COMP60332: Automated Reasoning and Verification

Konstantin Korovin and Renate Schmidt

Theme: Ontology Engineering and Automated Reasoning
1. Why Automated Reasoning?

2. General practical remarks
Reasoning is the main ingredient of any intellectual activity.

The main challenge: how to automate the reasoning process.
Reasoning is the main ingredient of any intellectual activity.

The main challenge: how to automate the reasoning process.
Automated Reasoning

- **What is Reasoning?** Solving problems by syntactic manipulations.

Software: Does your program accesses unallocated memory?

Math: Does this equation \((xy)^{-1} = y^{-1}x^{-1}\) hold in all groups?

Knowledge management:
Can we represent and analyse all available knowledge about human body?

Automated reasoning: can we solve all these problems automatically?
Automated Reasoning

- **What is Reasoning?** Solving problems by syntactic manipulations.

 Hardware: Are these two hardware designs equivalent?

 ![Hardware Diagram]

 Software: Does your program accesses unallocated memory?

 Math: Does this equation \((xy)^{-1} = y^{-1}x^{-1}\) hold in all groups?

 Knowledge management: Can we represent and analyse all available knowledge about human body?

 Automated reasoning: can we solve all these problems automatically?
Automated Reasoning

- **What is Reasoning?** Solving problems by syntactic manipulations.

 Hardware: Are these two hardware designs equivalent?

- **Software:** Does your program accesses unallocated memory?

- **Math:** Does this equation \((xy)^{-1} = y^{-1}x^{-1}\) hold in all groups?

- **Knowledge management:** Can we represent and analyse all available knowledge about human body?

- **Automated reasoning:** can we solve all these problems automatically?
Automated Reasoning

- **What is Reasoning?** Solving problems by syntactic manipulations.

 Hardware: Are these two hardware designs equivalent?

 ![Hardware Diagram]

 Software: Does your program accesses unallocated memory?

 Math: Does this equation \((xy)^{-1} = y^{-1}x^{-1}\) hold in all groups?

 Knowledge management: Can we represent and analyse all available knowledge about human body?

 Automated reasoning: can we solve all these problems automatically?
Automated Reasoning

- **What is Reasoning?** Solving problems by syntactic manipulations.

 Hardware: Are these two hardware designs equivalent?

 ![Hardware Diagram]

 Software: Does your program accesses unallocated memory?

 Math: Does this equation $(xy)^{-1} = y^{-1}x^{-1}$ hold in all **groups**?

 Knowledge management:
 Can we **represent and analyse** all available **knowledge** about human body?

 Automated reasoning: can we solve all these problems automatically?
Automated Reasoning

- **What is Reasoning?** Solving problems by syntactic manipulations.
 - **Hardware:** Are these two hardware designs equivalent?

![RTL and SCH diagrams](image)

- **Software:** Does your program accesses unallocated memory?
- **Math:** Does this equation \((xy)^{-1} = y^{-1}x^{-1}\) hold in all groups?

- **Knowledge management:**
 - Can we represent and analyse all available knowledge about human body?

- **Automated reasoning:** can we solve all these problems automatically?
The scale of automation required

Intel floating arithmetic bug cost $475 million.

Intel i7 Haswell-E 2,600,000,000 gates

40 Mil LOC

Software bugs cost billions.

Major companies: Intel, Microsoft, Airbus, NASA intensively use formal methods.
In mathematics

Erdős discrepancy problem proved by a SAT solver (2014):

12GB proof

Largest math proof ever: Pythagorean triples problem was proved by a SAT solver (2016)

200TB proof
In mathematics

Erdős discrepancy problem proved by a SAT solver (2014):

12GB proof

Largest math proof ever: Pythagorean triples problem was proved by a SAT solver (2016)

200TB proof
Applications of automated reasoning

Applications:

- **software and hardware verification:**
 Intel, Microsoft
- **information management:**
 biomedical ontologies, semantic Web, databases
- **combinatorial reasoning:** constraint satisfaction, planning, scheduling
- **Internet security**
- **Theorem proving in mathematics**

“It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between analysis and physics in the past.” McCarthy, 1963.
Manchester: world leading in logic and reasoning

- **Theory:**
 - first-order reasoning
 - resolution, superposition, instantiation, tableaux, linear arithmetic
 - ontology reasoning

- **Applications:**
 - software/hardware verification
 - semantic Web, bio-health
 - multi-agent systems

- **Reasoning systems developed in our School:**
 - iProver – an instantiation-based reasoner for first-order logic, won major of awards at CASC championships.
 - Vampire – a superposition-based reasoner for first-order logic, won major awards at CASC championships.
 - MSPASS – a resolution/superposition based reasoner SPASS extended with reasoning with modal logics.
 - Fact++ an ontology reasoner: OWL DL.
 - Pellet an ontology reasoner: OWL DL.
Manchester: world leading in logic and reasoning

