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Abstract 

 

3D input devices are yet to make a significant impact in a computer interaction world 

dominated by keyboards and 2D mouse devices. Inertial sensors have recently become a 

popular 3D input device in products such as the Nintendo Wii and various mobile phones 

for use in gaming. This project assesses the capabilities of the Nintendo Wii controller 

with a view to using the device for computer interaction. It is concluded that the device 

makes a poor 6DOF tracking device because of error prone positional output, although 

the orientation data output is adequate. Software has been developed which integrates 

the Wii controller into the trackd 3D input device framework. 

Scientific visualization software is a class of software that is often best used in 3D 

environments. Visualization applications often require interactive manipulation of 

software parameters by the user. Existing 3D interfaces are not optimal for this type of 

application control interaction. A custom interface has been designed and implemented 

which utilizes 3D input devices to provide efficient application control for visualisation 

software. Taking into account the deficiencies of the Wii controller, the designed 

interface operates solely on orientation data.  

          The developed interface can be used with cheap inertial sensor input devices and 

can be of benefit to any 3D applications requiring application control. An evaluation 

suggests that performance of the interface when used with the Wii controller is on par 

with existing 3D and 2D interfaces for visualization control.   
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1 Introduction 

 

Scientific visualization is the process of viewing complex data in various different forms. 

The data visualised is often 3D and therefore is easier to view with a 3D output device 

and easier to manipulate with a 3D input device. However, unlike other 3D applications, 

visualization is an interesting case because there is a stronger focus on user interactions 

with objects which are not part of the 3D scene. For example, in virtual reality 

environments, users navigate the environment and interact with virtual objects within the 

scene. Users of visualization software manipulate abstract parameters to alter the 

properties of the scene. Therefore, to maximise the efficiency of a visualization 

application, a 3D input device must allow intuitive controls for both viewpoint 

manipulation and application control for adjusting parameters. Unfortunately, these 

parameters typically have less than 3 dimensions and thus 3D input devices are less 

suited to controlling them. For example, selecting an integer value from a range of 

numbers only requires a single degree of freedom rather than the six degrees of freedom 

a typical 3D controller provides. 3D input devices are therefore a benefit to visualization 

systems as long as a suitable interface exists.  

Research into 3D user interfaces for application control is not as developed as that of 

object selection/manipulation, the standard interaction of a virtual reality system. 

Interface designers have typically either utilised these developed interaction techniques 

for parameter control and/or converted existing 2D interfaces into 3D. Conversions 

project 2D interfaces into the 3D world. A 3D input device can then be used to generate a 

heading vector which imitates a 2D mouse pointer. This method is employed by the 
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VRMenu interface, an existing 3D interface used in visualization applications. This 

approach is suboptimal for a number of reasons: 

 A highly accurate and noise free motion tracker is required. This can prevent 

cheaper, less accurate controllers from being used and thus hinders adoption of 

these technologies.  

 The extra dimensions provided by a 3D input device make pointing more difficult 

and parameter control less efficient. 

 The different capabilities of the controller are ignored. The 3D data can be 

mapped more intuitively to the interface. 

 Motion trackers can be used to control virtual reality environments and other 

interactive computing systems but have yet to become a standard or common input 

method. The high cost and speciality of the systems has prevented their widespread use. 

Inertial sensors offer a cheaper and more available range of devices which allow 3D user 

input. One such device is Nintendo’s Wii controller which has revolutionised the home 

entertainment market. This system uses two forms of inertial sensor, accelerometers and 

gyroscopes, to detect motion. This project investigated the properties of the Wii 

controller and its ability to interact with existing user interfaces. Software was developed 

to allow the Wii controller to be used within an existing framework for 3D input devices.  

 This project tackles two interesting problems: 

1. Using inertial sensors (in the form of the Wii controller) to control a visualization 

application. 

