Question 1 was taken by 169 students, it had a high average of 67, but also a high standard deviation of 24.

The most significant issues were:

1.c.i: Some students forgot that parallel or distributed implies concurrency, i.e., that concurrent is not equivalent to single-processor threading.

1.e.ii: Many students felt that transparency of replication is the goal at stake, but no evidence is given for that, whereas the evidence is for transparency of location using a mapping of one 'logical' identifier to many 'physical' addresses. Note, for example, that there is no implication that each of the IP addresses is equipotent to all the others, as would be the case in replication.

1.f.ii: Many students thought the axiom at play is that 'the network is not reliable', or 'bandwidth is not infinite', but there is no direct evidence given for that. What we know is that there are different routes between the same endpoints. We may wish to assume that this is because of unreliability or lack of bandwidth, but we do not need to assume anything to assert that 'topology does change'.

Question 2 was taken by 47 students, it had a very low average of 48, with an also high standard deviation of 25.

The most significant issues were:

2.b: Most students failed to recall the possible combinations of blocking/synchronization cases supported by the IPC mechanisms in OSs.

2.c.i: The most common minor glitch here was a failure to touch on the fact that filters are independent and therefore can be applied in any order.

2.c.ii: A great many students took the wrong turn of thinking of replicating the inputs to the task whereas the allusion to availability should have suggested that it was replication of processing units that was at stake here.

2.d.i: Too few students recalled the fact that the output key emitted by the mapper acts as a hashable value that then sends collections to buckets over which the reducer can operate in parallel. Allusion to the barrier was not relevant to the question.

2.d.ii: Most students failed to heed the request in the handouts for them to do research on Flynn's taxonomy. This is indicative of a tendency to rely just on the content in handouts and lectures, rather than follow the natural instinct to explore further, even when prompted to do so.

Question 3

Overall, the performance was satisfactory, with marks ranging from below 10 to the maximum 25.

The most common error was not answering the question. Here are four cases. In Part a, students had to explain why we can say that DNS servers use a caching strategy: just describing how they work is not enough. In Part b, the required explanation should be from the viewpoint of state management: just defining what cookies are is not enough. In Part c, a reason must be provided as to why two protocols are needed: just describing the two protocols is not enough. Finally, in Part f, students fail to state whether the set of assertions is consistent: just drawing a diagram is not enough.

Some common factual errors include wrong understanding of the Coffman conditions (Part d), wrong axioms for distributed systems (Part e), wrong definition for 'critical section' (Part g), and wrong understanding of the tit-for-tat policy used by BitTorrent (Part h).