MSc Syllabus

Advanced Computer Science
Course Units

2005/2006

School of Computer Science
Faculty of Engineering and Physical Sciences, The University of Manchester
Disclaimer: The information contained in this syllabus is correct at the time of your receiving it but the University, while retaining proper regard for the interests of students who have begun their programmes, reserves the right to alter the programmes or the timetable if the need arises.

Version of June 5, 2006
URL: http://www.cs.manchester.ac.uk/Study_subweb/Postgrad/ACS-CS/webpages/syllabus/acs/
This document describes the Advanced Computer Science course units and the aims and learning outcomes of the MSc in Advanced Computer Science for the current session.

The course units change yearly in order to keep up with new developments in the subject. Most, if not all, of the units listed below will be available in the forthcoming year. However, various factors may cause a course unit to be withdrawn (including availability of staff and demand from students) and so there is no guarantee that any particular course unit will be available, though as a School we try to ensure that all are. The number of students on a course unit is normally limited to 50, but, because of facilities or teaching methods, other limits may be imposed on individual units.

Some of the course units are specifically designed for particular MSc programmes. They may however be available for students on other MSc programmes if facilities and other arrangements allow. If you wish to take such course units you will need the approval of both your programme director and the programme director responsible for the course unit. This applies in particular to those marked EIS (Electronic Instrumentation Systems), to those for the MSc in Computational Science and Engineering (CS607, 608, 609), to those for the MSc in Advanced Computer Science with ICT Management (CS851, 852), and those supplied outside the School or by the PEVE Unit via E-learning. Other course units may have restrictions indicated in the syllabus document.
Contents

1. Programme Aims and Learning Outcomes 5
2. CS600: Introduction to Advanced Computer Science 7
3. CS602: Grid Computing and eScience 9
4. CS603: High Performance Computing in Science and Engineering 12
5. CS604: Low-Power System Design 14
6. CS605: Visualisation for HPC 16
7. CS607: Introduction to Computational Science 18
10. CS611: System Construction Using B 23
11. CS612: Automated Reasoning 25
12. CS616: Knowledge Representation and Reasoning 28
13. CS617: Interactive System Design Methods 31
14. CS619: Extreme Java ... 36
15. CS620: Electronic Instrumentation Systems MSc: Design Study and Project (EIS) 39
16. CS621: Instrumentation Electronics (EIS) 40
17. CS624: Mobile Computing .. 41
18. CS625: Information Storage Systems (EIS) 43
19. CS626: Sensors and Systems (EIS) 44
20. CS627: The Measurement Environment (EIS) 45
21. CS628: Signal Processing (EIS) 46
22. CS629: Electronic Instrumentation Systems: Optional Subjects (EIS) 47
23. CS631: Computational Biology - The application of computer science to the problems of post-genome biology 48
24. CS632: Computer Animation 50
25. CS633: Computing Shape ... 52
26. CS634: Electronic Commerce Technologies 54
27. CS636: Advanced Database Technologies 57
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 CS639</td>
<td>Computer Security</td>
<td>60</td>
</tr>
<tr>
<td>29 CS643</td>
<td>Machine Learning</td>
<td>62</td>
</tr>
<tr>
<td>30 CS644</td>
<td>Advanced Machine Vision</td>
<td>64</td>
</tr>
<tr>
<td>31 CS646</td>
<td>The Semantic Web: Ontologies and OWL</td>
<td>66</td>
</tr>
<tr>
<td>32 CS648</td>
<td>Neural Networks</td>
<td>69</td>
</tr>
<tr>
<td>33 CS649</td>
<td>Robotics</td>
<td>71</td>
</tr>
<tr>
<td>34 CS699</td>
<td>Research and Professional Skills</td>
<td>73</td>
</tr>
<tr>
<td>35 CS851</td>
<td>The IT Change Agenda</td>
<td>75</td>
</tr>
<tr>
<td>36 CS852</td>
<td>IT Systems and Strategy</td>
<td>78</td>
</tr>
<tr>
<td>37 CS853</td>
<td>Decision Analysis and Decision Support Systems</td>
<td>84</td>
</tr>
<tr>
<td>38 ET400(SF4001)</td>
<td>Entrepreneurial Commercialisation of Knowledge</td>
<td>86</td>
</tr>
<tr>
<td>39</td>
<td>Course Units via E-Learning</td>
<td>87</td>
</tr>
</tbody>
</table>
1 Programme Aims and Learning Outcomes

Programme Aims

The educational aims of the Advanced Computer Science Masters are to:

- Produce the highest quality of computing professionals and researchers across a broad range of Computer Science
- Provide a vehicle for dissemination of leading edge knowledge and skills, focussing on the research strengths of a large school covering most major topics in Computer Science and its applications
- Offer the opportunity to focus on one of a range of specialisations.

Programme Learning Outcomes

A. Knowledge and understanding

A1. Knowledge of a range of advanced topics, both at the applied level and the research level, beyond undergraduate level and at the forefront of research.

A2. Leading-edge technologies in one or more of: advanced computer architectures, formal foundations of Computer Science, software engineering, advanced applications, artificial intelligence.

B. Intellectual Skills. The ability to:

B1. develop original ideas in a research context.

B2. use methodologies for development of computational systems at an advanced level.

B3. perform problem solving in academic and industrial environments.

C. Practical Skills. The ability to:

C1. develop applications to satisfy given requirements.

C2. organise and pursue a scientific or industrial research project.

C3. use, manipulate and create large computational systems.

C4. perform independent information acquisition and management.

D. Transferable Skills. The ability to:

D1. work effectively as a team member.

D2. prepare and present seminars to a professional standard.

D3. write theses and reports to a professional standard, equivalent in presentational qualities to that of publishable papers.

D4. perform independent and efficient time management.

D5. use a full range of IT skills and display a mature computer literacy.
Advanced Course Unit Descriptions
2 CS600: Introduction to Advanced Computer Science

Level: MSc
Credit Rating: None
Degrees: ACS/CS/CompSci
Pre-requisites: None
Pre-course work: None
Taught week: 40 hours: introductory seminars and activities
Post-course work: None
Assessment: None
Lecturer(s): Programme Director, Tutor and Lecturers.

Introduction

This is an important and enjoyable overview of the course and of advanced topics in computer science. For each taught course unit, there is an introductory talk given by one of the lecturers of the course unit. This is an opportunity to learn what each topic is about, what problems it tackles, what skills and knowledge are required and learned. This also provides a forum for discussing each topic with an expert in the area. The student is expected to attend all the introductory talks, viewing this not simply as an opportunity to choose a selection of course units, but also as an opportunity to broaden knowledge and see what are the concerns of other topics across the range of Computer Science. The course unit also covers material on the structure and expectations of the course, and an introduction to the facilities of the School, the Graduate School and the University.

Aims

This course unit has three aims.

– To provide an overview of the course itself, its aims and structure and an introduction to the School and its equipment and to the University,
– To provide a broad overview of the major issues, themes and topics in advanced computer science,
– To provide introductions to each of the optional course units, given by the staff who will teach them. These will assist students in making their selection of six of the course units, giving an explanation of the issues, knowledge and skills dealt with in each course unit.

Learning Outcomes

After completion of the course unit, the student will understand the structure of the Advanced MSc course, what is expected of the student and procedures for the course.

Through the introductory talks for the course units, the student will have gained a wide overview of advanced topics in computer science and will be able to select course units for further study with an understanding of what each topic is, its applications and relationship with other areas, and what skills and knowledge is to be gained through each course unit. (A)

Assessment of learning outcomes

There is no assessment for this course unit.

Reading list and supporting material

Lecturers will supply material about each of the course units.
Special resources needed to complete the course unit

No special resources.

Detailed syllabus

– Introduction to the course, the School and the University.
– Major issues in advanced computer science.
– Introductions to individual course units.
3 CS602: Grid Computing and eScience

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS/CompSciEng (possibly others)
Pre-requisites: None
Pre-course work: 40 hours: 30% introductory lab, 70% preparatory reading
Taught week: 40 hours: 50% lectures, 50% supervised lab
Post-course work: 40 hours: 100% Mini Project
Assessment: 35% exam, 30% coursework 35% MiniProject
Lecturers: Dr. John Brooke, Dr Stephen Pickles, Dr Jon MacLaren, Mr Donal Fellows
Limit on numbers: 50 participants

Introduction

Grid computing and eScience are two major areas of growth in the field of distributed systems. The Grid concept refers to the virtualisation of computing resource in the sense that end-users should have the illusion of using a single source of “computing power” without knowing the locality of the computation. Examples of this virtualisation are the use of digital certificates to access systems on behalf of the user, third party file transfer between machines authenticated via certificates, client tools for workflow composition with the workflow being consigned by agents such as brokers. There is a growing movement of convergence with the Web services community and this is attracting the interest of major companies such as IBM, HP, SUN., SGI, who see their future business increasingly involving the provision of an infrastructure where computing services are traded between providers rather than individual groups within an organisation having their “own” machines. The course will introduce the concepts and develop lab exercises based on job submission and monitoring on a local Grid. The course tutors are all active in the Global Grid Forum which is becoming the body for determining Grid standards, thus this course will be informed by the very latest developments in this highly dynamic field. EScience is allied to the Grid concept, it refers to new methods of utilising Grid and other forms of distributed computation with a particular emphasis on collaborative working by geographically distributed teams. Much academic and industrial research and development is increasingly utilising the eScience model, which also goes under the title of “Cyberinfrastructure” (the latter term being used in the US).

Aims

This course unit aims to:

1. explain the concept of eScience and its importance in future problem solving IT infrastructure.
2. explain the concept of Grid computing and its relation to eScience,
3. familiarise students with the key abstractions underpinning the Grid concept,
4. outline current Grid solutions and how they are intended to evolve,
5. give a more in-depth view of a widely used Grid middleware system UNICORE,
6. give lab sessions in running Grid computing jobs using the UNICORE GUI based job composition and submission method,
7. provide a mini-project to explore some particular aspects of Grid computing, e.g. resource discovery, application plugins, workflow composition.

Learning Outcomes

A student successfully completing this course unit should:

1) Have an understanding of the concepts of Grid computing and eScience and why they have assumed such current prominence. In particular to have an understanding of the importance of standards and protocols in Grid computing (A),
2) Understand the architecture of the UNICORE middleware and how this relates to the emerging Open Grid Services Architecture proposals and standards (A,B).

3) Be able to utilise UNICORE to submit both simple and multistage computing jobs onto a local Grid (A,B,C),

4) Be able to explore via UNICORE a particular aspect of Grid computing, for example in obtaining information about resources on wide area Grids, extending the UNICORE system via an application specific plugin, investigation interoperability with other Grid systems (e.g. Globus) (A,C).

Assessment of learning outcomes
Learning outcomes (1) and (2) are assessed by examination, learning outcome (3) is assessed by laboratory reports, learning outcome (4) is assessed by mini-project.

Contribution to programme learning
A1, A2, B2, B3, C1, C3, D1, D5.

Reading list and supporting material
There is a CS602 web page\(^1\). Follow links from Documents for current session.

Grid computing is so dynamic that most books are either not written or are out of data. The original and most influential book is

DON’T buy the first edition, the second edition should be out in mid 2003. The first edition is worth reading but is considerably out of date.

The best way to get information is to search the Web with the keywords Grid, eScience, Unicore, Globus. A useful reference site for the course unit is here\(^2\).

You may wonder why UNICORE is taught in preference to Globus. It has a more compact architecture which makes it more suitable for this level of study and it is closer in structure to the Open Grid Services Architecture which will be the standard for future Grid computing. UNICORE can be used to run jobs on a Globus Grid so there are no restrictions implied by the choice of this system and the aim of the course is to present the principles underlying the most widely used Grid middleware systems.

Special resources needed to complete the course unit
It should be possible to install the course software anywhere, but attention will need to be paid to security since Grid access is a very powerful tool and course participants accessing from outside the school computing resources may be required to sign forms to obtain certificates from the Certificate Authority.

Detailed syllabus
First we define the lecture syllabus. Each lecture will be of one hour duration. Each topic will have 3 lectures devoted to it making 12 lectures in all. The rest of the time will be devoted to the laboratory classes listed below.

\(^1\)http://www.esnw.ac.uk/
\(^2\)http://www.grid-interoperability.org
1. The metacomputing problem: forerunner to the Grid. Exploring the convergence of exploitation of high speed networks, exploitation of architectural affinity, work on coupled multiphysics problems, e.g. Climate Models. Importance of locality requirements to minimise flow of data across wide area networks.

3. Role of middleware in Grid computing. Necessity for abstractions in a heterogeneous environment, differing OS’s, resource management systems, programming languages. Interoperability achieved via tiered middleware architectures.

The laboratory sessions will cover the rest of the time:
- Use of UNICORE GUI to compose a Grid workflow
- Use of UNICORE Resource Broker to locale a suitable machine or machines on a local Grid
- Submission and monitoring of the job via the UNICORE client.
- Dealing with job termination and tidy up.
- Architecture extension: installing a simple client plugin for UNICORE
4 CS603: High Performance Computing in Science and Engineering

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: Advanced Computer Science, Computational Science and Engineering (and possibly others)
Pre-requisites: None
Pre-course work: 40 hours: 30% introductory lab, 70% preparatory reading
Taught week: 40 hours: 50% lectures, 50% supervised lab
Post-course work: 40 hours: 100% mini-project
Assessment: 35% exam, 30% lab, 35% mini-project
Lecturer(s): Dr T L Freeman, Prof J R Gurd, Mr G D Riley
Limit on numbers: 50 participants

Introduction

Today’s highest performance computers embody substantial amounts of parallel hardware, to the extent that the latest generation of machines harness the power of thousands of cooperating processors. The programming of such highly parallel hardware has proved to be difficult: progress has been slow and achieved mostly by "trial-and-error". Convergence between the competing technologies has taken unusually long and the HPC market remains highly volatile.

Aims

This course unit studies the base technologies for HPC and allows “hands-on” experience of a state-of-the-art parallel supercomputer to be gained. The course unit explores, through a combination of directed reading, lectures, group-based laboratories and group-based mini-projects, a framework for the development, analysis and performance tuning of parallel algorithms for the solution of numerical problems.