2. Using 3D input devices for efficient application control. 
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Having identified the deficiencies in current interfaces and analysed the capabilities of the 

Wii controller, a custom user interface for visualization control was designed, 

implemented and evaluated. This design which is well suited for use with 3D input devices 

allows both viewpoint manipulation and parameter control using solely inertial sensors. 

The custom interface can also be used with traditional tracking devices. While application 

control is vital to visualization systems it is useful in almost all applications. The interface 

developed could be adapted to benefit any application which needs to be operated in a 

3D environment.  

The rest of this document is organised as follows. Chapter 2 introduces relevant 

background information for visualization, inertial sensors and 3D user interfaces. Chapter 

3 describes the work carried out investigating the Wii controller and the development of 

the software library used to interface with the controller.  Chapters 4 and 5 detail the 

design and implementation of the application control interface and the viewpoint 

manipulation interface respectively. The integration of the Wii controller and custom 

interface into the existing 3D input device framework is described in chapter 6, as well as 

the advantages this provides. An evaluation of the custom interface is presented in 

chapter 7. Finally, chapter 8 includes the conclusions for project and ideas for future 

work. 
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2 Background 

 

The background research for this project can be split broadly into three main areas:  

 Visualization systems. 

 Inertial sensors (focusing in part on the Wii controller). 

 User interface design (particularly 3D user interfaces). 

This chapter provides an outline of the research carried out in these three areas during 

the project. An overview of the scientific visualization process, details of existing 

interfaces used in visualization applications, and details on why 3D input devices are 

desirable for visualization interaction are provided. The advantages of inertial sensors are 

highlighted and information providing expectations for the performance of the Wii 

controller as well as methods for maximising that performance are presented. Research 

into user interfaces describes why the current visualization interfaces are inadequate, as 

well as highlighting some existing designs. Finally, the core tenants of user interface 

design which were followed are presented. 
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2.1 Scientific Visualization 

Visualization applications comprise a set of tools designed to allow users to view complex 

data in various ways. The software constructs visual representations of the complex data 

to make more information available from the data. The data can come from a variety of 

sources including computer simulations and various imaging devices (e.g. an MRI scan). 

The visual representation created allows the data to be more easily explored and new 

information to be discovered. For computer simulations, this can then lead to either 

further simulation based on the new information or a set of final results.  Computing 

power (and storage capacity) has drastically increased in recent years. The quantity and 

complexity of data produced in computer simulations and scientific experiments has 

grown accordingly. Easy to use visualization software is now vital to the experiment cycle. 

The Upson Analysis Cycle [1], which is based on the Haber and McNabb model [2], 

outlines the data flow in a visualization process (shown as the lower cycle in Figure 1). 

Data from a simulation is filtered down to the more informative data, mapped onto 

geometrical primitives and those primitives are rendered to produce a 3D scene. If the 

simulation involves a series of changing data, rendered images can be played back in 

sequence. Naturally each of the phases can take a number of different forms; the benefit 

of a visualization tool is that common tasks are made available to the user like software 

libraries in computer programming. This way, creating a custom visualization for each 

new experiment, written in low level data manipulation and graphics code, can be 

avoided.  

2.1.1 User Interfaces 

Modern tools, such as Advanced Visualization System’s AVS/Express, provide a 

graphical interface for designing visualizations. A series of self-contained units has been 
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designed which provide common functions with standardised input and output data 

types. These units are presented visually to the user as Modules within a network editor. 

The user places the required modules and connects compatible modules to define data 

flow through the network. Most of the modules have Parameters to customise their 

operation. 

The user interaction in a visualization process can be separated into two distinct 

phases as shown in Figure 1: 

1. Designing the network of modules which will make up the analysis cycle. 

2. Configuring the parameters of the components while viewing the results 

interactively. 

The designers of AVS/Express expected that once the network had been designed 

and tested that the user would then spend most of their time actually utilizing the 

visualization, simply adjusting parameters within the network where needed [1]. They 

imagined users would only return to the network editor occasionally for small edits or 

when an entirely new network is to be constructed. 