Theory:
- first-order reasoning
- resolution, superposition, instantiation, tableaux, linear arithmetic
- ontology reasoning

Applications:
- software/hardware verification
- semantic Web, bio-health
- multi-agent systems

Reasoning systems developed in our School:
- iProver – an instantiation-based reasoner for first-order logic
 won major of awards at CASC championships.
- Vampire – a superposition-based reasoner for first-order logic,
 won major awards at CASC championships.
- MSPASS – a resolution/superposition based reasoner SPASS extended with
 reasoning with modal logics.
- Fact++ an ontology reasoner: OWL DL.
- Pellet an ontology reasoner: OWL DL.
Manchester: world leading in logic and reasoning

- **Theory:**
 - first-order reasoning
 - resolution, superposition, instantiation, tableaux, linear arithmetic
 - ontology reasoning

- **Applications:**
 - software/hardware verification
 - semantic Web, bio-health
 - multi-agent systems

- **Reasoning systems developed in our School:**
 - iProver – an instantiation-based reasoner for first-order logic
 won major of awards at CASC championships.
 - Vampire – a superposition-based reasoner for first-order logic,
 won major awards at CASC championships.
 - MSPASS – a resolution/superposition based reasoner SPASS extended with reasoning with modal logics.
 - Fact++ an ontology reasoner: OWL DL.
 - Pellet an ontology reasoner: OWL DL.
The approach:

- **Formalise problems**: using logic
- **Solve problems**: using efficient automated reasoning

Syllabus:

- **Propositional logic**: syntax, semantics, CNF transformation
- **Propositional reasoning**: DPLL algorithm: unit propagation, backjumping, lemma learning

- **First-order logic**: syntax, semantics, Skolemization
- **First-order reasoning**: resolution, completeness, redundancy elimination

- **Applications**: verification of transition systems, LTL, bounded and unbounded model checking
The approach:

- **Formalise problems**: using logic
- **Solve problems**: using efficient automated reasoning

Syllabus:

- **Propositional logic**: syntax, semantics, CNF transformation
- **Propositional reasoning**: DPLL algorithm: unit propagation, backjumping, lemma learning

- **First-order logic**: syntax, semantics, Skolemization
- **First-order reasoning**: resolution, completeness, redundancy elimination

- **Applications**: verification of transition systems, LTL, bounded and unbounded model checking
COMP60332 – Automated Reasoning and Verification

The approach:
- **Formalise problems:** using logic
- **Solve problems:** using efficient automated reasoning

Syllabus:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propositional logic</td>
<td>syntax, semantics, CNF transformation</td>
</tr>
<tr>
<td>Propositional reasoning</td>
<td>DPLL algorithm: unit propagation, backjumping, lemma learning</td>
</tr>
<tr>
<td>First-order logic</td>
<td>syntax, semantics, Skolemization</td>
</tr>
<tr>
<td>First-order reasoning</td>
<td>resolution, completeness, redundancy elimination</td>
</tr>
<tr>
<td>Applications</td>
<td>verification of transition systems, LTL, bounded and unbounded model checking</td>
</tr>
</tbody>
</table>
The approach:

- **Formalise problems**: using logic
- **Solve problems**: using efficient automated reasoning

Syllabus:

- **Propositional logic**: syntax, semantics, CNF transformation
- **Propositional reasoning**: DPLL algorithm: unit propagation, backjumping, lemma learning

- **First-order logic**: syntax, semantics, Skolemization
- **First-order reasoning**: resolution, completeness, redundancy elimination

- **Applications**: verification of transition systems, LTL, bounded and unbounded model checking
This course is self-contained, no prerequisites but assumes that students are comfortable with mathematical notions.

Exam: 50%
Closed book, 2 hours, choose 3 out of 4 questions

Coursework and lab: 50%
Assessed and unassessed exercises: pen and paper
Labwork involving
- SAT solvers
- first-order reasoning systems

Questions? please email:
Konstantin Korovin (room 2.40) Renate Schmidt (room 2.42)
korovin@cs.man.ac.uk schmidt@cs.man.ac.uk
Semester 2

<table>
<thead>
<tr>
<th>Period</th>
<th>Course units</th>
</tr>
</thead>
</table>
| P3 | COMP60332 – Automated Reasoning and Verification
Konstantin Korovin and Renate Schmidt |
| P4 | COMP62342 – Ontology Engineering for the Semantic Web
Sean Bechhofer and Uli Sattler |

Teaching day: Friday
Lectures: 2.15
Some advice on choosing themes

The Ontology Engineering and Automated Reasoning theme can be combined with any other theme.

Has no prerequisites, no pre/co-requisite to any theme.

It goes well with these themes:

- Advanced Web Technologies
- Data Engineering
- Learning from Data
- Managing Data
- Parallel Computing in the Multi-Core Era
- Security
- Software Engineering 1-2

Core theme in: Semantic Technologies, Data and Knowledge Management and Artificial Intelligence pathways