Learning Outcomes

A student completing this course unit should:

1) have an understanding of the different levels of abstraction in HPC Modelling and of different parallel programming models; (A)
2) have an understanding of parallel performance overheads and of techniques for reducing them; (A)
3) be able to implement a moderately complicated application in a parallel language; (B and C)
4) have an understanding of some parallel numerical algorithms; (A)
5) be able to work effectively as a member of a group to develop parallel applications. (D)

Assessment of learning outcomes

Learning outcomes (1) and (2) are assessed by examination, in the laboratory and via the mini-project, learning outcomes (3) and (5) are assessed in the laboratory and via the mini-project, and learning outcome (4) is assessed by examination.

Contribution to programme learning

A1, A2, B2, B3, C1 and C3
Reading list and supporting material

Foster, I., Designing and Building Parallel Programs. Addison-Wesley, 1995.

Special resources needed to complete the course unit

Access to parallel computers situated in the School.

Detailed syllabus

Introduction to HPC Why is HPC important in Science and Engineering? Introduction to Parallel Computers and Computational Overheads.

Levels of Abstraction, Models of Computation and Parallel Overheads Levels of Abstraction, Multiple Program Counters in Hardware; Multi-Thread Models, with Primary Sources of Overhead; Parallel Languages and Compilers; Task-Parallel versus Data-Parallel Programming Models; Further Sources of Overhead; Experimentation and Presentation of Results; Memory Architecture and Memory Access Times and Associated Sources of Overhead; Multi-Process Execution Model; Performance Tuning via Overhead Reduction; Task Scheduling; Data Partitioning and its Effect on Performance.

Restructuring for Parallel Performance Parallelising Compilers; Loop Transformations; Data Transformations; Dependence Analysis; Compiler Strategies.

Resumé Review of the course material and the unifying theme of levels of abstraction.
5 CS604: Low-Power System Design

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS/CompSciEng (possibly others)
Pre-requisites: None
Course material: 80 hours: on-line self-study material supported by unsupervised practical exercises and seminar
Post-course work: 40 hours: unsupervised lab, report writing
Assessment: 33% exam, 67% coursework
Lecturer(s): Steve Furber
Limit on numbers: 50 participants

Introduction
This course covers the design of low-power embedded systems based around the ARM 32-bit microprocessor core. It will be taught primarily through self-study on-line material, supported by seminars and practical exercises.

Aims
Computing is becoming increasingly mobile, both in recognisable forms such as lap-top computers and in forms where the computing function is concealed such as digital mobile telephones. Mobile computing increases significantly the importance of minimising the power consumed by the system as excessive consumption directly compromises battery life. The aim of this course is to introduce students to the practical aspects of engineering high-performance computer systems where power consumption is a major consideration at every stage of the design. The course is heavily based around the ARM 32-bit RISC microprocessor, a world-leading processor for power-sensitive applications, and covers many aspects of designing power-efficient systems around ARM cores.

Learning Outcomes
A student completing this course unit should have achieved:

1) an understanding of the principles of the ARM and Thumb instruction sets and their practical use. (A)
2) an understanding of the principles of low-power RISC processor design. (A)
3) an insight into the design of memory hierarchies for power-efficient systems, and an ability to apply a systematic methodology to memory hierarchy design. (A and C)
4) an overview of the system-level issues involved in designing a particular power-sensitive application. (B)
5) an ability to write clear and concise reports on matters relating to low-power design. (D)

Assessment of learning outcomes
Learning outcomes (1), (2) and (4) are assessed by examination, learning outcome (3) by examination and in the laboratory and learning outcome (5) by the coursework.

Contribution to programme learning
A1, A2, B2, C1, D3
Reading list and supporting material

2. Full course material, including the laboratory manual, are supplied on-line.

Special resources needed to complete the module

The ARM CBT (computer-based training package) contains the basic course material - this is available on-line.

Access to the ARM Developer Suite (ADS) is required for the practicals and the post-course work. This runs on Windows PCs and is available on School machines. A (limited-time) demo version may be available for part-time students wishing to take the course. Alternatively we can provide remote access to suitable School machines.

Detailed syllabus

Basics of processor design.

Processor design trade-offs.

The ARM and Thumb instruction sets in outline.

The ARM instruction set in detail.

Exceptions and special instructions.

The Thumb instruction set in detail.

ARM integer cores.

Memory hierarchy.

The ARM memory management and memory protection units.

ARM CPUs.

System development.

On-chip buses.

On-chip debug.
6 CS605: Visualisation for HPC

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS/CompSciEng (and possibly others)
Pre-requisites: None
Pre-course work: 40 hours
Taught week: 40 hours
Post-course work: 40 hours
Assessment: 33% exam, 67% practical exercise
Lecturer: Terry Hewitt and Dr. N.W. John
Limit on numbers: 50 participants

Aims

The quantities of data produced by simulations on supercomputers of physical, natural and theoretical problems are frequently so large that graphical representations offer the only viable way to assimilate them.

Often, the simulation models themselves are complex, involving large numbers of independent and dependent variables whose relationships need to be understood. For example, in climate modelling, we may wish to explore how temperatures, water vapour content, pressure, wind directions and velocities vary within a 3D region, over time. The process of visualisation is therefore concerned with ways to represent the data, and tools for interactive exploration of multi-dimensional, multi-variate models. An active research area is to find ways to link this visualisation process with interactive control of the simulations themselves, opening up completely new possibilities for interactive exploration and understanding of complex phenomena. Recently, a number of visualisation systems have emerged, which provide a framework for this kind of model exploration.

The aims of this course unit are to provide a practical introduction to computer-aided visualisation of such complex data, using systems to interactively explore models of data. The course unit combines lectures and background reading, together with laboratory exercises and mini-projects using the application visualisation system (AVS).

Learning Outcomes

A student completing this course unit should:

- Understand and be capable of using visualisation tools in key areas which contribute to successful visualisation, including understanding the dimensionality of data, reference models for data manipulation and mapping, display techniques and algorithms (including parallel algorithms), use of colour, visual perception, user interfaces (including cooperative working and virtual reality), use of animation, and visualisation systems. (A, B and C)

Assessment of learning outcomes

The practical skills of using visualisation tools are assessed in the practical exercise, which consists of a mini-project undertaken in groups. The examination tests the understanding and knowledge described above.

Contribution to programme learning

A1, A2, B3, C1, C3 and D1.
Reading list and supporting material

There is no recommended textbook for this course, but handouts and lists of suggested papers will be given to students. The following two books are suitable background reading.

Special resources needed to complete the course unit

The AVS visualisation software is used on this course unit.

Detailed syllabus

Lectures

- Intro to the course unit
- Overview of visualization.
- Information into pictures.
- 2D Visualization.
- Volume visualization.
- Reference models.
- Flow visualization.
- Graphics hardware and software.
- Interpolation and approximation.
- Visual perception and colour.
- Interaction basics.
- Modes of interactions.
- Parallel architectures.
- Parallel visualization.
- Multidimensional data.
- Remote visualization.
- Visualization systems.
- Data management.

Laboratory Sessions

- AVS training, NW editor, geometry viewer, volume visualization, 3D scalar, medical imaging.
- Climate model 1.
- Climate model 2.
- CFD working demo.
- Cooperative working demo.1.
- CFD Double glazing 2. Make a Video.
- Implementing marching cubes 1.
- Implementing marching cubes 2.
- Implementing marching cubes 3.

Mini Projects

Mini-projects will be done in groups of 3 using the CGU HP/SGI or the MSc equipment.
Aims
Modern Science and Engineering have become increasingly dependent on large numerical simulation to aid progress in research, development and design. It is difficult to think of a large-scale Science or Engineering project that does not rely on some aspect of Computational Science. The aim of this course unit is to provide an introduction to the range of issues (algorithmic, software and hardware) that need to be addressed to derive efficient and adaptable numerical solutions of some simple PDEs that model physical problems.

Learning Outcomes
A student completing this course unit should:

1) have an understanding of the execution cycle of a numerical code that simulates a simple PDE; (A)
2) have an understanding of the factors in the execution cycle that affect performance on a sequential machine;
3) have an understanding of the benefits of abstraction in program design. (D)

Assessment of learning outcomes
Learning outcomes (1) and (3) are assessed in the laboratory and via the mini-project, learning outcomes (2) is assessed by examination, in the laboratory and via the mini-project.

Contribution to programme learning
A1, A2, B2, C1 and C3.

Reading list and supporting material
Detailed syllabus

Simple examples Simple motivating examples (with simple boundary conditions):
 - elliptic PDE (Laplace),
 - parabolic PDE (heat conduction).

Discrete formulations Linear equation solution methods (direct vs. iterative). Scaling with problem size (dependence of error on mesh size).

Difference Equations Difference equations into code. Difference equations, systems of linear algebraic equations, linear equation solution techniques (both direct and iterative), Java code, visualisation of solutions. Object-orientation for high level "plug’n’play".

Details of solvers Solver internals and introduction to system architecture. Only selected effects to be explained; stride access to memory, JIT optimisations.

Component-based Analysis and Design Component-based Analysis and Design of the example problems at all levels of abstraction: Physics; Finite Difference Equations; Algebraic Equations; Matrix element level.

Resumé Search for best (most efficient) solution to the simple examples and illustration that a performance problem remains. Consider implications of increased problem complexity for performance; more complex domains, more complex PDEs.
8 CS608: Fundamentals of High Performance Execution

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: Computational Science and Engineering (ACS and others, if qualified)
Pre-requisites: CS607
Pre-course work: 40 hours: 30% introductory lab, 70% preparatory reading
Taught week: 40 hours: 50% lectures, 50% supervised lab
Post-course work: 40 hours: 100% mini-project
Assessment: 35% exam, 30% lab, 35% mini-project
Lecturer(s): Professor J R Gurd, Mr G D Riley,
Limit on numbers: 50 participants

Aims
To introduce to non-Computer Science graduates the Fundamentals of System Architecture. Thus to enable them to understand the execution characteristics of scientific simulation code.

Learning Outcomes
A student completing this course unit should:

1) have an understanding of the essentials of serial program execution cycle:
 source code \rightarrow object code \rightarrow run-time code \rightarrow hardware; (A)
2) have an understanding of the effects of components of execution cycle on performance;
3) have an understanding of the limitations of abstraction, in particular in terms of program performance. (D)

Assessment of learning outcomes
Learning outcomes (1) and (2) are assessed by examination, in the laboratory and via the mini-project, learning outcomes (3) is assessed in the laboratory and via the mini-project.

Contribution to programme learning
A1, A2, B2, C1 and C3.

Reading list and supporting material

Detailed syllabus
High level view of source code to run-time code transformation Fundamentals of Compilation; Optimisation; Interpretation; Libraries.

High level view of run-time code to hardware transformation Simple architectural model - one instruction at a time (issued at a constant rate), constant memory access time, performance implications.
Lower level view of source code to run-time code transformation Formal description of program (Abstract Syntax Tree, Call Graph, Dependence Graph); Compiler Optimisations (Simple Data Dependences, Transformations, etc.); JIT Compilation.

Lower level view of run-time code to hardware transformation More realistic (complex) architectural model - memory hierarchy (effects of cache), multi-way instruction issue, etc, performance implications. Evaluation of real performance effects on real hardware.

Resumé Measure of performance refined from flops (floating point operations per second) to ips (instructions per second) to actual hardware performance; discussion of limitations of earlier performance measures. Performance implications of pointers vs. arrays.
9 CS609: Algorithms for Differential Equations

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: Computational Science and Engineering (and others, if qualified)
Pre-requisites: CS607, CS608
Pre-course work: 40 hours: 30% introductory lab, 70% preparatory reading
Taught week: 40 hours: 50% lectures, 50% supervised lab
Post-course work: 40 hours: 100% mini-project
Assessment: 35% exam, 30% lab, 35% mini-project
Lecturer(s): Dr T L Freeman, Dr M Mihajlovic, Mr G D Riley
Limit on numbers: 50 participants

Aims
To introduce numerical algorithms for the solution of ODEs and PDEs and to introduce the fundamental algorithmic properties of accuracy, stability and convergence.

Learning Outcomes
A student completing this course unit should:

1) have an understanding of the Numerical Analysis issues of algorithms for ODEs and PDEs (accuracy, stability, convergence); (A)
2) have an understanding of the performance implications of algorithmic developments (algorithmic efficiency). (D)

Assessment of learning outcomes
Learning outcomes (1) and (2) are assessed by examination, in the laboratory and via the mini-project.

Contribution to programme learning
A1, A2, B2, C1 and C3.

Reading list and supporting material

Detailed syllabus
Initial Value Ordinary Differential Equations Runge-Kutta methods and Multistep methods; accuracy, convergence and stability; error control; numerical examples.

Elliptic Partial Differential Equations Finite difference and finite element methods; solution of large systems of algebraic equations; numerical examples.

Parabolic Partial Differential Equations Finite difference methods and method of lines; analysis of error; numerical examples.

Hyperbolic Partial Difference Equations Methods based on characteristics; convection-diffusion problems; analysis of error.
10 CS611: System Construction Using B

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS (possibly others, if qualified)
Pre-requisites: None
Pre-course work: 40 hours: Unsupervised reading: review of discrete mathematics
Taught week: 40 hours: Lectures and supervised labs
Post-course work: 40 hours: Unsupervised project using B
Assessment: 33% exam, 66% project
Lecturer(s): Dr. Richard Banach
Limit on numbers: 50 participants

Introduction
It has been known for a long time that in theory, the whole activity of system specification, refinement and implementation, could be integrated into a comprehensive mathematical theory and could be supported by industrial strength system development tools. However an actual realisation of this supposition has been slow to appear. The B-Toolkit is a system that mechanises support for the B method of rigorous whole-system software construction in a fully integrated manner. The method is particularly suited to the building of the kind of state machines found at the heart of many safety critical software control systems. The course is an introduction to this methodology.

Aims
The aim of the course is to give a solid grounding in the B method using the B-Toolkit, concentrating on formal model building aspects, and giving exposure to the other elements of the theory, enabling students to go on to participate in the rigorous building of real systems.

Learning Outcomes
A student completing this course unit should:

1) have an understanding of the role of formal software development and its advantages and disadvantages (A)
2) have an understanding and knowledge of the essential elements of the B-Method (A, B and C)
3) be able to develop small applications using the B-Method (B and C)
4) be able to undertake an investigation of a larger application using the B-Method (B, C and D)
5) be able to prepare a technical report on a study performed using the B-Method (C and D)
6) be able to work effectively as a member of a group to undertake a project using the B-Method (D)

Assessment of learning outcomes
Learning outcomes (1)-(3) are assessed by the examination and the project. Learning outcomes (4)-(6) are assessed by the project alone.