 This separation of tasks is exploited in AVS/Express with separate user interfaces: a 

network editor to place modules and connect them, and a data viewer for interacting 

with the visualization. The data viewer interface shows the current visualization image (if 

one exists) and provides quick access to the parameters of the modules currently loaded.  
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2.1.2 The Need for 3D 

Because complex data is often three dimensional, it is preferable to use 3D 

hardware to view and interact with visualizations. 3D output devices allow the user to 

better visualise the 3D nature of the data. Input devices with more degrees of freedom or 

more natural input methods such as movement tracking, can offer easier and more 

intuitive ways for users to interact with the 3D scene than the standard 2D mouse. Also, 

most immersive environments prevent easy use of a standard keyboard and mouse for 

input. For example, a user cannot easily use these devices whilst standing, or with their 

view obscured by a head mounted display.   

Output devices can include head mounted 3D vision systems, large scale 3D and 2D 

screens, CAVE style immersive environments [3], 3D workbenches, as well as standard 

desktop monitors. Input devices come in a variety of different forms but the Nintendo Wii 

controller will be the focus of this project due to the advantages provided by inertial 

sensors (section 2.2). 

Figure 1: An annotated version of the Upson Analysis Cycle [1] showing the user 
interactions with a visualization system split into two distinct phases. 
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This project is only concerned with the performance of the data viewer interface 

when using various input/output devices. The network editor works well with the current 

interface. Using 3D input/output devices would probably decrease performance in this 

instance as the task maps more naturally to 2D input/output. Interaction involves 

selection of modules, positioning them in 2D and connecting them. A 3D version of the 

network display would add little benefit as depth information would be unused. A 3D 

input device again offers no benefits as the tasks only require 2D input. Furthermore, 

unlike the data viewer, the user does not need a large/3D output device and thus is not 

prevented from using a keyboard and mouse for interaction. 

The standard data viewer interface within AVS/Express is designed for use with 2D 

input and output devices and is therefore suboptimal for use with 3D devices. VRMenu is 

an existing 3D interface that is used throughout this project for comparison purposes. The 

VRMenu interface [4] uses a set of 3D interface widgets which behave as standard 

AVS/Express objects within a 3D scene.  This interface requires position and orientation 

inputs for control (it can also be used with a mouse). Because the interface is built using 

3D objects it can be used with 3D output devices (unlike the standard 2D interface).  
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2.2 Inertial Sensors 

Inertial sensors measure the effect of different forces upon a device. This project focuses 

on two of the most common types: accelerometers and gyroscopes. An accelerometer is 

an inertial tracking device used to measure linear acceleration. Linear acceleration is the 

change in velocity, in a straight line, over time. Three such accelerometers are typically 

combined, aligned orthogonally, to provide accelerations in all three dimensions. 

Gyroscopes measure rotational velocity with regards to a single axis. As with 

accelerometers, they are typically combined to allow velocity to be measured in 3 

dimensions. Combining accelerometers and gyroscopes allows for “6 degrees of freedom” 

(6DOF), 3 positional measurements and 3 orientation measurements, theoretically 

allowing true 3D tracking.  

 Accelerometers and gyroscopes have only recently, with the advent of 

Microelectromechanical systems (MEMS), become small enough and cheap enough to be 

standard features in a number of electronic devices. For example, the ADXL335 3-axis 

accelerometer from Analog Devices (successor to the Nintendo Wii accelerometer) can be 

bought for around $3 (when purchased in bulk) and measures 4mm2 [5].   

2.2.1 Advantages of Inertial Sensors 

 “Inertial trackers might appear to be the closest thing to a silver bullet” in motion 

tracking technology [6]. Inertial systems have many advantages when compared with 

other tracking systems [7] [8].  

