Theme: Ontology Engineering and Automated Reasoning

<table>
<thead>
<tr>
<th>Period</th>
<th>Course units</th>
</tr>
</thead>
<tbody>
<tr>
<td>P3</td>
<td>COMP60332 – Automated Reasoning and Verification</td>
</tr>
<tr>
<td>P4</td>
<td>COMP62342 – Ontology Engineering for the Semantic Web</td>
</tr>
</tbody>
</table>

- semester 2, periods P3/P4
- can be **combined with** any other theme
- has **no pre-requisite** themes
- **core theme** in Semantic Technologies, Data and Knowledge Management and Artificial Intelligence pathways
COMP60332: Automated Reasoning and Verification

Konstantin Korovin and Renate Schmidt

Theme: Ontology Engineering and Automated Reasoning
Data driven AI
- we don’t know problem structure
- we have data
- goal: learn the model that fits the data
- method: machine learning
- approximate and only as good as your data
- no explanations

Symbolic AI
- problem is formalised in logic
- we want to infer properties of the problem
- method: automated reasoning
- exact and general results
- detailed explanations – proofs

Learning vs Thinking
Automated Reasoning

What is Reasoning? Solving problems by syntactic manipulations.

Automated Reasoning

- symbolically represent the problem in logic
- solve the problem by applying symbolic rules to such representations
- automated reasoning – do this efficiently on large problems
Automated Reasoning

What is Reasoning? Solving problems by syntactic manipulations.

Automated Reasoning
- symbolically represent the problem in logic
- solve the problem by applying symbolic rules to such representations
- automated reasoning – do this efficiently on large problems
Automated Reasoning

What is Reasoning? Solving problems by syntactic manipulations.

Automated Reasoning

- symbolically represent the problem in logic
- solve the problem by applying symbolic rules to such representations
- automated reasoning – do this efficiently on large problems
Automated Reasoning

What is Reasoning? Solving problems by syntactic manipulations.

Automated Reasoning

- symbolically represent the problem in logic
- solve the problem by applying symbolic rules to such representations
- automated reasoning – do this efficiently on large problems

Formalise:

\[\text{QRules} = \bigwedge (R \land C \land D) \]
\[QPlaced_i = q_{i1} \lor \ldots \lor q_{in} \]
\[QProblem = \text{QRules} \bigwedge_i QPlaced_i \]

Solve: automated reasoning (SAT solver)
Hardware verification

Are these two hardware designs equivalent?

Behaviour of such circuits can be represented as first-order formulas:

$$\forall A (wren_{h1} \land A = \text{wraddrFunc} \rightarrow \forall B (\text{range}_{[35,0]}(B) \rightarrow (\text{imem}'(A, B) \leftrightarrow \text{iwrite}(B)))))$$

Automated reasoning — verification of correct behaviour.
Hardware verification

Are these two hardware designs equivalent?

![RTL and SCH diagrams](image)

Behaviour of such circuits can be represented as **first-order formulas**:

\[\forall A(wren_{h1} \land A = wraddrFunc \rightarrow \forall B(range_{[35,0]}(B) \rightarrow (imem'(A, B) \leftrightarrow iwrite(B)))) \].

Automated reasoning — verification of correct behaviour.
Applications of Automated Reasoning

Ensuring correct functioning of complex systems
Software + hardware verification
seL4 Microkernel verified correct, NiCTA, 2009
Major companies intensively using AR tools:
Intel, Microsoft, NASA, Mercedes, Toyota, Airbus

Security: protocol verification

Combinatorial reasoning: constraint problems
Professional sports scheduling (Barcelologic)
Planning
Optimisation

AR proving open mathematical problems
Solution of Robbins Algebra Problem, NYT, 1996
Erdős discrepancy conjecture, 2014.
Manchester: world leading in logic and reasoning

- **Theory:**
 - first-order reasoning
 - resolution, superposition, instantiation, tableaux, linear arithmetic
 - ontology reasoning

- **Applications:**
 - software/hardware verification
 - semantic Web, bio-health
 - multi-agent systems

- **Reasoning systems developed in our Department:**
 - iProver – an instantiation-based reasoner for first-order logic won major of awards at CASC championships.
 - Vampire – a superposition-based reasoner for first-order logic, won major awards at CASC championships.
 - MSPASS – a resolution/superposition based reasoner SPASS extended with reasoning with modal logics.
 - Fact++ an ontology reasoner: OWL DL.
 - Pellet an ontology reasoner: OWL DL.
Manchester: world leading in logic and reasoning

