Concepts in Practice Bijan ParsiaCOMP

10 February 2017 Page 10 of 13



COMP	61511:	Software	Engineering	Concepts	In	Practice	
Fall	2015	Exam	General	Feedback	
Bijan	Parsia,	Course	Leader	and	Marker	

	
Exam	Overview	
	
The	exam	consisted	of	

• 23	objective	questions	(7	true/false	(TF),	22	multiple	choice	questions	
(MCQs))	

o 1	point	per	question	for	a	total	of	29	point	
• 2	essay	questions	

o 1	worth	5	points	and	1	worth	6	points	for	a	total	of	11	points	
Total	possible	points	=	40	
	
Overall	Performance	
	
Performance	was	pretty	standard	for	a	class	this	size	(60%	average	is	the	school	
“norm”)	and	sort	and	was	essentially	unchanged	from	last	year:	

	
2015-2016	 2016-2017	

	
Raw	Score	 Percentage	 Raw	Score	 Percentage	

Minimum	Value	 15	 38%	 13	 33%	
Maximum	Value	 34.5	 88%	 36	 90%	
Range	 19.5	 -	 23	 -	
Average	 24.34	 62%	 24.3	 61%	
Median	 24.75	 63%	 23.5	 59%	
Std	Deviation	 4.39	 11%	 5.7	 14%	
	
The	distribution	is	interesting	with	a	bit	of	bimodality:	
	

	

0	

5	

10	

15	

20	

25	

30	

0-29	 30-39	 40-49	 50-59	 60-69	 70-100	



As	you	can	see,	the	largest	group	was	the	distinction	level	with	almost	a	third	of	
the	class	scoring	that.	This	is	a	bit	different	from	last	year	where	the	distribution	
was	more	normal	(though	skewed	right).	We	had	fewer	essays	this	year	and	that	
may	have	some	role	in	this	shift.	But	in	general,	the	cohort	taking	this	class	has	a	
wide	range	of	ability	and	experience	which	can	lead	to	these	sorts	of	patterns.		
	
Blackboard	provides	an	“item	response	theoretic”	analysis	of	the	questions:	
	

	
This	is	perfectly	normal	and	almost	the	same	as	last	year.	People	finished	a	bit	
quicker	(1hr	51	min	vs.	1hr	55	mins).	
	
In	terms	of	difficulty	breakdown,	the	strong	majority	of	the	questions	are	in	the	
(desired)	"medium"	level,	which	means	that	between	30-80	of	exam	takers	got	it	
correct.	Generally,	instead	of	having	the	entire	exam	at	the	"medium"	level,	I	
prefer	to	have	a	bit	of	progression	from	some	easy,	to	mostly	medium,	to	some	
hard,	which	this	exam	reflects.	
	
Discrimination	(i.e.,	whether	student	performance	on	a	particular	question	
"tracks"	their	performance	on	the	rest	of	the	exam	--	a	question	where	students	
who	did	overall	poorly	on	the	exam	did	better	than	students	who	did	overall	well	
on	the	exam	exhibits	poor	discrimination)	was	also	quite	reasonable,	though	
there're	a	bit	too	many	"fair"	quality	questions.		
	
MCQs	
	

	
	
Q3	was	about	the	visibility	of	internal	qualities	to	end-users.	They	are	sometimes	
visible	to	end	users…consider	how	end	users	can	request	a	system	be	written	in	
Java.	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

1.20	

Q1
	

Q2
	

Q3
	

Q4
	

Q5
	

Q6
	

Q7
	

Q8
	

Q9
	

Q1
0	

Q1
1	

Q1
2	

Q1
3	

Q1
4	

Q1
5	

Q1
6	

Q1
7	

Q1
8	

Q1
9	

Q2
0	

Q2
1	

Q2
2	

Q2
3	

Q2
4	

Q2
5	

Q2
6	

Q2
7	

Q2
8	

Q2
9	



Q8’s	most	attractive	distractor	is	that	the	bug	is	in	the	system	under	test.	But	
recall	that	a	failing	test	might	itself	be	buggy	(or	the	test	harness	might	be	
buggy).	
	
For	Q14,	usability	is	plausible	as	the	“key”	non-functional	quality,	but	efficiency	
dominates	still.	
	
Q17	was	about	walking	skeleton.	The	key	aspect	of	a	walking	skeleton	is	that	it’s	
“end	to	end”,	i.e.,	covers	the	whole	system.	
	
Q18	is	about	intentional	debt.	While	it’s	a	good	idea	for	intentional	debt	to	have	a	
plan	to	pay	it	off,	that	isn’t	required	for	it	to	be	intentional.	
	
Q20:	Refactoring	(in	it’s	purest	for)	precludes	any	other	construction	activity	
(debugging,	adding	functionality,	etc.)	
	
Q23	was	intended	as	a	fun,	recall	question	about	Grace	Hopper.	
	
Essays	
	
As	the	distribution	of	marks	show,	people	found	Q30	significantly	more	difficult	
than	Q31.	In	both	cases,	the	rubric	followed	the	basic	pattern	established	in	the	
coursework	with	two	of	the	marks	being	for	Mechanics	and	for	Answering	the	
Question	with	the	rest	for	the	question	specific	content.	Both	questions	involved	
recall	and	analysis.	

	
	
Q30:	The	biggest	issue	here	was	that	quite	a	few	people	did	not	recall	what	
McConnell’s	General	Principle	of	Software	Quality	was	(i.e.,	increasing	software	
quality	decreases	cost).	This	was	pervasive	enough	that	I	shifted	the	rubric	to	
allow	more	than	3	marks	if,	in	spite	of	getting	the	principle	wrong,	the	rest	of	the	
question	was	reasonable.	
	



Q31:	The	biggest	issue	with	this	question	was	that	people	didn’t	relate	the	
wicked	problem	nature	of	software	development	to	the	order	of	the	stages.	
People	would	just	discuss	what	the	stages	are	which	isn’t	really	related	to	the	
question.	
	


	COMP61511feedback2
	COMP61511feedback