Inertial sensors do not require a reference point or complimentary emitter/sensor 

to operate and no line of sight must be maintained. This means that they have 

undiminished accuracy over their operating range. Only the length of the communication 

medium limits range; either wireless range or wire length. This is in comparison to other 
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sensors such as magnetic or acoustic trackers, these sensors both need to be in range of a 

base emitter and suffer from interference in the environment. This means that their 

accuracy degrades as distance from the emitter increases.  

High sample rates, low latency and a low level of jitter are standard in inertial 

technology. Further, sensors can now be manufactured with very low error rates, 

gyroscopes can have errors as low as 0.001°/s and accelerometers can be produced with 

accuracies in 10’s of µg.  

Finally, one of the main advantages of inertial sensor systems is cost. Magnetic 

positioning systems, such as the Polhemus Fastrak, cost upwards of £4000 and the 

Polhemus Minuteman (which only reports orientation) costs around £1000 [9]. Compare 

this with the Nintendo Wii Controller which in combination with the Motion Plus 

extension can be bought for around £40 and a standard Bluetooth receiver can be bought 

for as little as £2. 

2.2.2 Nintendo Wii Controller 

Along with various mobile phones, the Nintendo Wii controller has popularised inertial 

sensor input for gaming. Initially only including a 3-axis accelerometer, the recently 

released Wii Motion Plus extension adds a 3-axis gyroscope, again for use in games. The 

specifications of the Wii controller are not officially published by Nintendo. However, 

reverse engineering and disassembly of the controller by various community groups has 

produced a near complete set of specifications and various libraries to allow interaction 

with the remote [10] [11]. The Wii controller provides an ideal test bed for inertial sensor 

research, being both cheap and available.  As well as including accelerometers and 

gyroscopes it provides a standard wireless interface (Bluetooth), a set of 7 buttons, and 

an 8 way direction pad. 
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2.2.3 Accelerometer Data 

Acceleration data can theoretically be used to calculate both the orientation and absolute 

position of a device. Accelerometers measure all acceleration apart from the acceleration 

due to gravity. Therefore, when at rest, the accelerometer aligned with gravity will show 

the positive restoring force, equal to 1g, which is keeping the object stationary. The 

output is zero when the object is in free-fall.  With a 3-axis accelerometer, the direction of 

the restoring acceleration will be known when the device is at rest and trigonometry can 

be used to calculate the devices orientation. This method can only provide absolute 

orientation information for two axes. One axis (depending on the orientation of the 

device) will be independent of gravity. For example, in the normal orientation (Figure 2), 

the yaw of the device does not change the output from the accelerometers. Also, this 

-Y 

+Y 

+Z 

-Z 

+X 

-X 

Pitch 

Roll 

Yaw 

Figure 2: The coordinate systems of the accelerometers and gyroscopes in the 
Nintendo Wii Controller 
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method is obviously less effective when the controller is in motion as the gravity response 

component cannot be isolated as easily. 

Absolute positioning of the device can be calculated by double integration of the 

accelerometer data. There are two main problems with this approach; isolating the 

acceleration due to movement and dealing with drift. 

To calculate the position of a device the gravity response component of the output 

must be removed leaving just the acceleration due to movement. Because the 

accelerations are in a fixed coordinated frame, there are problems when the device is 

rotated; the contribution the gravity response makes to each of the acceleration 

components will be altered.  As described above, when the controller is at rest, the 

orientation of the gravity response can be recorded and this record used while the device 

is in motion. Obviously, this does not account for any rotation which occurs during the 

motion.  Further, knowing when the controller is at rest is another challenge. 

Accelerometers cannot determine the difference between zero acceleration due to lack 

of movement and zero acceleration due to movement at constant speed. 