Contribution to programme learning
A2, B2, B3, C1, C3, C4, D1, D3
Reading list and supporting material

B-Toolkit documentation. (Loaned to students for the duration of the course.)

Special resources needed to complete the module

The B-Toolkit software.

Detailed syllabus

Preliminary work: Review of Discrete Mathematics. Students should thoroughly familiarise themselves with Appendix A of Wordsworth’s book, and with the notations (both “mathematical” and “ascii”) for the concepts therein, described in Appendix B1 of the same book. Remaining time may be spent as follows. (1): Reading remaining parts of the Wordsworth book, from the beginning. (2): Familiarisation with abstract modelling via discrete mathematics. Beyond what is to be found in Wordsworth’s book, the book by Jacky gives many good examples of abstract specification in Z (Z uses very similar discrete mathematics notation to B, though Z is a different system). Students may find it usefull to consult this book.
DAY 4: More on Implementations and Refinements.
DAY 5: Structuring large developments. Project assignment and start of project work.
Assessed practical: Completion of project and hand in of generated documentation.
11 CS612: Automated Reasoning

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS (possibly others, if qualified)
Pre-requisites: None
Pre-course work: 40 hours: preparatory reading and exercises
Taught week: 40 hours: 50% lectures, 50% supervised lab
Post-course work: 40 hours: 90% unsupervised lab or assignment
Assessment: 40% exam, 30% taught week labs and exercises, 30% post-course work
Lecturers: Dr. Renate Schmidt and Dr. Alan Williams
Course unit webpage: http://www.cs.man.ac.uk/~schmidt/CS612/
Limit on numbers: 50 participants

Introduction

Logic, the study of reasoning, plays an important role in theoretical computer science and many of the practical areas of computer science such as systems development, computer hardware, data bases, cognitive science, AI and logic programming. For example, in web technologies and agent technologies logical and automated reasoning methods are used for the intelligent processing of large ontologies, decision making based on knowledge bases of structured data, and formal specification and verification of multi-agent systems. An important part of the systems development process concerns reasoning about the behaviour of systems in order to verify the correctness of the behaviour. While these are specific examples of applications of automated reasoning, the focus in this course is on general aspects of logic and automated reasoning which are relevant to many such applications, as well as logic programming. The main motivation of the course is the study and development of general, efficient automated reasoning techniques.

Aims

Broadly, this course unit aims to provide an introduction to classical logic, automated theorem proving and logic programming. It aims to:

- provide students with an understanding of classical logic (propositional, first-order and clause logic),
- give an introduction to theoretical concepts and results that form the basis of current state-of-the-art theorem provers (and other theorem proving tools)
- discuss and study local reasoning methods (resolution) as well as global reasoning methods (tableaux)
- provide an introduction to logic programming.

There is no assumption that students are already familiar with the subject. It is however an advantage if students have some knowledge of logic which will be deepened in the pre-course work.

Learning Outcomes

A student completing this course unit should:

1. have knowledge and understanding of the syntax and semantics of classical propositional and predicate/first-order logic as well as clause logic (A).
2. have an understanding of the main ingredients of resolution calculi and be able to use them (transformation into clause form, inference rules, unification, orderings, selection) (A and B).
3. have an understanding of the main theoretical concepts for establishing refutational completeness of resolution calculi (candidate models, reduction of counter-examples) (A).
4. have an understanding of and be able to use the general concept of redundancy and be able to use it to justify different ways of simplifying and reducing the search space of theorem proving processes (tautology deletion, subsumption deletion, purity deletion, reduction) (A and B).

5. have an understanding of the main ingredients of semantic tableau calculi and establishing decidability and refutational completeness (inference rules, open/closed/strict/maximal tableau) (A).

6. be able to use the calculi covered in the course (resolution calculi, semantic tableau, free-variable tableau) for constructing proofs (B).

7. be able to use various systems (probably (M)SPASS and Vampire) and apply them to solve reasoning problems (C).

8. have an understanding of the relationship between resolution and logic programming (A).

9. have the competence to write Prolog programs (B and C).

Assessment of learning outcomes

Learning outcomes (1)–(6), (8), (9) will be assessed by exam. All learning outcomes will be assessed via exercises in the taught week and the post-coursework.

Contribution to programme learning

A1, A2, B2, B3, and C3

Reading list and supporting material

There is no single book covering all material, but the following give a good introduction to logical systems and reasoning methods:

A good introduction to logic programming and Prolog is available here\(^3\).

There are many other text books available on the topics covered. Further details will be presented in the taught week.

Notes will made available to cover systems (probably (M)SPASS and Vampire) and all of the various topics presented in the course.

Detailed syllabus

The following lists the topics to be covered in the pre-course work and taught week. The numbers of lectures for each topic are given in brackets. If the topic is to be covered in the pre-course work or in the supervised labs, then this is also indicated. Exercise classes will be scheduled throughout the teaching week.

Introduction and motivation: [Pre-Course, 1] Including example problems, problem representation via logic, computer assisted reasoning in mathematics.

Elementary set theory [Pre-Course]. What is a set, a relation, a function, set operations (intersection, union, etc), properties of binary relations (reflexivity, symmetry, transitivity, etc).

Propositional logic: [Pre-Course]. Theory, language, models, validity and satisfiability, proof/inference rules, soundness and completeness, reasoning methods: truth tables, proof by contradiction, semantic tableaux.

\(^3\)http://staff.science.uva.nl/~ulle/teaching/prolog/prolog.pdf
Propositional logic reasoning using resolution: [1]. Normal forms, clauses, resolution.

First-order/predicate logic introduction: [1]. Quantifiers, first order models, validity and satisfiability.

First-order reasoning using unrestricted resolution [2]. Normal forms, clauses, Skolemization: elimination of quantifiers, unification, resolution, simplification techniques.

Refutational completeness of propositional resolution [1]. Herbrand interpretations, soundness, clause orderings, construction of candidate models, reduction of counter-examples, model existence theorem, refutational completeness, compactness of propositional logic.

Refutational completeness of first-order resolution [1]. Lifting principle, saturation, refutational completeness, Herbrand’s theorem, Löwenheim-Skolem theorem, compactness of first-order logic.

Saturation-based framework of resolution calculi [2]. Ordered resolution with selection, lifting, refutational completeness, Craig interpolation, redundancy concept, saturation up to redundancy, practical model of a resolution prover, fairness, refinements of resolution, hyperresolution.

Formalisation of a concrete application [1]. Neuman-Stubblebine key exchange protocol.

Semantic tableaux [2]. Semantic tableau for propositional logic, decidability, refutational completeness, free-variable tableau, AMGU substitution rule, treatment of γ-formulae, refutational completeness.

Logic Programming: [2, supervised labs]. Horn clauses, SLD resolution, Prolog.
CS616: Knowledge Representation and Reasoning

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS and possibly others, if qualified.
Pre-requisites: Some knowledge of logic and formal methods.
Pre-course work: 40 hours: preparatory reading and exercises.
Taught week: 40 hours: 60% lectures, 40% supervised lab.
Post-course work: 40 hours: 90% unsupervised lab or assignment
Assessment: 40% exam, 30% Taught Week Labs and Exercises, 25% Post-course work, 5% Pre-course work.
Lecturers: Dr. Ulrike Sattler and Dr. Renate Schmidt
Course unit webpage: http://www.cs.man.ac.uk/~schmidt/CS616/
Limit on numbers: 50 participants

Introduction

For many applications, specific domain knowledge is required. Instead of coding such knowledge into a system in a way that it can never be changed (hidden in the overall implementation), more flexible ways of representing knowledge and reasoning about it have been developed in the last 10 years. These approaches are based on various extensions of classical logic: modal logic, agents logics, or description logics. They can be used to reason about the terminology of a domain or the behaviour of systems. Computer-based tools can then use this kind of reasoning to support the user. In particular description logics have recently been used as foundational tools for the semantic web.

Aims

This course unit aims to provide an introduction to various extensions of classical logic, how to formalise knowledge and questions about this knowledge in these logics and how to use automated reasoning systems for answering these questions. Students should have some knowledge about logic and will deepen it in the first pre-course week. The course unit aims to:

- provide students with an understanding of different kinds of knowledge and the logics developed to represent this kind of knowledge together with the underlying theory necessary for applying automated reasoning systems (based on propositional, first order, modal, and description logic)
- study a range of techniques to formalise and represent knowledge within these logics, and, finally,
- allow students to use various automated reasoning tools to reason about knowledge represented in these logics.

Learning Outcomes

A student completing this course unit should:

1) have knowledge and understanding of the syntax and semantics of modal, description, and temporalised description logics, defaults, and formal concept analysis (A)
2) be able to formalise and represent knowledge in these logics and relate questions concerning this knowledge to logical reasoning problems (A and B)
3) have knowledge and understanding of a selection of logic-based applications (A and B)
4) be able to use standard proof systems, in particular Hilbert-style deduction and a translation-based approach for modal logics, subsumption algorithms for description logics, and the attribute exploration algorithm (B)
5) be able to use various systems (SPASS, ICOM) and apply them to solve problems (C)
Assessment of learning outcomes

Learning outcomes (1), (2), (3), (4) will be assessed by exam. All learning outcomes will be assessed via exercises in the taught week and the post-course work.

Contribution to programme learning

A1, A2, B2, B3, and C3

Reading list and supporting material

There is no single book covering all the material, but the following gives a good introduction to logical systems and reasoning methods: Kelly, J., *The Essence of Logic*, PHI.

Notes will made available to cover the systems (SPASS and ICOM) and all of the various topics presented in the course.

There are many other textbooks available on the topics covered. The following gives a selection of those that would be useful to refer to:

Modal Logic:

Description logics:

Further details will be presented in the taught week.

Detailed syllabus

The following lists topics to be covered in the pre-course work and taught week. The number of lectures for each topic are given in brackets. If the topic is to be covered in the pre-course work or in the supervised labs, then this is also indicated:

Introduction and motivation [Pre-Course]. Including example problems, problem representation via logic, computer assisted reasoning in mathematics.

Elementary set theory [Pre-Course]. What is a set, a relation, a function, set operations (intersection, union, etc), properties of binary relations (reflexivity, symmetry, transitivity, etc).

Propositional logic [Pre-Course]. Theory, language, models, validity and satisfiability, inference rules, soundness and completeness, reasoning methods: truth tables, proof by contradiction.

First-order logic [Pre-Course]. First order logic formulae, their meaning, validity and satisfiability, translating between natural language and first-order logic.

Early knowledge representation formalisms [1]. Nonmonotonic inheritance networks, frame-based systems.

First-Order Logic [2, supervised lab]. First order logic formulae, their meaning, reasoning problems, useful normal forms, inference calculus, undecidability and semi-decidability.
Modal Logic: Representation and reasoning on the semantical level [4.5, supervised lab]. Modal logic, possible worlds semantics, model checking, satisfiability and validity, correspondence theory.

Modal Logic: Reasoning calculi, agent applications [4, supervised labs]. Logically omni-science problem, belief logic, epistemic logic, deduction in Hilbert systems, deduction via translation to first-order logic.

Description logics [3.5, supervised labs]. Language of description logics, meaning of description logic statements, reasoning calculi, introduction to the semantic web and ontologies using description logics.

Icom [2, supervised labs]. EER diagrams, relationship between EER diagrams and description logic, reasoning about EER diagrams.

Non-standard reasoning services in description logics [2, supervised labs]. Least common subsumers, most specific concepts, and their usage in description logic applications.

Temporal logic [3, supervised labs]. The temporal logic LTL, its extension to temporalised modal and description logics, their applications.

Defaults, in propositional and first order logic [3, supervised labs]. Defaults, motivation for ordered defaults, e.g. in description logics, their applications.

Coursework
Exercises and assignments are of varying difficulty – those in the teaching week are aimed to consolidate the material of the lectures and are thus easier. Some exercises and assignments are to be done with pencil and paper, some will require the use of tools (SPASS for the ML, ICOM for the DL part).

For the post-course work you will be given a selection of topics from which you choose one. This work may involve writing a program, formalising problems, using reasoning tools for solving such problems, a case study on some research in one of the areas, or a mixture of these.

Additional Information
Additional information may be found at the course unit webpage.

4http://www.cs.man.ac.uk/~schmidt/CS616/
13 CS617: Interactive System Design Methods

Level: Advanced MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS (possibly others, if qualified)
Pre-requisites: Programme prerequisites only
Pre-course work: 60 hours: See below
Taught week: Lectures, discussions, exercises, and workshops.
This is usually longer Mon-Fri, and includes part of the weekends. Make sure you are available for the full period of the interactive group teaching.
Post-course work: None (see below)
Assessment: 100% coursework
Lecturer: Dr Mark van Harmelen,
mailto: markvanharmelen@yahoo.com

Introduction

Attend this module if you want to learn about

1) modern approaches to the design of the scope, content, functionality and user interfaces to interactive systems, and

2) the theory of interactive system design methods, particularly those in the field of object-oriented human-computer interaction (oohci) design.

The module is devoted to the design of interactive systems which are modelled with the Unified Modeling Language (UML), but where the design is informed by human-computer interaction (HCI) design methods. The module is concerned with software design methods for the early stages of the system development life cycle; when the overall system scope, contents, and functionality are designed. Conventional methods neglect system usability; the oohci methods advocated in this course attend to the usability of systems by, typically, by both users and technical design staff in a participatory design team that designs a system and its interface according to task-based requirements. The team uses informal task and object modelling to record the developing design. The informal notation, understandable by all the designers, can be translated into a more structured form like UML. A significant part of the course is devoted to gaining practical experience in using participatory design methods. Other parts of the course are concerned with understanding the spectrum of oohci methods available and to improve and customise methods for particular circumstances by selection of different design techniques.

This course is based on recent methods research in integrating object modelling methods with HCI design methods.

The course runs eight days, Sunday through to the subsequent Sunday. By the time the course is finished all work for the course will have been performed, having been divided into some 60 hours pre-course work, and 60 hours course work and continuous assessment.

The method of instruction is one that combines background reading, discussion, and hands-on practical application of design methods. The latter provides experiential learning in the application of oohci design methods.

The practical section of the course consists of an interactive system design problem that lasts for the duration of the course. The solution of the design example is performed by students in class using a method that combines participatory design by stakeholders together with task and object-oriented description techniques to record the developing design. By the end of the course students will complete an analysis-level object-oriented description of an interactive system and have developed a user interface for the system in a single integrated design process.
Aims

The module aims to introduce students to effective methods for interactive system design.