- **Theory:**
 - first-order reasoning
 - resolution, superposition, instantiation, tableaux, linear arithmetic
 - ontology reasoning

- **Applications:**
 - software/hardware verification
 - semantic Web, bio-health
 - multi-agent systems

- Reasoning systems developed in our Department:
 - iProver – an instantiation-based reasoner for first-order logic
 - won major of awards at CASC championships.
 - Vampire – a superposition-based reasoner for first-order logic,
 - won major awards at CASC championships.
 - MSPASS – a resolution/superposition based reasoner SPASS extended with reasoning with modal logics.
 - Fact++ an ontology reasoner: OWL DL.
 - Pellet an ontology reasoner: OWL DL.
Manchester: world leading in logic and reasoning

- **Theory:**
 - first-order reasoning
 - resolution, superposition, instantiation, tableaux, linear arithmetic
 - ontology reasoning

- **Applications:**
 - software/hardware verification
 - semantic Web, bio-health
 - multi-agent systems

- **Reasoning systems developed in our Department:**
 - **iProver** – an instantiation-based reasoner for first-order logic, won major of awards at CASC championships.
 - **Vampire** – a superposition-based reasoner for first-order logic, won major awards at CASC championships.
 - **MSPASS** – a resolution/superposition based reasoner SPASS extended with reasoning with modal logics.
 - **Fact++** an ontology reasoner: OWL DL.
 - **Pellet** an ontology reasoner: OWL DL.
What is covered in the course:

Basics: propositional/first-order logic: syntax, semantics, …

Efficient automated reasoning: backjumping, lemma learning; first-order resolution, redundancy elimination,…

Applications: verification of transition systems, LTL, bounded and unbounded model checking

Questions? please email:

Konstantin Korovin (room 2.40) Renate Schmidt (room 2.42)
korovin@cs.man.ac.uk schmidt@cs.man.ac.uk

Sign up to COMP60332 to learn automated reasoning!
Automated reasoning is Fun!
What is covered in the course:

Basics: propositional/first-order logic: syntax, semantics, ...

Efficient automated reasoning: backjumping, lemma learning; first-order resolution, redundancy elimination, ...

Applications: verification of transition systems, LTL, bounded and unbounded model checking

Questions? please email:

Konstantin Korovin (room 2.40) Renate Schmidt (room 2.42)
korovin@cs.man.ac.uk schmidt@cs.man.ac.uk

Sign up to COMP60332 to learn automated reasoning!
Automated reasoning is Fun!
What is covered in the course:

Basics: propositional/first-order logic: syntax, semantics, ...

Efficient automated reasoning: backjumping, lemma learning; first-order resolution, redundancy elimination, ...

Applications: verification of transition systems, LTL, bounded and unbounded model checking

Questions? please email:

Konstantin Korovin (room 2.40) Renate Schmidt (room 2.42)
korovin@cs.man.ac.uk schmidt@cs.man.ac.uk

Sign up to COMP60332 to learn automated reasoning!
Automated reasoning is Fun!
What is covered in the course:

Basics: propositional/first-order logic: syntax, semantics, . . .

Efficient automated reasoning: backjumping, lemma learning; first-order resolution, redundancy elimination,. . .

Applications: verification of transition systems, LTL, bounded and unbounded model checking

Questions? please email:

Konstantin Korovin (room 2.40) Renate Schmidt (room 2.42)
korovin@cs.man.ac.uk schmidt@cs.man.ac.uk

Sign up to COMP60332 to learn automated reasoning! Automated reasoning is Fun!
What is covered in the course:

Basics: propositional/first-order logic: syntax, semantics, ...

Efficient automated reasoning: backjumping, lemma learning; first-order resolution, redundancy elimination,...

Applications: verification of transition systems, LTL, bounded and unbounded model checking

Questions? please email:
- Konstantin Korovin (room 2.40) korovin@cs.man.ac.uk
- Renate Schmidt (room 2.42) schmidt@cs.man.ac.uk

Sign up to COMP60332 to learn automated reasoning!
Automated reasoning is Fun!