Drift due to error accumulation is the other major problem when trying to track 

absolute position. Any errors in the output of the accelerometers will begin accumulating 

as soon as tracking starts, and with no reference to reset the position data the error 

continues to grow as time passes. Errors in accelerometer data can stem from incorrect 

sensor alignment, bias (acceleration at rest), noise, calibration, digitisation, and any errors 

due to the estimate of the gravity response component. Magnetic and acoustic systems 

do not suffer from this problem because they are measuring distance from a fixed 

reference point.   
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Errors are compounded by double integration; errors in acceleration cause error 

accumulation in the calculated velocity which in turn causes drift in the calculated 

position. Errors accumulated in the speed can be removed by zeroing the speed when the 

device is known to be still. However, there is no way to reset the absolute position of the 

device without the user returning the device to a known position and prompting a reset.  

2.2.4 Gyroscope Data 

Gyroscope data can be used to calculate the orientation of the device.  This is achieved by 

integrating the rotational velocities produced by the gyroscopes. This technique suffers 

from one of the same problems as accelerometer data, namely drift due to accumulation 

of error. Similarly, when used independently, there is no reference for the device to reset 

the orientation to. Gyroscopes can also detect when a device is still with regards to 

rotational motion. Unlike accelerometers, gyroscopes measure velocity rather than 

acceleration. This means gyroscopes can detect when a device is still with regards to 

rotational motion as any response indicates the device is rotating.  

2.2.5 Sensor Fusion 

Combining accelerometers and gyroscopes can alleviate some of the problems mentioned 

above:  

 Combined data from the devices makes it easier to detect when the device 

is still, allowing improved estimations of the gravity response component 

to be taken.  

 These improved estimates can be used to reset (two axes) of the 

orientation of the device to counter the drift present in the gyroscopes.  

 When the device is rotating during motion, the gyroscopes can update the 

estimation of the gravity response component. Thus, the estimation of 
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acceleration solely due to movement when the device is rotating will be 

improved.  

However, errors will still exist and accumulate in the accelerometer data and in the 

unreferenced axis of the gyroscope data. 

Even when using these techniques, very small levels of error in the device can lead 

to large amounts of drift. An accelerometer with just 1 mg error will have drifted 4.5m in 

30 seconds [6]. The Wii controller has measurement resolutions of only 0.04g and 0.05°/s 

for the accelerometers and gyroscopes respectively. This will lead to much higher levels 

of error and drift. 

 Inertial sensors have been used for navigation and guidance systems for over 50 

years. However, in these situations errors of the scale of 1 mile are typically acceptable 

and the devices themselves can be large and expensive (e.g. on board military 

submarines) [7]. For the much smaller human movement scale; “We may reasonably ask 

the question whether purely inertial 6-DOF motion tracking will ever be viable” [8].  

Because of the problems outlined above, inertial sensors are rarely used 

independently. Typically, they are combined with other complimentary sensors. One 

example of this is combining accelerometers with an IR sensor in the Wii controller. The 

accelerometers can provide motion and orientation analysis and the IR sensor allows the 

device a fixed reference point to allow it to reset the position and orientation data as the 

user is forced to periodically direct the IR sensor at a fixed IR emitter. This negates the 

advantages of inertial sensors, line of sight must now be periodically established and the 

range of the device becomes limited. 
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2.2.6 Kalman Filter 

A Kalman filter predicts the state of a system when the model used is not precisely 

defined.  It has been used extensively in navigational systems where multiple sources of 

input are used to estimate position. The filter operates by using known noise and error 

models for the sensors together with their outputs to predict the current position and 

orientation. In the next cycle of the filter the difference between the prediction and the 

reality is recorded and the variables of the systems are updated to allow better 

predictions in the future. The filter also chooses the most likely result from the given 

information when there are two sources, for example, estimating orientation using 

information from both the accelerometers and the gyroscopes.  