Learning Outcomes

A student completing this course unit should:

1) Have knowledge and understanding of the principles of interactive system design, particularly those within the ooohci design tradition. (A)
2) Understand how to perform, and have experience in performing, interactive system design using a participatory ooohci design method. (B2,B3,C1,C3,C4,D)
3) Have at least a reading knowledge of the Unified Modeling Language, if not the ability to write analysis level system descriptions in UML. (A2)
4) Understand what constitutes an ooohci method, and have the ability to design their own ooohci method. (A,B2)

Assessment of learning outcomes

Learning outcomes are assessed using two in-course techniques: (a) group exercises, (b) continuous-assessment tests.

Contribution to programme learning

This course unit contributes to the following programme outcomes: A1, A2, B2, B3, C1, C3, C4, D1, D4, and D5.

Reading list and supporting material

Reading material for the course is provided as a pre-printed pack.

UML Slides

There is sufficient UML for you to be able to produce analysis level designs. If you don’t know it, teach yourself UML from these slides.

HCI design slides

van Harmelen, M. Designing Graphical User Interfaces. Slides.

These slides provide enough knowledge for you to do traditional user interface design. The slides are from an old commercial course, but are relevant as introductory material which will be assumed as known in the course. Don’t worry too much about the Windows specific detail where it occurs, except as a common illustration.

There is sufficient UML for you to be able to produce analysis level designs. If you don’t know it, teach yourself UML from these slides.

Basics of HCI methods

Start by reading van Harmelen [2001, 10.2 and its subsections].

Invent some kind of chart or list where you can cross reference ideas which crop up in all readings in this subsection.

This introduces you to the idea of Cognitive Engineering, where HCI designers use cognitive models as an aid to system design. The Chapter includes some ideas from cognitive psychology as to how users interact with computers. At the end of the paper Norman introduces User Centered Design (UCD). Cognitive Engineering and UCD are central to the course and underpin all hci and oohci methods, including that of the Bridge, used in the course. The book from which the chapter is drawn was broadly influential in the HCI field.

An update on the loose HCI definition of UCD, building on Norman [2001]. Note how Karat defines UCD as an engineering technique to counter arguments that user need should not totally determine system design. This is a readable article that should be fully digested.

This chapter plunges you into a discussion of UCD methods and their components. Skip what you find difficult. GOMS is not worth considering, as Bannon [1991, p37] notes “The practical utility of such low-level calculation models in actual design has been the subject of some debate.”

Another chapter that plunges you into issues surrounding design. Again a reading that plunges you into different topics pertaining to interactive design; skip what you find difficult, but those comfortable with the material will gain from it. Two important themes are emphasised here, users as actors (somewhat different, but related, to a UML ‘actor’), and participatory design. You should definitely read about these two.

Design techniques and methods

A method (often inaccurately called a ‘methodology’) describes how to design something. It consists of design techniques (e.g. task analysis, object modelling) and notations for recording and communicating a design. A method to one person (e.g task modelling to a task analyst) may actually be a design technique in a larger method. Methodology is what we are do to some extent in this course, the examination, evaluation and improvement of methods, and invention of new methods. The readings are diverse and try to cover just a few techniques and methods.

van Harmelen [2001] provides broad discussions of HCI and oohci design techniques and methods. When you read it list the design techniques that you encounter.

Included for you to browse (rather than read in depth) and start to perceive just how diverse design techniques are. This is a brain storming type of technique. Try to apply it to the design of some system that you have encountered.

Muller, M.J. PICTIVE - An exploration in Participatory Design, Proc CHI 92, ACM, 1992. You will have read about participatory design by now in Bannon [1991]; PICTIVE is an early participatory design technique. The eading describes the participatory construction of prototypes using paper and other low-tech materials. Don’t imagine that using the video recording technique is necessarily good, accessing video is notoriously time consuming. Skip any difficult bits at the end of the paper.

Muller, M.J. Retrospective on a year of Participatory Design using the PICTIVE Technique, Proc CHI93, ACM, 1993.

Experience of using PICTIVE, including feedback about what is good and bad.

Its hard to put any particular prototyping (a design technique) paper in the reading, there are many such papers. This one contrasts and compares two different styles of prototyping. Dayton, T., McFarland, A, Kramer, J. Bridging User Needs to OO Gui Prototype via Task Object Design, in Wood, L (Ed)

A participatory oohci method is described here. This paper is long, but you must make time to read it, because you will be using a modified form of the Bridge in class. Note in reading this that a ‘task object’ simply means an ‘object’ that the user uses in the execution of a task. Note that by concentrating first on tasks and task flows the functionality and scope of the system are defined. By then extracting objects from the task flows the contents of the interactive system can be determined. Finally a user interface is designed for the system from the task flows and objects identified earlier. Iterative design, formative evaluation of paper prototypes in different kinds of usability test are important component of this method and results in a validated design. See van Harmelen [2001] for a discussion of these techniques. Thee is a set of pdf slides produced by a previous student at www.oohci.org accessible via the Bridge page, these may help structure your reading of this paper.

Performing the bridge provides a work context for participatory designers in design sessions. As part of your pre-course work, you are asked below to try to provide four rich pictures describing the Bridge.

Evaluation techniques

The evaluation technique used in this course is formative evaluation of paper prototypes. The readings here give some idea of different techniques.

Some evaluation techniques.

Keen students find and read this.

Object modelling and human-computer interaction (oohci) design

Back to design philosophies (UCD, Cognitive Engineering), design techniques and methods. This time integrating the fields of HCI and object modelling in oohci methods, the subject of this course. Oohci methods are called oo&hci methods in this chapter. If you find the UML hard at the end of the chapter but have read the rest of it don’t worry too much. However you will gain most by reading the class diagrams.

Participatory practice

Read 11.1 through 11.5. This picks up and discusses participatory themes that run through much of the reading.

Special resources needed to complete the module

None.
Detailed syllabus

Introductory topics
Overview of the interactive system development lifecycle and its requirements. Methods and methodology.

Essential UML notation for high-level system specification purposes, including object, class, use case, sequence, and collaboration diagrams.

Responses to the development lifecycle by the software engineering and human-computer engineering communities. Why traditional object-oriented design methods fail to adequately address interactive system design.

Human-computer interaction and interaction design.
Basics of object-oriented human-computer interaction (oohci) design methods.

Participatory design

Some Participatory Design (PD) methods. Factors contributing to successful PD. Facilitation, Brainstorming, Rich Pictures.

An example oohci method
The Bridge; what each stage of the method does. Use of a modified form of the bridge.

A formal treatment of oohci methods
The final day of the course is devoted to: Assessing the practical techniques used and discussing further method development. Necessary and optional components of oohci methods. Situating the Bridge in a UML description of oohci methods. Process issues. Designing oohci methods to suit project or organisational needs.

Pre-course work
Read the pre-course reading as printed and distributed by the School (collect from room 2.10).
Familiarise yourself with web-based resources: Examine www.oohci.org and www.primaryview.org. Search more broadly for information on participatory design, facilitation and related matters as apparent from the pre-course reading and your own web-based research. Keep a record of interesting information that you find, this is potentially a contributor to your course marks.

This is a time breakdown of what you should do during 60 hours pre-course work:

20 hrs: Read, practice and learn object modelling using UML notes
28 hrs: Read supplied reading pack (see above).
4 hrs: Draw a rich picture that describes use of The Bridge. Then draw three rich pictures, one for each stage of The Bridge. Rich Pictures are described in the reading pack.
8 hrs: Spread over the pre-course work time period: research the web, noting interesting resources for cs617.

The last two items should be handed in at the very start of the course.
Pre-course reading is the topic of the first continuous assessment test.

Post-course work
Thanks to the longer and more intensive nature of the course, there is no post-course commitment, i.e., there is neither a post-course project nor an exam.
14 **CS619: Extreme Java**

Level:
MSc

Credit Rating:
15 credits (7.5 ECTS)

Degrees:
ACS/CompSciEng (possibly others, if qualified)

Pre-requisites:
See below

Pre-course work:
40 hours (ensuring that you meet the pre-requisites)

Taught week:
40 hours: 50% lectures, 50% supervised lab

Post-course work:
40 hours (finishing the labs/revising for the test)

Assessment:
90 minute on-line test (under examination conditions)

Lecturer:
Mr Mike O’Docherty. Contact E-Mail: mod@cs.man.ac.uk

Aims

This course unit aims to identify the high-level facilities in the Java 2 Platform Standard Edition (J2SE), and to show how these are being used to re-engineer the software industry. The main features of the Enterprise Edition are also covered.

In addition, the course aims to encourage a deeper understanding of life as a senior Java programmer (by getting you to work with realistic code rather than simple examples).

As "Extreme" in the title suggests, the content is non-trivial. Don’t be put off, however: we are just trying to make sure that you don’t arrive without meeting the pre-requisites - all students have survived the experience so far!

Learning Outcomes

After successful completion of the course unit, students will have mastered the appropriate tools for the design and implementation of a medium to large scale enterprise application, using the full power of Java’s portability and network awareness. (A, B and C)

Assessment of learning outcomes

The course unit is assessed by a 90 minute on-line test under examination conditions. The test will be a thorough-going examination of the material and skills taught on the course (learning outcomes A1, A2, B2, B3, C3).

Contribution to programme learning

A1, A2, B2, B3, C3

Reading list and supporting material

Before attending the course, make sure that you understand Java and it’s related technologies to the level described in the Pre-requisites section below. You should also be comfortable with object-oriented concepts and UML (the Unified Modelling Language).

For the Java specifics, ideally, you should have attended an introductory course or had some real experience. There are many introductory books, one or two of which you may already have, which help you to study the basics: look for well-known publishers such as Addison-Wesley, Prentice-Hall and O’Reilly.

In the list below, (1) is a free language and libraries tutorial (also available as two books, ISBN 0-201-70393-9 and ISBN 0-201-48558-3); obviously, since the on-line version is free, you should check that out first. (2) is a good book covering many of the dos and don’ts of Java programming.

If you need to learn more about object-oriented concepts and UML, both of which appear throughout the course, (3) provides a thorough grounding, taking you through a single case study from beginning to end; all the examples in this book are illustrated using Java.
Special resources needed to complete the course unit
No special resources are required.

Detailed syllabus

1. Performance and Programming Style
 - What is Performance?
 - Improving Performance
 - Programming Tips and Tricks

2. Persistence
 - Serialization
 - Java Database Connectivity (JDBC)

3. Common Object Request Broker Architecture (CORBA)
 - CORBA and IIOP
 - Hello World
 - Interface Definition Language (IDL)
 - Mapping to Java
 - Host Implementation

4. Reflection and JavaBeans
 - Inspecting Classes at Run Time
 - Working with Inspected Classes
 - What is a Software Component?
 - Implementing Software Components

5. Remote Method Invocation (RMI)
 - RMI Architecture
 - RMI API
 - RMI versus CORBA

6. Java Native Interface (JNI)
 - Calling Native Functions from Java
 - Calling Java Methods from Native Code
 - Manipulating Java objects in Native Code
 - Garbage Collection and JNI
 - Invoking a Virtual Machine from Native code

7. Security
 - Security Overview
 - jar - Managing Java Archives
– keytool - Managing Keys and Certificates
– jarsigner - Signing and Verifying JAR Files
– policytool - Managing Security Policies

8. Java 2 Enterprise Edition (J2EE)
– Servlets
– Java Server Pages (JSPs)
– Enterprise Java Beans (EJBs)

Pre-requisites

Good knowledge or experience of the Java language and the basic packages (java.lang, java.util, java.text, java.awt, jax.swing, java.applet, java.io, java.net, java.math) is necessary; as is a thorough understanding of OO concepts and programming; and a working knowledge of OO design and analysis.

A good understanding of the technologies surrounding Java. e.g. the Internet and relational databases, is also required.
CS620: Electronic Instrumentation Systems MSc: Design Study and Project (EIS)

Syllabus under preparation: see the EIS Programme Handbook\(^5\) (in MSWord) for details.

\(^5\)http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/handbook/eis/eis.doc
16 CS621: Instrumentation Electronics (EIS)

Syllabus under preparation: see the EIS Programme Handbook\(^6\) (in MSWord) for details.

\(^6\)http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/handbook/eis/eis.doc
CS624: Mobile Computing

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS (and others, if qualified)
Pre-requisites: Basic mathematics
Pre-course work: 40 hours
Taught week: 40 hours: lectures and laboratories
Post-course work: 40 hours assessed practical
Assessment: 67 % laboratory and 33 % exam
Lecturer(s): Dr. Barry Cheetham
Limit on numbers: 50 participants

Aims
To impart an understanding of fundamental concepts underlying current developments in mobile communication systems and wireless computer networks.

Learning Outcomes
At the end of the course, students will have acquired the following knowledge and skills.

1) Understanding of characteristics of radio propagation and interference in multipath propagation and channel model description (A1,A2)
2) Understanding of a range of digital transmission systems as used for applications in mobile telephony and wireless computer networks, pulse shaping and equalisation techniques (A1,A2)
3) Understanding of the issues and techniques used in the design of Medium Access Control protocols for wireless Networks (A1,A2)
4) Understanding of the systems, protocols and mechanisms to support mobility for mobile internet users (A1,A2)
5) The ability to investigate fundamental aspects of transmission and modulation by writing MATLAB programs. The experience of using an industrial standard network simulation package, such as OPNET(B1,C1,C2,D4)

Assessment of learning outcomes
The first four outcomes are assessed through examination; all the outcomes are assessed through an assessed practical project.

Contribution to programme learning
A1,A2, B1,C1,C2,D4

Reading list

Supplemental books
Detailed Syllabus

Introduction to wireless networking. Advantages and disadvantages of wireless networking

Characteristics of radio propagation. Fading, Multipath propagation

Introduction to digital transmission. Definition of bit-rate and signalling rate. Introduction to synchronous transmission. The need for pulse shaping, synchronisation and line-coding. Calculation of bit-error probabilities when the channel is affected by the addition of Gaussian noise.

Narrowband digital modulation. The need for modulation. Binary and multi-level (M-ary) amplitude-shift keying (ASK), frequency-shift keying (FSK) and phase-shift keying (PSK).

