Questions 1 was answered by all 17 students with only two scoring under half marks; Question 2 was the next most popular with 10 answers; Questions 3 and 4 had four and three answers, respectively. The average overall mark was approximately 67.5%.

For Question 1b, (overheads), the most common problem was not to properly quantify the overheads in a table and not to compute the naïve ideal times so that a total overhead could be obtained, thus, these students were unable to do a thorough analysis.

For 1c, there was a query about whether the question addressed an upper triangular matrix or a lower triangle matrix. In fact, the view actually depends on where the origin of the matrix is taken to be – upper left or bottom right (usual is upper left for matrices). As long as answers were consistent with their interpretation, marks were not affected. The most common issue was not to deal carefully with the “column sum” computation.

Question 2, was generally well answered. The most common issues were not to be clear about the impact of the partitioning of the data and not to deal comprehensively with the implications of various distributions of work.

In Question 3, the main issue was that some students did not provide answers to all parts of the question. Answers that were provided were generally good. In part (b) on data dependency analysis, two students gave good, novel solutions.

For Question 4, two of the three attempts achieved very high marks. This was a quite mathematical question, which may have put some students off, but for those who “got it”, turned out to be relatively straightforward. The third candidate appeared to have an incorrect grasp of what was being asked and unfortunately did not provide attempts to some later parts.