Mobile Computing theme introduction

Nick Filer (nfiler@cs.man.ac.uk)
Dirk Koch (dirk.koch@manchester.ac.uk)

Mobile computing

- Human interaction with battery powered portable devices.
- Convergence of telephony & computing.
- Advances in hardware, software & communications
 - Mobile devices using low-power components; e.g. ARM CPU
 - Software platforms for applications, some with DSP requirements
 - Infrastructure (WI-FI) & ad-hoc network technology with protocols, data formats & technologies.
Mobile Computing

- Mobile Systems
 (COMP 61232)

- Mobile Communications
 (COMP 61242)

Mobile Systems
(COMPUSE 61232 previously 61221)

- Schedule
 - Wed 30 Jan to Fri 8 Mar 2013

- Aim
 - to introduce practical aspects of high-performance low-power system design

- Focus
 - practical use of the ARM 32-bit RISC processor core
 (a world-leading processor for power-sensitive applications)
Mobile Systems
(COMP61232)

- Objectives: students will understand
 - low-power RISC processor design
 • including the ARM and Thumb instruction sets
 - memory hierarchy
 • and its influence on power-efficiency
 - system issues

Baby (1948)
ARM9 (2008)

50 years of progress

- **Baby:**
 - filled a medium-sized room
 - used 3.5 kW of electrical power
 - executed 700 instructions per second

- **ARM968:**
 - fills ~1mm² of silicon
 - uses 20 mW of electrical power
 - executes 200,000,000 instructions per second
Energy efficiency

- Baby:
 - 5 Joules per instruction
- ARM968:
 - 0.000 000 000 1 Joules per instruction

 \[50,000,000,000\]

 times better than

 Baby!

James Prescott Joule
born Salford, 1818

AAA battery can store up to abt 5000 Joules (Watt-secs)

Power

- Power is already a vital parameter
 - in mobile systems, for battery life
 - in tethered systems, for performance
 - in ecology, for human survival
- Despite x50 billion progress
 - electronics consumes more resources
 - low power expands the market faster than the power goes down!
- “Batteries not Included”
 - a Grand Challenge for future microelectronic design
 - leakage power is a big problem
 - variability will demand locally higher supply voltages
 - delivering “Moore for Less”
First ARM chip: 26th April 1985

- Full custom
- 6MHz, 120mW
- 3.0μm CMOS
- 2-layer metal
- 25,000 transistors
- 50 mm²
- 84 pins
- 32-bit data
- 26-bit address

ARM Limited

- Systems-on-Chip
 - SoCs took off in the early 1990s
 - ARM’s simplicity
 - led to low power...
 - ...and small size
 - leaving room for other components
 - both important features in early SoCs
 - where chip area and power were at a premium
iPod hardware

Mobile Computing theme intro

ARM milestone

- 2013 – ARM processors
 - over 40 billion shipped
 - ~100,000 transistors
 - ignoring memory
 - total: 10^{15} transistors

= number of synapses in one human brain!
• Syllabus
 - Basics of processor design
 - Processor design trade-offs
 - The ARM and Thumb instruction sets in outline
 - The ARM instruction set in detail
 - Exceptions and special instructions
 - The Thumb instruction set in detail
Mobile Systems
(COMP61232)

- Course history
 - Course has been presented about 50 times as an industry training course
 - Now on-line as part of the UK CEESI Masters programme

Course Delivery
(COMP 61232)

- On-line course
 - no lectures
 - material and exercises on-line (Moodle)
 - course text:
 - "ARM System-on-Chip Architecture"
 - some exercises assessed
 - two post-course ‘projects’
 - weekly face-to-face ‘workshop’
 - exam at end (worth 33%)
Mobile Communications
(COMP61242 previously 61232)

• Timetable & personnel
 - Wednesdays 13 Mar - 8 May 2013
 - Lecturers:
 - Nick Filer (nfiler@cs.man.ac.uk)
 - Possibly Barry Cheetham (barry@man.ac.uk)

• Introduction
 • Networked computing hardware & software designed to be used in locations that are not necessarily fixed”
 • Definition encompasses mobile computing & telephony.
 • Wireless (radio) links to networked ‘base stations’ or ‘access points’ with provision for ‘handover’ from one to another.
 • Wireless networks supporting mobility may be termed either:
 - Cellular (evolved from trad mobile phone networks) or
 - Nomadic (wireless LANs, PANs, cordless & maybe WANs)
 • Include satellite communication links as cellular (with large cells).
Mobile Communications (COMP61242)

- **Syllabus**
 1. Intro to mobile computing & comms (“towards 4G”).
 2. Protocols supporting mobility.
 4. Application layer issues – including voice & multimedia
 5. Network & transport layer issues: incl. DHCP, mob-TCP & WAP
 6. ‘Data link layer’ issues 1 - Medium access control (MAC)
 7. ‘Data link layer’ issues 2 - Error control

Recommended Text Books:

- Mobile Communications, Jochen Schiller, Addison-Wesley, 2nd ed., 2003
 (may replace with directed readings)
Mobile Communications
(COMP61242)

- Generations of mobile telecoms standards
 - 0G Radio telephones
 - 1G (1983) Cellular analogue for voice – e.g. AMPS
 - 2G (1991) Cellular digital for voice & slow data – e.g. GSM, IS95
 - 2.5G (~1998) Introduce GPRS (56-114 kb/s)
 - 2.75G (~2003) Add EDGE (E-GPRS) (up to 384 kb/s)
 - 3G (~2001) IMT2000 for speech & faster data - UMTS etc
 - 3.5G (~2007) HSPDA (1.8-7.2 Mb/s downlink); UL: 384 kb/s
 - 3.75G (~2010) HSPA+ (DL: 56, UL: 22 Mb/s) etc.
 - 3.95G (?) 3GPP-LTE, mobile WIMAX, etc.
 - 4G (?) ITU-'IMT Advanced'

Mobile Communications
(COMP61242)

- 4G – IMT Advanced (ITU-R defn)
 - Proposed by ITU-R for 4th generation of cellular wireless standards. Goals are:
 + To fuse cellular mobile & nomadic access into a seamless layered architecture that is transparent to user
 + By ~2010, to achieve 100 Mb/s for mobile access & 1000 Mb/s (1GB/s) for nomadic access.
 + To pursue world-wide common spectrum & open global standardisation.
 - Only 2 technologies had been proposed by Sept 2009:
 + 3GPP-LTE-Advanced (due 2010)
 + IEEE 802.16m (enhanced mobile WiMAX)
Mobile Communications (COMP61242)

Delivery:
- Weeks 1-5 Lectures & laboratories
- Laboratory work has 2 assignments:
 - Network simulation using OPNET
 - Error control in mobile comms
- Week 6 Complete lab work/assignments
- Assessment:
 - OPNET assignment: 20%
 - Error control assignment: 30%
 - Exam (2 hours): 50%