Wideband modulation techniques to cope with intersymbol interference Direct sequence spread spectrum, Adaptive Equalization, Orthogonal frequency division multiplex

Medium Access Control (MAC). MAC protocols for digital cellular systems such as GSM. MAC protocols for wireless LANs such as IEEE802.11 and HIPERLAN I and II. The near far effect. Hidden and exposed terminals. Collision Avoidance (RTS-CTS) protocols.

Protocols supporting mobility. Mobile network layer protocols such as mobile-IP, Dynamic Host Configuration Protocol (DHCP). Mobile transport layer protocols such as mobile-TCP, indirect-TCP. Wireless Application Protocol (WAP).
18 CS625: Information Storage Systems (EIS)

Syllabus under preparation: see the EIS Programme Handbook\(^7\) (in MSWord) for details.

\(^7\)http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/handbook/eis/eis.doc
CS626: Sensors and Systems (EIS)

Syllabus under preparation: see the EIS Programme Handbook\(^8\) (in MSWord) for details.

\(^8\)http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/handbook/eis/eis.doc
20 CS627: The Measurement Environment (EIS)

Syllabus under preparation: see the EIS Programme Handbook\(^9\) (in MSWord) for details.

\(^9\)http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/handbook/eis/eis.doc
21 CS628: Signal Processing (EIS)

Syllabus under preparation: see the EIS Programme Handbook10 (in MSWord) for details.

10http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/handbook/eis/eis.doc
22 CS629: Electronic Instrumentation Systems: Optional Subjects (EIS)

Syllabus under preparation: see the EIS Programme Handbook11 (in MSWord) for details.

11http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/handbook/eis/eis.doc
CS631: Computational Biology - The application of computer science to the problems of post-genome biology

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS and others
Pre-requisites: A knowledge of modern biology is not a course prerequisite.
Pre-course work: 40 hours: preparatory reading
Taught week: 40 hours: 18 lectures, 4 hours tutorials, 18 hours supervised problem solving sessions.
Post course work: 40 hours. Unsupervised problem solving and project work.
Assessment: 100% coursework.
Lecturer(s): Prof. A. Brass.
Limit on numbers: 50 participants

Introduction
Biology is currently undergoing a revolution. The success of the human genome project and other high-throughput technologies is creating a flood of new data. Capturing, interpreting and analysing this data provides real and significant challenges for computer scientists. This course will use biology as an exciting application domain for a wide range of CS techniques that have been developed on the course.

The course is organised in 4 sections:
1. basic introduction to modern biology and bioinformatics
2. data capture
3. data delivery
4. data analysis

Each section will commence with a short taught component delivered as research seminars. Assessments will be based on a short written report and presentations based on a case study that will be introduced at the start of the course.

Learning outcomes
A student successfully completing this unit will have:
1) A basic understanding of the computational needs of modern biology
2) Developed an understanding of the problems inherent in communicating with scientists from a different discipline
3) Developed the ability to reflect upon and synthesize a range of computational techniques to develop effective problem solving strategies in an unfamiliar problem domain.
4) Developed the ability to communicate these strategies to non-specialists

Assessment
Learning outcomes will be assessed in the reports and presentations based on the case-study.

Detailed Syllabus
- Intro to Biology
- Intro to Biology - the central dogma (2 hours)
- Intro to genomics (2 hours)
- Biology databases (2 hours)
- Data capture
- capturing microarray data (1 hour)
- proteomics seminar (1 hour)
- the gene ontology (1 hour)
- resource meta-data (1 hour)
- Data delivery
- HCI and bioinformatics (2 hours)
- Dealing with heterogeneous, distributed data. (2 hours)
- bioinformatics and the grid (2 hours)
- Data analysis
- Integrated approaches to post-genome data (2 hours)
Aims

This course unit will provide a detailed introduction to the common algorithms and techniques used to create 3D computer animation. The principles of traditional animation will be briefly covered, and the techniques applicable to the computer medium will be highlighted. Also covered will be interpolation techniques, natural phenomena, modeling, and animation of articulated figures. Case Studies from leading computer animation studios will be presented, such as Pixar (Toy Story, Luxo Jr, Geri’s Game, ...), Square Studios (Final Fantasy), and Blue Sky Studios (Bunny, Ice Age).

Students taking this course unit will be expected to have some prior familiarity with computer graphics concepts and programming. The course unit is aimed at computer scientists interested in the technical aspects of computer animation and no artistic skills are required. Use of tools such as 3D Studio Max and Soft Image are outside the scope of this course unit.

The number of students taking this course unit will be limited to 25.

Learning Outcomes

A student successfully completing this course unit will:

1. Have a knowledge and understanding of leading-edge computer graphics as applied to the computer animation medium.
2. Have a knowledge and understanding of the technology behind the latest generation of computer animation films.
3. Be able to implement standard computer animation programming techniques.

Assessment of learning outcomes

Learning outcomes (1), and (2) are assessed by examination, learning outcomes (3) in the laboratory.

Contribution to programme learning: A1, A2, B1, B3, C1, D1.

Reading list and supporting material

John Vince, Essential Computer Animation Fast;
John Lasseter, Tricks to Animating Characters with a Computer (will be supplied);
G. Scott Owen’s Renderman Tutorial for Blue Moon Rendering Tools (will be supplied).
Special resources needed to complete the course unit

The laboratory exercises will use BMRT (public domain Renderman compiler), and require PC with graphics cards.

Detailed syllabus

Lectures:

– Introduction to the course unit
– Overview of Computer Animation
 * Principles of Traditional Animation
 * History and Classification
 * Examples
– Computer Graphics Primer
 * Rendering Techniques
 * Renderman
– Interpolation Techniques
 * Function Curves
 * Motion Paths
– Animation of Articulated Objects
 * Forward Kinetics
 * Inverse Kinetics
– Advanced Techniques
 * Particle Systems
 * Soft objects
 * Natural phenomena
 * Automation (dynamics, motion capture)
– Case Studies
 * Pixar
 * Final Fantasy
 * Other key examples from recent productions.

Laboratory Sessions:

– Moving rigid body using function curves.
– Implementing Inverse kinematics
– Facial Animation
Aims
For many years, computers have been used to store and manipulate the geometry of curves and surfaces. The aim of this course unit is to see how mathematics is applied to develop a powerful and effective representation scheme based upon non-uniform rational B-Splines (NURBS). We then go on to the fundamental problem: given a representation of, for example, a curve, produce a series of straight line segments that can fool an observer into thinking that he or she can see a smooth curve. This list of points may appear as pixels or lines on a computer display, or may be used to make, for example, car parts, helicopter rotor blades, as well as being critical to the performance of virtual reality systems. This is followed by discussion of a number of techniques to help visualize smoothness, and the course unit finishes with a lecture and demonstration of the current research work in this area. The aim is to provide an understanding of representing curves and surfaces within computers, and the critical issues in using those representations to provide numerically stable and accurate algorithms.

Learning Outcomes
A student completing this course unit should:
Understand the mathematical basis for the representation of curves and surfaces in computation, (A1 and A2) understand and use approximations to curves, (A1, A2 and B2); understand and use relevant algorithms, (A1, A2 and B2); be able to apply a range of techniques to a variety of applications, (B3, C1, and C3).

Assessment of learning outcomes
The practical skills of using representations of curves and surfaces are assessed in the practical exercises (B2, B3, C1, C3, D1, and D3). The examination tests the understanding and knowledge described above (A1, A2, and B2).

Contribution to programme learning
A1, A2, B2, B3, C1, D1, D3, D4.

Reading list and supporting material
The books below are in purchase priority order.
- Any MATLAB book (version 5 or later)
– Ding, Quilin and Davies, Surface engineering geometry for computer aided design and manufacture. Ellis-Horwood, 1987.

Additional Reading

– Faux and Pratt: Computational Geometry for Design and Manufacture; Ellis Horwood 1979, ISBN: 0-85312-114-1,
– Lancaster and Salkauskas: Curve and Surface Fitting, Academic Press, 1986

Special resources needed to complete the course unit

No special resources are required for this course unit.

Detailed syllabus

– Introduction, basic theory of curves surfaces: Different mathematical representation schemes (non-parametric explicit and implicit and parametric) their advantages and disadvantages. Drawing an ellipse (discussion). Simple tensor products surfaces. Linear interpolation and piecewise linear interpolation. Lecture hours (2)
– Transformations: Homogeneous coordinates; matrix representation of 2D and 3D linear and affine transformations and perspective; applicability in computer graphics/CAD. Lecture hours (2)
– From polynomials to NURBS and back: What mathematical properties are required? Power polynomial, Hermite, Bezier, B-spline and NURBS representations, advantages and disadvantages. Variation diminishing, convex hull and other properties. Degree elevation and knot insertion. Methods for drawing (tessellating) curves and surfaces: tabulation, subdivision, chord estimate, conversion to Power polynomials and forward differencing. Lecture hours (8).
– Data structures: Using curve algorithms on surfaces; data structures including OO techniques for curves and surfaces: NURBS data structure and the design of a NURBS library. Lecture hours (2).
– Constructing surfaces: Exact representation of conic sections. Extruded surfaces, ruled surfaces, surfaces of revolution skinning. Lecture hours (2)
– Intersecting and filling: Intersecting curves and surfaces; algorithms for filling curved objects. Lecture hours (2).
– Interrogating surfaces: How to tell if a surface is smooth; isoparametric lines, contours, curvature and surface normal plots; orthotomics, isophotes, reflection lines, and focal surfaces.
Introduction

Although there are books and short courses on electronic commerce, they take either a business perspective (understanding markets, capturing customer interactions to inform marketing and product-development decisions, strategies on differentiation, etc.) or a surface technical perspective (how to use this tool or that tool and become a millionaire). This course is designed for people who will become IT leaders, and who want to become familiar with underlying internet commerce technologies, particularly strategies of design and choice of technologies. The course unit is essentially an overview of advanced web-based technologies, but with the following emphases: the process of designing advanced web-based systems that serve communities of users; using database technologies to support web-based interactions; and modelling data and processes.

Aims

This course unit provides students with an intensive survey of technologies used to support all aspects of electronic commerce, and to help students see how technologies, tools, and strategies learnt in other CS course units can be applied to internet commerce applications. The overall aim is to develop a familiarity with the concepts and tools of electronic commerce, and to understand the process by which ecommerce systems are designed, implemented, managed, and evaluated. Although students will be exposed to some technologies and strategies specific to internet commerce applications, the intention is that students will understand how to put together what they already know from the CS and ACS course units that have taken at Manchester to build advanced web applications. Because the subject of electronic commerce and its associated technologies is so broad, the course unit itself will be something of an intensive overview. Students will have the opportunity to study in detail one or two aspects of eCommerce technologies through either an individual or joint project. The project will enable the student to gain practical experience by, for example, applying technologies to an ecommerce application, study in detail the technical features of an ecommerce site, investigate markup languages and their semantics in ecommerce contexts. The lectures supplement course and lab work. Students will form into teams, and all laboratory and classroom work will be done by teams. This is done not only to help students learn from each other, but also to give them some real experience in teamwork and team management. Technologies in detail will be described by example to teams.

Learning Outcomes

A student completing this course unit should:

1) have an understanding of how ecommerce and web based applications are designed, built and implemented. (A)

2) have a knowledge of tools, technologies, concepts and processes, that comprise the technical infrastructure of eCommerce sites and be able to solve problems about site design, hardware and software architecture, and document architecture. (A and B)
3) have a knowledge of data architecture and be able to solve problems about modelling data and processes so that they can be discovered in web-based environments (A and B)
4) be able to design an ecommerce or advanced web application and evaluate and justify the design. (B)
5) be able to encode data in XML and prepare a technical report on the modelling and ontologies as they relate to a web site in question. (C)
6) be able to work effectively as a member of a group to design and implement a web-based application in a real-world environment. (D)

Assessment of learning outcomes
Learning outcomes (1), (2) and (3) are assessed by examination, learning outcome (4) by examination and in the laboratory and learning outcomes (5) and (6) in the laboratory

Contribution to programme learning
A2, B3, C1, C4, D1, D2, D4

Reading list and supporting material

Special resources needed to complete the course unit
Students are expected to build a working prototype web-site during the week of lectures, and to refine the site during the week following the lectures. Students form into teams, and it is important that the teams remain intact during the week following the lectures. Moreover, it is important that all materials and work completed by students are loaded on CS School hardware, and that student have access to the CS web server.

The number of students on this course unit is restricted to 70.

Detailed syllabus
Introduction [1]. Why we are here. Course administration. How to choose a good problem. The responsibilities of the software engineer (that is, software engineering for cavemen).

The sociology and psychology of electronic communitues [2]. Building, recognizing, managing and making use of online communities in web-based environments (such as communities of practice, communities of purpose). Theories of online presence and cooperation.

A Guide to Knowledge Commerce [1]. Understanding knowledge as a commodity and as a process, and representing it in web-based environments.
Web architecture. [3]. Structural design of eCommerce systems. Client-server architecture, 2-, 3-,n-tier design, server farms, scalability. Integration of legacy systems. Java Beans, Enterprise Java Beans (EJB), Java Server Pages (JSP). Particular problems posed by 24/7 operation and an open user community.

Data interchange [3]. Exchanging data over the Internet. XML, style sheets, document type definition (DTD); metadata and document discovery. Interchange of processes using WSDL and SOAP (as examples).

Electronic payments [1]. Technologies that support the processing of electronic payments. Characteristics and properties of electronic payment systems. Formalisms of correctness.

Introduction

This course unit is divided into two parts: one on Data Warehousing and one on Data Mining. Both data warehousing and data mining are advanced recent developments in database technology which aim to address the problem of extracting information from the overwhelmingly large amounts of data which modern societies are capable of amassing. Data warehousing focuses on supporting the analysis of data in a multidimensional way. Data mining focuses on inducing compressed representations of data in the form of descriptive and predictive models.

Aims

The data warehousing part of the course unit aims to give students a good overview of the ideas and the techniques which are behind recent developments in the data warehousing and On Line Analytical Processing (OLAP) fields, in terms of data models, query languages, conceptual design methodologies, and storage techniques. Laboratory sessions will ground the abstract notions on practical cases and tools.

The data mining part of the course unit aims to motivate, define and characterize data mining as a process; to motivate, define and characterize data mining applications; to survey, and present in some detail, a small range of representative data mining techniques and tools. Laboratory sessions will ground the abstract notions on practical cases and tools.

Learning Outcomes

A student completing this course unit should:

1) have an understanding of the foundations, the design, the maintenance, the evolution, and the use of data warehouses, by looking at these topics in a rigorous way. (A)
2) have mastered the basic range of techniques for creating, controlling, and navigating dimensional business databases, by being able to use a powerful tool for dimensional modelling and analysis. (B, C and D)
3) have an understanding of the data mining process, its motivation, applicability, advantages and pitfalls. (A)
4) have an understanding of the principles, methods, techniques, and tools that underpin successful data mining applications. (A and C)
5) be able to apply the methods and techniques surveyed in the course using a data mining workbench. (B, C and D)
Assessment of learning outcomes

Learning outcomes (1) and (3) are assessed by examination, learning outcome (4) by examination and in the laboratory and learning outcomes (2) and (5) in the laboratory.

Contribution to programme learning

A2, B2, B3, C2, D3, D4

Reading list and supporting material

For the data warehousing part of the course unit:

For the data mining part of the course unit, the lecture notes are the only obligatory reading material, i.e., there’s no need for the students taking the course to buy any book. However, these are some textbooks that a student may wish to consult:

- I. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufman, 1999. *This is the one that lectures notes are most closely based on.*
- J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kaufman, 2000. *This is more database-centred, in contrast to Witten and Frank, who take a machine-learning viewpoint of data mining. It is also useful in covering data warehouses too, to some extent.*
- D. Hand, H. Mannila and P. Smyth. Principles of Data Mining, MIT Press, 2001. *This takes yet another viewpoint on data mining, viz., the statistical one. In this sense, it is the least related to the approach followed in this part of the course.*
- M. H. Dunham. Data Mining: Introductory and Advanced Topic. Prentice Hall, 2003. *This has yet another slight shift in emphasis, as it more or less favours an algorithmic viewpoint and is, in this sense, a core computer-science view of the issues.*

Special resources and limits on participation

The data warehousing labs will use an OLAP tool – which one will be announced on the course unit webpage soon.

The data mining labs will be based on the WEKA (Waikato Environment for Knowledge Analysis).

Detailed syllabus

Part I

- **Introduction to Data Warehousing** [2]: Heterogeneous information; the integration problem; the Warehouse Architecture; Data Warehousing; Warehouse DBMS.
- **Aggregations** [3]: SQL and aggregations; aggregation functions; grouping.
- **Data Warehouse Models and OLAP Operations** [4]: Decision support; Data Marts; OLAP vs OLTP; the Multi-Dimensional data model; Dimensional Modelling; ROLAP vs MOLAP; Star and snowflake schemas; the MOLAP cube; roll-up, slicing, and pivoting.
- **Some Issues in Data Warehouse Design** [2]: monitoring; wrappers; integration; data cleaning; data loading; materialised views; warehouse maintenance; OLAP servers; metadata.
Part II

- **Introducing Data Mining** [1]: Why data mining?; What is data mining?; A View of the KDD Process; Problems and Techniques; Data Mining Applications; Prospects for the Technology.

- **The CRISP-DM Methodology** [1]: Approach; Objectives; Documents; Structure; Binding to Contexts; Phases, Task, Outputs.

- **Data Mining Inputs and Outputs** [3]: Concepts, Instances, Attributes; Kinds of Learning; Providing Examples; Kinds of Attributes; Preparing Inputs. Knowledge Representations; Decision Tables and Decision Trees; Classification Rules; Association Rules; Regression Trees and Model Trees; Instance-Level Representations.

- **Data Mining Algorithms** [3]: One-R; Naïve Bayes Classifier; Decision Trees; Decision Rules; Association Rules; Regression; K-Nearest Neighbour Classifiers.

- **Evaluating Data Mining Results** [3]: Issues in Evaluation; Training and Testing Principles; Error Measures, Holdout, Cross Validation; Comparing Algorithms; Taking Costs into Account; Trade-Offs in the Confusion Matrix.

Additional Information

Additional information may be found at the course unit webpage.
Introduction

Note: This course unit is developed by Daniel Dresner, Standards Manager at the National Computing Centre12, an independent research organisation which promotes the effective use of information technology. It is located in Manchester (on Oxford Road, near the University).

Aims

The course unit covers the requirements of system security throughout the system development process from the ‘Acquisition Preparation’ stage to the ‘Disposal Process’ stage.

Learning Outcomes

A student successfully completing this course unit should:

1) have a good understanding of how to define system security requirements [A1,A2,B2],
2) be able to prioritise requirements, and match requirements to solutions and countermeasures commensurate with associated risks [B2,C1,D1,D3],
3) have a good understanding of the correlation of business processes to technology in relation to security requirements [A1,A2],
4) be familiar with the relevant industry security standards and the regulation, and their application [C4].

Assessment of learning outcomes

All learning outcomes are assessed by the evaluation of a system security management plan for a case study, which each student prepares. A Report detailing a full management plan will be assessed.

Contribution to programme learning

This contributes to Outcomes A1, A2, B2, C1, C4; and in the groupwork and report preparation D1 and D3.

Reading list and supporting material

The following material supports the course unit:

12http://www.ncc.co.uk
Detailed syllabus

3. Risk management

4a. Vulnerabilities Windows, Unix and Open source.

5. Active security Audits and reviews: Vulnerability scanners, Penetration testing. Inspection.
Introduction

Machine learning is concerned with how to automate learning from experience. This is typically accomplished by forming models which to some extent describe or summarise experiences, our data, in a useful way. For example, speech recognition software requires examples of continuous speech and will often form a different model for each different user. In this course a variety of machine learning paradigms and algorithms will be introduced which are appropriate for learning from examples with discrete or continuous-valued attributes. The course has a fairly mathematical content although it is intended to be self-contained.

Aims

This course unit aims to introduce the main algorithms used in machine learning, to introduce the theoretical foundations of machine learning and to provide practical experience of applying machine learning techniques.

Learning Outcomes

A student completing this course unit should:

1) have knowledge and understanding of the principle algorithms used in machine learning, as outlined in the syllabus below (A)
2) have sufficient knowledge of information theory and probability theory to provide a theoretical framework for machine learning (A)
3) be able to apply machine learning algorithms, evaluate their performance and appreciate the practical issues involved in the study of real datasets (C)
4) be able to provide a clear and concise description of testing and benchmarking experiments (D)

Assessment of learning outcomes

Learning outcomes (1) and (2) are assessed by examination, learning outcomes (1),(3) and (4) are assessed by laboratory reports

Contribution to programme learning

A1, A2, C1, D3, D4
Reading list and supporting material

There is a CS643 web page13 with further details for the current session. The main course textbook is Alpaydin, E., “Introduction to Machine Learning” MIT Press, 2004. This is the new course textbook and covers a very broad range of machine learning topics.

Additional reading

Mitchell, T. M., “Machine Learning” McGraw-Hill, 1997. Introduction to machine learning, covering a broad range of topics and algorithms. This was the previous course textbook and provides an accessible introduction to many of the key concepts.

Special resources needed to complete the course unit

The matlab programming environment is used in the laboratory. A number of freely available matlab toolboxes are used.

Detailed syllabus

Introduction to machine learning [1]. Overview of different tasks: classification, regression, clustering, control.

Concept learning, information theory and decision trees [2]. Concept learning (algorithms and limitations), Shannon’s entropy, mutual information and gain, ID3 and extensions.

Introduction to probabilistic modelling [2]. Probability distributions and densities, Bayes’ rule, maximum likelihood, Bayesian inference.

Unsupervised learning [2]. Clustering (Gaussian mixtures, EM-algorithm, k-means), Dimensionality reduction (PCA).

Non-linear regression and classification [2]. Feed-forward neural networks, support vector machines.

13\url{http://www.cs.man.ac.uk/~magnus/CS643/CS643.html}
CS644: Advanced Machine Vision

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACS/CMIM and others, if qualified
Pre-requisites: Mathematics, C or Matlab programming
Pre-course work: 40 hours: web directed reading and software projects
Taught week: 40 hours: lectures, group exercises, supervised labs
Post-course work: 40 hours: unsupervised labs, essay
Assessment: 40% exam, 30% lab, 30% coursework
Lecturer(s): Dr. A. Galata (agalata@cs.man.ac.uk), with Dr. N.A. Thacker, Prof. C.J. Taylor
Limit on numbers: 50 participants

Introduction

This unit will give students a foundation in the subject of machine vision. This will involve gaining familiarity with algorithms for low-level and intermediate-level processing and considering the organisation of practical systems. Particular emphasis will be placed on the importance of representation in making explicit prior knowledge, control strategy and interpreting hypotheses. This unit will also give students a foundation in the statistical methods of image analysis. This will involve gaining familiarity with probability theory, its simple forms and their limitations. Particular emphasis will be placed on the importance of understanding algorithmic stability and optimality as a framework for algorithmic design and research methodology.

Aims

To introduce the basic concepts and algorithmic tools of computer vision with emphasis on industrial and medical applications.
To introduce the problems of building practical vision systems.
To explore the role of representation and inference.
To explore the statistical processes of image understanding and develop an understanding of advanced concepts and algorithms.
To discuss novel approaches to designing vision systems that learn.
To develop skills in evaluation of algorithms for the purposes of understanding research publications in this area.

Learning Outcomes

A student completing this course unit should:

1) have an understanding of common machine vision algorithms. (A)
2) have a knowledge of the statistical design of algorithms. (A and B)
3) have a knowledge of the properties of image data and be able to solve problems about extraction of features and other quantitative information. (A and B)
4) be able to design basic systems for image analysis and evaluate and justify the design. (B)
5) be able to write a program for the analysis of image data and prepare a technical report on the evaluation of this program on suitable test data. (C)
6) be able to work effectively as a member of a group to prepare presentations describing complex machine vision algorithms to their peers. (D)

Assessment of learning outcomes

Learning outcomes (1), (2) and (3) are assessed by examination, learning outcome (4) and (5) by examination and in the laboratory and learning outcomes (6) in tutorials.
Contribution to programme learning

This course contributes to learning outcomes; A1, A2, B3, C2, D2.

Reading list and supporting material

All supporting material and the directed reading list can be found at;
 http://www.tina-vision.net/teaching/cvmsc/index.html

Special resources needed to complete the course unit

The course requires access to a MATLAB toolkit including image processing course units and access to a suitable environment for web access and programming.
Introduction

Knowledge representation and "ontologies" are becoming critical to the development of the next generation Web ("The Semantic Web" and "meta data"). The course will present the knowledge representation paradigms used in a variety of applications including current research in the school in "E-Science" and the Web. Describing web resources with metadata expressed using ontologies is a key step towards achieving effective 'agent based' applications to automate web operations.

Aims

The course will provide students with a theoretical and practical understanding of leading edge solutions for the Semantic Web and for knowledge representation more generally. It will introduce students to description logics through the the new W3C standard Web Ontology Language, OWL. Much of the development of OWL has taken place at the University of Manchester under Ian Horrocks.

Learning Outcomes

A student successfully completing this course unit should:

1) Be able to discuss/explain the general principals of semantic networks, frames, rules (A),
2) Be able to discuss/explain KR/ontology languages designed for the world wide web, in particular the new Web Ontology Language (OWL) (A, B),
3) Understand the syntax, semantics and decision procedures for the family of description logics which underpin OWL (A),
4) Know the common ontological structures and principles of ontology development , have an appreciation of “why it's hard”, and to be able to write critically about current work on the “Semantic Web” (A, B),
5) Be able to design and build ontologies in OWL using the de facto standard editor, OilEd, justify and evaluate their design (B, C), and explain their behaviour.

Assessment of learning outcomes

Learning outcomes 1-4 will be assessed by exam. Learning outcome 5 will be assessed via practical and post-course work.

Contribution to programme learning

A1, A2, B2, B3, C1, C3, D3, D4
Reading list and supporting material

Selected papers and technical reports will be distributed during the lectures. These will include:

Detailed syllabus

The following lists topics to be covered in the pre-course work and taught week.

Precourse Work

Background reading on knowledge representation, ontologies, and the Semantic Web
 Background review of logic
 Frames and Semantic Nets
 Initial Protege tutorials

Course work

Basics of knowledge representation and informal introduction to OWL
 Description logics and classifiers - the ALC family and its extensions
 Expressiveness versus tractability; highly expressive description logics; implemented description logic systems; description logics and the “Semantic Web”.
 Practical issues in ontologies: Basic principles, normalisation and the "Ontoclean" methodology, upper ontologies,
 Common problems in ontology development: parts and wholes, time, space, fundamental limitations.

Laboratory Work

Introduction to Protege and OWL including advanced tutorial
 Special problems of representation and reasoning in OWL
 Differences between 'open world' reasoning in OWL and 'closed world' reasoning in databases
 and logic programming - "Ontologies for Pizzas" Postcourse work
 Practical development project
 Problem sets
 Critique/comment on implemented ontologies on the Web

Postcourse work

Practical development project
 Problem sets
 Critique/comment on implemented ontologies on the Web
 Additional information may be found here16.

16http://www.cs.manchester.ac.uk/~seanb/teaching/CS646
CS648: Neural Networks

<table>
<thead>
<tr>
<th>Level:</th>
<th>MSc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Rating:</td>
<td>15 credits (7.5 ECTS)</td>
</tr>
<tr>
<td>Degrees:</td>
<td>ACS/CompSciEng and others, if qualified</td>
</tr>
<tr>
<td>Pre-requisites:</td>
<td>None</td>
</tr>
<tr>
<td>Pre-course work:</td>
<td>30 hours: 66% introductory exercise, 33% preparatory reading</td>
</tr>
<tr>
<td>Taught week:</td>
<td>40 hours: 60% lectures, 40% supervised lab</td>
</tr>
<tr>
<td>Post-course work:</td>
<td>50 hours: 50% unsupervised lab, 50% essay</td>
</tr>
<tr>
<td>Assessment:</td>
<td>33% exam, 40% laboratory work, 27% essay</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Dr. Jonathan Shapiro</td>
</tr>
<tr>
<td>Limit on numbers:</td>
<td>50 participants</td>
</tr>
</tbody>
</table>

Introduction

This course focuses on the foundations of neural network theory and the application of neural network models in engineering, cognitive science, and artificial intelligence. The course will present the major neural network paradigms: attractor neural network models of memory, a sequence of supervised learning models of increasing complexity, a sequence of unsupervised clustering and categorisation networks, reinforcement learning networks, and aspects of learning theory. Practical experience with the models will be integrated into the course. A final computer project and an essay on related work will constitute post-course work.

Aims

Learning Outcomes

A student completing this course unit should:

1. have an understanding of the concepts and techniques of neural networks through the study of the most important neural network models. (A)
2. have a knowledge of sufficient theoretical background to be able to reason about the behaviour of neural networks (A and B)
3. be able to evaluate whether neural networks are appropriate to a particular application (B)
4. be able to apply neural networks to particular applications, and to know what steps to take to improve performance (B)
5. have knowledge of research literature on neural networks in one particular domain, and be able to put new work into context of that literature (C and D)

Assessment of learning outcomes

Learning outcomes (1), (2), (3) and (4) are assessed by examination, learning outcome (1), (2), and (4) by examination and in the laboratory and learning outcomes (5) by an essay related to chosen final laboratory project

Contribution to programme learning

A1, A2, B2, B3, C4, D3

Reading list and supporting material

Special resources needed to complete the course unit
Laboratory work will be done in matlab using the Neural Network Toolbox, and public domain toolboxes.

Detailed syllabus
Motivation [1]. The role of neural networks in engineering, artificial intelligence, and cognitive modelling.

Supervised learning in neural networks [4]. Feed-forward neural networks of increasing complexity, gradient descent learning and extensions, learning and generalization theory

Selected Applications [8]
33 CS649: Robotics

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: All advanced programmes
Pre-requisites: None
Pre-course work: Preparatory reading and on-line test
Taught week: Lectures and supervised lab
Post-course work: Robot design and analysis
Assessment: 70% 2h exam, 10% Lab, 10% Post course work, 10% Pre-course work on-line internet test
Lecturer: Dr Robert Richardson
Limit on numbers: 50 participants

Aims

This course unit introduces students to robotic systems covering multi-link robotic systems, mobile robotic systems, actuators, sensors, biologically inspired robotics and machine learning techniques. The main aim is to give students an introduction to the field, historic background, development and current cutting edge research points, as well as a practical introduction how to move and control robots. The course unit is practical, and students will be given access to robots for exercises.

Learning Outcomes

At the end of the course unit students will be able to:

(1) Describe different mechanical configurations for robot manipulators
(2) Have an understanding of the functionality and limitations of robot actuators and sensors
(3) Undertake kinematic analysis of robot manipulators
(4) Understand the importance of robot dynamics
(5) Understand and be able to apply a variety of techniques to solve problems in areas such as robot control and navigation
(6) To be able to program a robot to perform a specified task
(7) Understand how simulations of robots work, where they can be useful and where they can break down.
(8) Appreciate the current state and potential for robotics in new application areas.

Assessment of learning outcomes

Understanding of the topics covered in the course is assessed in two ways. A 2 hour examination covers the students understanding of the theoretical issues, such as robot control paradigms, machine learning techniques, actuator and sensor theory. The ability to use this knowledge in a practical manner is tested through practical sessions with robots. Practical sessions are marked by the lab demonstrators.

Contribution to programme learning outcomes

The course contributes towards knowledge and understanding of Computer Science through its practical orientation towards programming robots, signal processing in real time, controller architecture and hardware issues. Intellectual skills are trained through the analysis of control problems, identification of ways of solving them and implementation of the solution. Successes or failures are immediately evident through the resulting robot behavior. Practical skills are trained through the practical sessions of the course. Finally transferable skills are trained by having to work tight (lab
session) deadlines working in groups during practical sessions, understanding task statements, analyzing them and solving problems.

Skills include: A1, A2, B2, B3, C1, D1, D4

Reading list and supporting material

There is no set text for this course, and the lecture notes aim to be self-contained. The following books provide useful supporting material for certain sections of the course.

- Robin Murphy, Introduction to AI robotics, MIT Press 2000.

Special resources needed to complete the course unit

Students will use the Robotics Laboratory. The number of students on this course unit is limited to 20.

Syllabus

- Introduction
 - Definitions and history of robotics.
- Sensors and actuators
 - Types of actuator, types of sensor.
- Robotic systems
 - Robot design, biologically inspired robotics, kinematics, dynamics, locomotion, control.
- Autonomous mobile robotic systems
 - Benefits, problems, suitable tasks, machine learning, navigation.
- Simulation
 - Simulation of a robot and its environment. Assessment of simulation accuracy. Model acquisition and validation.
CS699: Research and Professional Skills

Level: MSc
Credit Rating: None
Degrees: All degree programmes except MEnt
Pre-requisites: None
Pre-course work: None
Taught week: 40 hours: Mixed activities
- lectures, seminars, group skill activities
Post-course work: None
Assessment: None
Lecturers: Various Contributors: Including the Careers Service,
the Post-Experience Vocational Education Unit, Course
Directors, Research Staff and Groups, and
Industrial Consultants

Introduction

This course unit covers material that is presented at various points through the academic year. Part of the course unit provides training in research skills and an orientation towards the practice of research. The other part provides training in a range of professional skills and material on expectations and conduct in an industrial and business environment.

It is presented by a range of staff both internal and external, including the Careers Service, Programme Directors, Academic Staff, Research Staff and Groups, Industrial Consultants, and representatives from a Professional Society.

Aims

This course unit has two aims:

1. Most of the course unit takes place before students begin work on the research project. It offers a grounding in various aspects of research and project management, from the most theoretical (philosophy of science), through the subject-specific (how to choose, refine and develop a research topic), to practical advice on undertaking research, including how to contribute to research, manage research projects, cope with the day-to-day research activity, etc. It covers material and advice on technical writing for the dissertation. Research seminars undertaken as part of the Research Project contribute to this course unit.

2. The course unit also covers various aspects of Professional Skills as required in the IT industry and in Research and Development. There is a presentation on professional ethics and workplace conduct given by a representative of the British Computer Society. The skills necessary in the IT industry are taught through the Careers Service and external consultants from the IT industry. The skills include team-work skills, industrial problem-solving, leadership skills, communication skills, presentation skills and preparation for job application and interview skills.

Learning Outcomes

At the end of the course unit the student will:

- be prepared to undertake the Research Project, having been introduced to the skills and knowledge necessary to undertake the project (B and C),
- have presented a research seminar to an audience of researchers (D),
- have been prepared for some of the demands of, and skills required for, work in IT and IT-related industries (A).
Assessment of learning outcomes

There is no formal assessment for this course unit, but active participation is required, and students will need some of the material to succeed in the Research Project. The research seminar is assessed to provide feedback on performance both in the seminar and in the project to date.

Contribution to programme learning

A1 Knowledge and understanding of professional issues.
B1 Introduction to developing original ideas in a research context.
B3 Introduction to problem solving skills in an academic and industrial context.
C2 Training in organising a scientific or industrial research project.
D2 The preparation and presentation of seminars to a professional standard.
D3 Introduction to the preparation of theses and reports to a professional standard.
D4 Introduction to time-management for research projects.

Reading list and supporting material

Lecture notes will be provided and guidance on suitable literature.

Detailed syllabus

1. Research Skills and MSc project management
 - Introduction to research in science
 - Research methods and Creative thinking
 - Management of the MSc project, including managing the academic year, relationship with supervisor and interaction with research groups.
 - Requirements of an MSc research project
 - Research presentations
 - Requirements of a good dissertation
 - Technical writing skills

2. Professional Skills
 - Professional ethics and conduct
 - Professional skills: Including teamwork skills, industrial problem-solving, leadership skills and communication and presentation skills. Job applications, careers advice and interview skills.

Additional information and supporting material for this course unit is available here.17

17http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/CS699/profissues.php
35 CS851: The IT Change Agenda

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACSwICTM (and others with permission)
Pre-requisites: None
Lecturer: Dr. Peter Kawalek (pkawalek@mbs.ac.uk)
Assessment: Group project/seminar and individual assignment
Course unit webpage: http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/CS851
Limit on numbers: 30 participants

Aims

The course is designed to equip leaders of IT/Organizational change projects with insights, theory and know-how. It is taught by Peter Kawalek (pkawalek@mbs.ac.uk) of Manchester Business School and Duncan Shaw of Nottingham Business School. It will start at 9.00am on the Monday of the taught week. Class times will vary from thereon.

Learning Outcomes

By the end of the course, participants will:

- Have a better understanding of the likely impacts of IT on organizational change. (A1, B3, D1-5)
- Be conversant with models and theories to explain the prospects. (A1, B3, C3, C4, D5)
- Be conversant with change management concepts and theory. (A1, B3, C1, C4, D5)

Syllabus and Timetable

The timetable of the taught week and the schedule of topics is available here.

References

http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/webpages/CS851/Timetable.doc

*denotes key text

Assessment

- 60% individual assignment based upon a literature survey related to business strategies.
- 40% group project, based on a given problem.

Individual assignment

Change Management Assignment. *Big corporations successfully change only when there is a strong leader at the top of the organisation and a crisis outside.*

Use the internet and other sources to research cases of leadership and change in major business corporations. Describe the cases that you find and then construct an analysis of whether the evidence you have supports or negates the statement above.

Use theory in your answer.

A typical structure might be to choose two or three cases, setting out short case descriptions (e.g. 750 words). Then you should analyse the statement above, using your case evidence and other theory. This might take 1,000 words. Your final report should be in the region of 2,500 – 3,500 words.

Group Project

Entertainment and Media Project. Work in your group to set out how you think new technology will impact upon the entertainment and media industries.

You should choose to focus upon one or several of the following:

- Television
- The Music Industry
- The News Media
- The Film Industry
- Live Theatre (e.g. London’s West End)

You might want to dedicate some time to describing the new technological opportunities, but do not rely on this entirely. Make sure you relate everything back to the specific sector and that you explicitly use the theory that you have learned about in class. Speculate on likely obstacles and restraints. Use web-sources and academic journals (e.g. Google Scholar)—evidence of research will help your mark.

Present your findings as a .ppt with notes used to describe references, sources and background ideas.

Pre-Course Reading

Please prepare for your individual assignment by undertaking research and reading from the reference list given above.

Dr Peter Kawalek

Post and publications. Peter Kawalek is a Reader in Information Systems in Manchester Business School, University of Manchester. He has published two books and numerous papers, including publications in *Journal of Strategic Information Systems, Information and Organisation, Global Information Management* and *DATA BASE.*
Experience. Since 1998 Peter has developed a specialism in the public sector, working with the Association of Greater Manchester Authorities, Audit Commission, Charnwood Council, Lancashire Constabulary, Lancashire County Council, Leeds City Council, the Office of the Deputy Prime Minister, Nottinghamshire County Council, Salford City Council and a number of others. His extensive body of work with Salford includes the development of SPRINT (now with a national user base), work with Customer Services and Benefits, development of ICT strategy, the creation of the Think Customer Guidebook and the case for the Community Justice Centre. Peter teaches on MBA and MSc programmes in Manchester, as well as the MSc Public Sector Innovation run jointly by Letterkenny Institute of Technology and the University of Ulster. He has previously taught on the MPA programme at Warwick Business School. Peter’s extensive private sector experience includes BT, Chubb Insurance Company of Europe, Fujitsu/ICL, and board-level engagements at Great North Eastern Railway and Hoverspeed.

Doctoral Students. Peter has a number of doctoral students working with him in a part-time or full-time capacity.

- Martin Cahill, Research Associate, Manchester Business School, University of Manchester.
- Antonia Hadjihanna, Doctoral Researcher, Manchester Business School, University of Manchester.
- Boumediene Ramdani, Doctoral Researcher, Manchester Business School, University of Manchester.
- Yaparak Temren, Research Associate, Manchester Business School, University of Manchester.
- Jeff Word, Chief of Staff, Office of Shai Agassi, SAP, Palo Alto, California, USA.
- Igor Yakimovich, Senior Manager, Bearing Point, Munich, Germany.
- Lei Zhang, Doctoral Researcher, Manchester Business School, University of Manchester.
The course will address the role and importance of Information Systems in support of business, organisation and market strategies. It will provide an overview of current Information Technology (IT) components and trends and complement this with discussion and analysis of contemporary business developments including enterprise computing, global systems, electronic marketplaces and virtual organisations. It will also provide students with an awareness of the Internet and the World-Wide-Web as an information resource for business and academic research.

Learning Outcomes

On successful completion of the module students will have an understanding of the underlying technology and be able to assess its role and potential in business strategy and for achieving competitive advantage. Students will:

1. have an understanding of business and information technology trends including an IT vocabulary (A1, B3, C1, D1, D2, D3, D4, D5),
2. have an appreciation of key technologies and their application to management problems (A1, B1, C3, C4),
3. understand the concept of strategic alignment and implementation issues (B3, C3).

Assessment of learning outcomes

Assessment is by group presentations 30% (A1, C1, C3, C4, D1, D2, D4) and an individual essay 70% (A1, B3, C1, C3, C4, D3, D4).

Syllabus

Monday. Business Computing: The Big Picture

Moore’s Law

Moore’s Law and its implications for price/performance ratios in business computing. Information technology costs as a percentage of firm revenue across different industries. The productivity paradox in the US and Europe. The IT industry, key players, contemporary changes and trends. Introduction to computer networks. The IT director/Chief information officer view of IT strategy.
Business 2015 project

In groups of 4-5 people, you should brainstorm the likely technology and business developments in 2015 for a specific industry. Groups will be allocated an industry from: manufacturing; retail; financial services, pharmaceuticals/health; and education. Each group will present the results of their findings to the rest of the class in a short 10 minute presentation. You should consider how IT and business are related to each other in a recursive manner (e.g. technologically determined business change, and business-led strategies that create new demands on the technology), and describe possible outcomes in the form of a scenario for a particular industry. The focus is on blue-sky thinking and the development of ideas to increase your understanding of the potential of IT in a business context.

Productivity paradox video, Money programme, September 1999

Reading:

1. http://www.businessweek.com/it100: this set of articles gives an overview of the IT industry in terms of product-markets, growth and size. You should try and understand the main market segments within the IT industry and gain an appreciation of the position of the top 10 vendors.

These authors have focused their research on IT infrastructure and its importance in business process design, business strategy deployment and strategic agility. It gives an overview of how companies view their IT in terms of categories of investment which is an important starting point for understanding IT costs, IT investment evaluation and strategic impact.

Monday p.m. The Productivity Paradox and the CIO’s strategy agenda

The strategic importance of IT for companies has always been vigorously debated by business leaders, consultants and academics. The dot.com boom-bust-boom cycle has arguably added confusion by adding conflicting evidence about the scale and growth of IT investment and the associated business outcomes. The ideas of Carr have given a new focus to the debate through his controversial assertion that IT has essentially become another commodity input to a business and that it will therefore not lead to competitive advantage. This will be used as the starting point for exploring the competitive impacts of IT that will be illustrated with a range of business examples and statistical data.

The CIO of most firms are faced with a remarkably similar IT strategy agenda that is typically composed of: enterprise computing; aligning IT and business strategies; managing legacy systems; building responsive supply chains; cost control; justifying investments with benefits; and electronic commerce. New technologies and trends such as Linux, XML, downsizing and web services arrive very quickly and sometimes have long-term effects, but the strategic issues have remained relatively stable. This lecture will look at the application of the technologies from the perspective of the CIO and paint a big picture of current themes which are most likely to be of lasting importance.

Reading:

1. IT Doesn’t Matter. By: Carr, Nicholas G.. Harvard Business Review, May 2003, Vol. 81 Issue 5, p41, 9p. This is the article that upset the IT leaders by claiming that IT is a simple commodity and therefore not of any great significant strategic benefit to companies. You should prepare a critical analysis of his argument, and identify any omissions.

2. The Engine That Drives Success: [Source](http://www.cio.com/archive/050104/keynote.html). The best companies have the best business models because they have the best IT strategies. By DON TAPSCOTT, May 2004. This is probably one of the most convincing responses to Carr’s argument based on empirical examples.

4. Defining and measuring information productivity, Paul A. Strassman, 2004. Paul Strassman has been one of the most influential writers on IT and its use by individuals, business organisations and Governments. In this paper he presents his own perspective and insights into the debate from the perspective of the CIO.

Tuesday a.m., Strategy frameworks

The central problem in information systems strategy is how to relate IT investments and strategies to business strategy. Several different approaches to this problem will be discussed including the McKinsey 7S model, MIT 90s framework, the socio-technical approach through to more recent developments such as Keen’s Reach/Range/Responsiveness model and the business operating system. All of these approaches have a common theme of alignment. As the costs of IT investment have risen, a related problem of how to align the IT strategy with the business strategy is that of return on investment and how to measure the benefits of IT systems. There have been several approaches to the alignment problem ranging from the application of pure strategy models to develop IT strategies through to technology specific models such as ERP implementation models. An overview of the different approaches will be given and applied to companies in different sectors to illustrate the concepts. The tutorial reading by Markus (2000) gives an authoritative overview of how business and technology innovations are closely related to each other, and also proposes why problems still persist in IT deployment.

CISCO systems architecture: ERP and web-enabled IT, Ref. 9-301-099.

CISCO case study questions. Your group should prepare for a class presentation. You may be asked to answer any of the following questions.

- How are CISCO’s business strategy and IT strategy related to each other?
- Map CISCO’s systems onto Keens’ Reach, Range, Responsiveness cube.
- Is IT a commodity resource for CISCO as outlined in Carr’s article?
- Apply the McKinsey 7S model to CISCO. How do you rank the relative importance of the elements?
- What are the HR implications of CISCO’s total reliance on networked information systems to manage every single business process?
- Discuss how CISCO could further develop its supply chain strategy.

Reading:
2. Peter G.W. Keen ”Networks in Action”, Chapter 3, Figure 3.7 (Reach, Range, Responsiveness).

Tuesday p.m. IT and competitive advantage

The sources of change in global markets will be analysed and the particular role of information technology explored. The seminal articles by Porter on competitive strategy and information will be used to structure the session. Two important strategic implications of significant change in markets are instability and the concept of diverging returns. The sources of change will be discussed in the context of strategy examples from a range of different industries that illustrate the concepts of instability, diverging returns and average performance. The relationship between size and strategy will be discussed using ideas from economics, internet structure and the strategy literature. The concept of virtual size in a B2B context will be covered with examples from financial services and manufacturing. Notions of size for internet businesses will also be explored with evidence from retail internet marketing.

http://Schwab.com case study questions:
1. Describe the leadership and organisation of the information systems function.
2. Identify the elements in Schwab’s overall strategy that give it competitive advantage.
3. Which elements are visible to competitors, and which elements can be copied?
4. If you were the Chief Executive of Merrill Lynch, how would you compete against Schwab?
5. How do you think Schwab could develop into other financial services markets?
6. To what extent is Schwab a clicks and mortar success story?

Reading:

E-case briefing

Each group should prepare a strategic analysis of their allocated e-case company (e.g. Motorola). The specific brief is to explore the inter-relationships between the business strategy and the IT strategy of the firm, and discuss how the implementation of the overall strategy is managed. See http://www.mbs.ac.uk/webspace/pdrinkwater/e-Cases/e-cases.html for details of all of the e-cases. You must attend ALL of the presentations which will take place on Friday. A mark will be allocated to each group presentation and will form 30% of your overall mark, the remainder will be an essay.

Wednesday, Enterprise Computing and Organisational Change

ERP systems dominate the corporate information technology landscape and represent the core systems for the majority of businesses. Compared with the early commercial system of BP, they represent a step change in the ambition of the IT industry and its customers to develop a globally comprehensive solution to an organisation’s information systems requirements. The evolution of ERP systems will be analyzed from the perspective of the overall market, and the move towards packaged software, and from the perspective of individual companies operating in supply chains. A case study will be used to illustrate the implementation process of an ERP project, and its associated organisational and strategic impacts.

Reading:

1. ERP, Silicon Valley on the Rhine, Business Week20. This is an introduction to the central idea of an ERP. The diagram gives an excellent overview of the key business processes in a typical ERP implementation.
2. European Threads21. You should prepare the threads case for discussion in class.

This is the seminal article on how IT can be used to design organisations using business processes as the building blocks. This has arguably only become possible with the advent of sophisticated enterprise systems which will be looked at in much more depth in week 4.

20http://www.businessweek.com/@@bdyLkUcQUkrr@wAA/1997/44/b3551011.htm
CASE STUDIES, J.D. EDWARDS AND OSRAM

Project Proof: Internet Enabled Process Reengineering at J.D. Edwards and Company22, Volume 13 Article 30, May, 2004, Nikunj Dalal23. This is a multi-media case study of the implementation of an ERP solution within a software company.

J.D. EDWARDS: Project Proof Discussion Questions

1. How are the information systems and business strategies aligned and how is this measured?
2. How are business-processes designed and implemented?
3. What is the significance of vanilla business processes?
4. How do you rate the overall implementation strategy?
5. Why is implementation of ERP systems difficult and expensive?
6. What are the key drivers of cost and time?
7. What are the alternatives to ERP strategies?

Osram case study discussion questions

There is online support material24.

1. Discuss the merits of a single vendor versus an integrated best of breed approach with reference to Osram.
2. What were the business risks of getting their large-scale systems wrong for Osram?

Thursday, Competitive Strategy in Electronic Marketplaces

In his seminal articles on electronic markets, Malone predicted that as computer networks between separate business organisations became more universal then the free exchange of information would lead to more intense competition because buyers would be able to search out and trade with a wider range of suppliers. The theory is based on transaction cost economics which predicts the form of organisations based on economic variables including the costs of information search and production costs. For an overview of the theory and its application to contemporary business examples see the reading below in CAIS. The ideas will be illustrated with an example called ‘thebigword’ and benchmarking examples from internet case studies.

Reading:

The bigword is a global translation services company that has been at the forefront of exploiting IT for competitive advantage, particularly in terms of marketing. The company will be used to bring together the different technology and business strategy concepts based on the case study. There will also be a video of interviews with the senior management of the company to explain how the strategy frameworks have been applied in practice and how the high-technology marketing concepts are sold to global corporate clients.

22http://cais.isworld.org
23http://cais.isworld.org/authors.asp?auth=291
25http://cais.isworld.org/
Thursday p.m., Internet Trends and Business Examples

An overview of the history of business computing leading up to the emergence of the PC and the internet will be given in order to place the current IT industry and business developments in a broader context. The commercial potential of computers was recognised by only a very small number of pioneers and dismissed or massively underestimated by most business people. A common pattern that emerges from looking at historical comments of IT industry leaders up until the 1980s is that the level of understanding of how the future would evolve was extremely poor in nearly all cases. This begs the question of how much do we actually know and understand of what is likely to happen over the next ten to twenty years.

Video: Winners and losers in Internet Technology Companies

Computer network project:

Smart business networks and networks of everything. How does the concept of a ubiquitous network that connects people, computers, products and everyday items affect the co-ordination of economic activity? Identify at least one new marketing opportunity for 2015 in retailing, manufacturing, pharmaceuticals, automotive, security and healthcare.

Reading:
 Abstract: This is background information explaining where the web specifications fit into the internet technology as a whole. It explains the philosophy of electronic communications having well-defined meaning grounded in a stack of interconnected specifications. This is all normally — and quite justifiably — taken for granted by Web engineers. But it is needs to be emphasised when the Internet is abused, for example by spammers who forge email headers, or companies who cheat protocol timeouts in order to claim greater performance, and in doing so, break the system. This article debunks the idea that "it’s Ok to interpret things this way as more and more people are doing it".
2. CISCO article on Web-Based Sourcing26, Cisco IQ magazine.
 Abstract: Internet-based sourcing tools help companies identify suppliers and negotiate contracts. Before procurement comes sourcing, and new Web-based sourcing tools are helping companies connect more easily and streamline the process of qualifying suppliers and negotiating terms. Reducing sourcing time and paperwork, and increasing data integrity are among the benefits offered by Web-based sourcing tools.

Friday

E-cases presentations.

26http://cisco.com
CS853: Decision Analysis and Decision Support Systems

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: ACSwICTM, ACS (and others with permission)
Pre-requisites: None
Pre-requisite Pre-course work: 40 hours: preparatory reading including preparation of a presentation on given paper
Taught week: 40 hours: lectures, seminars and laboratories
Post-course work: 40 hours: project work based upon the student’s preferences (software development, case study, academic study, etc.)
Assessment: 33% exam, 17% group presentation, 50% project
Lecturer(s): Prof. Simon French (Manchester Business School)
Limit on numbers: 50 participants

Introduction
The course looks at decision making, in particular how people do and should make decisions. It uses this understanding to discuss decision support systems and decision analytic software.

Aims
The course aims to provide students with an overview of various decision support, operational research and artificial intelligence systems and the ways in which they support effective decision making in organisations. It will discuss cognitive biases in decision making and how these may be countered through decision support techniques. It will also draw upon some of the normative theories of how people should make decisions. Finally it will consider several examples of decision support systems, including one in depth case study, to explore how theory and practice come together in implementation.

Learning Outcomes
A student completing this course unit should:

1) have a multi-disciplinary understanding of behavioural and normative theories of decision making, the value to individuals and organisations of decision support systems and be aware of current practice in the use of decision support systems. (A)
2) have a knowledge of decision analytic techniques and be able to solve some simple decision problems. (A and B)
3) be able to design (in outline) decision support systems and processes, evaluate and justify the design. (B)
4) be able to evaluate the appropriateness of decision support systems in various parts of organisations and prepare a presentation on their conclusions (B and C)
5) be able to work effectively as a member of a group to evaluate decision support systems and also to analyse decision problems more generally. progspec(D)

Assessment of learning outcomes
Learning outcomes (1), (2) and (4) are assessed by examination, learning outcome (1), (4) by group presentation learning outcomes (1), (2), (3), (4) and (5) by project
Contribution to programme learning
A2, B2, B3, C2, C4, D1, D2, D3, D4

Reading list and supporting material

- An extensive website is provided with notes and other materials including web links.

Detailed syllabus

Overview of different types of decision making: strategic, tactical and operational. Consideration of organisational structures. Mapping of databases, MIS, EIS, KBS, expert systems, OR modelling systems and simulation, decision analytic systems onto activities within an organisation. Extension to other 'non organisational' areas of decision making. Relationship with knowledge management systems

Studies of human cognition in relation to decision making and the assimilation of information. Cultural issues. Implications for design of decision making support. Communication issues.

Normative, descriptive and prescriptive analysis: requisite modelling. Contrast with recognition primed decision tools.

In depth case study of DSS for emergency management.
38 ET400(SF4001): Entrepreneurial Commercialisation of Knowledge

Level: MSc
Credit Rating: 15 credits (7.5 ECTS)
Degrees: Advanced MSc
Pre-requisites: None
Lecturer: Dr. Martin Henery, Manchester Science Enterprise Centre
Start time: Starts at 9AM on the Monday.
Limit on numbers: 50 participants

Introduction

This course unit is provided by the Manchester Science Enterprise Centre.

The unit provides an overview of the process that underpins the entrepreneurial journey from having an initial idea to the development of a successful venture. Particular emphasis will be given to the special role played by entrepreneurs in this process. An evaluation will be made of the particular skills, abilities and approaches that entrepreneurs are able to exploit when taking an idea forward into the marketplace. Students will be encouraged to reflect on their own strengths and how they may be used to best advantage in the process of moving ideas into the marketplace.

For fuller details of this course unit, see the ET400 Specification\(^{27}\).

For more details of the Manchester Science Enterprise Centre consult the MSEC website\(^{28}\).

\(^{27}\)http://www.cs.manchester.ac.uk/Postgrad/ACS-CS/ET400.doc

\(^{28}\)http://www.msec.ac.uk

86
39 Course Units via E-Learning

There is a range of course units taught only via e-learning, provided by the PEVE Unit in the School of Computer Science. These are at various postgraduate levels and credit ratings. Some are already available, others are in preparation.

Currently the following distance learning courses are on offer.

- CS804: Low-Power System Design (Advanced course unit)
- CS810: Programming in C (Foundation course unit)
- CS811: Object-Oriented Programming using Java (Foundation course unit)
- CS818: Object-Oriented Analysis & Design with UML (Advanced course unit)
- CS821: Self Timed Logic (Asynchronous Design) (Advanced course unit)

As a general guide the start dates are October or March each year, but exact dates are to be confirmed. Applications to take these course units are made via the PEVE Unit. Fees may be payable.

For details of these courses, dates and how to apply, see the web page or contact the PEVE Secretary (peve@cs.man.ac.uk).

In order to take any of these course units as part of a university degree programme, the course unit must be appropriate for the degree and the Programme Director for the degree programme must give authorisation. A Modular Masters course is also available combining e-learning course units with face-to-face teaching. See the web page for details of this approach to MSc courses.

29 http://www.cs.man.ac.uk/peve/peveWebNew/home/index.htm
30 http://www.cs.man.ac.uk/peve/peveWebNew/e_learning/index.htm
31 http://www.cs.man.ac.uk/peve/peveWebNew/education/index.htm