Such a system is ideal for the needs of this project, and has been successfully 

shown to improve results when detecting orientation [12]. However, designing Kalman 

filters and generating error models to give satisfactory results requires a great deal of 

time, skill and experience. Designing a Kalman filter to generate positional information 

from the Wii controller would take up an entire project in itself. Systems such as the 

Xsens Mti [13] use similar quality parts to the Wii controller (with a few additional 

sensors) to provide orientation data. However, because of the proprietary sensor fusion 

software (an extended Kalman filter) the system costs £1000’s compared to the Wii 

controllers £40.  
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2.3 Application Control in 3D  

Interaction in 3D applications can be broken down into object selection/manipulation, 

viewpoint manipulation and application control [14]. Object selection/manipulation is not 

as relevant to visualization systems as it is to virtual reality environments. The system 

exists primarily to view the data not alter it. Object selection/manipulation has however 

been used with 3D widgets to provide application control as discussed below.  

Altering the parameters of the various modules within a visualization application 

can be considered application control. Unfortunately this is the least developed and 

researched area of 3D interaction with most developers preferring to transfer existing 2D 

interfaces into 3D. Manipulating parameters within the scene involves selecting first the 

module to which it belongs, selecting the required parameter from the module and then 

altering it. Selecting the module and parameter is regarded as a menu system [15], a 

‘menu hierarchy with a depth of 2’. Existing 3D interface designs for this problem are 

discussed below. Because the number of modules could be infinite, for some menu 

designs it might be beneficial to introduce another layer of hierarchy. In this case the 

modules are already grouped into categories in AVS/Express which makes this a menu 

hierarchy according to the above taxonomy.  

2.3.1 Menu Interfaces 

It is difficult to use traditional 2D menus with 3D input devices. One system which 

attempts this is XiVE [16]. XiVE places existing 2D windows in a 3D scene as textured 

interactive polygons. While this is convenient and allows rapid development of 3D 

applications it is difficult to interact with as the menus are designed for pointer input. 

5DOFs (the roll of the controller is not used) are being used to select essentially a 2D 

element.  
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Because of this difficulty and because of the problems with accuracy of positional 

data from the Wii controller, this section focuses on interfaces which could be operated 

using orientation as their primary input data. Most of these designs are variations on the 

ring menu; each menu item is laid out on a horizontal ring which is rotated to select the 

correct item. This is a good design because it is easy for users to remember the location of 

an object in a 1D menu, operating the menu is a small and fast wrist movement and only 

orientation must be maintained to select an object, not position [17]. Rather than using 

all three orientation components, a ring menu can be operated using only a single DOF, a 

further reduction when compared to the 5DOF required for pointing. The problem with 

this base system is its lack of support for a menu hierarchy.  

The Spin Menu [18] adds hierarchy to a standard ring menu is 3 different ways 

(Figure 3).  

 

The crossed menu displays submenus orthogonal to parent menus and performs poorly in 

comparison to the other menus. Concentric menus display submenus outside the current 

menu, while stacked menus display them above. These two systems seem to perform 

reasonably and would work with the visualization menu hierarchy. 

Figure 3: The Spin Menu based hierarchies [18] 
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Collapsible Cylindrical Trees [19] uses vertical rings instead of horizontal ones 

(Figure 4). Like spin trees this design has the advantage of showing the path the user took 

to reach their current selection. This aids with memory training and also navigation as the 

user knows where they are in the hierarchy.  

 

Submenus extended from the current cylinder in a telescopic fashion. This system uses 

multiple interaction techniques; the user must perform one action to select a cylinder and 

another to choose an item on that cylinder. Controls for selecting a cylinder do not map 

well to orientation data. 

HoloSketch [20] is an old design based on similar principles. It was designed for 

use with a pointing device but could be adapted to use orientation. Submenus open 

overlaid on the parent menu and as another full circle. The items are not placed on a 

single ring at each level but on several concentric rings. This allows a large amount of 

information to be displayed at once. It may work well for a pointing device but could 

introduce delays and complications when using an orientation device as the user has to 

select the correct ring.  

All three menu designs offer possibilities for parameter manipulation but no 

implementations have been developed. For binary parameters the choices can simply be 

Figure 4: A Collapsible Cylindrical Tree [19] 
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items on the menu, for 1DOF parameters the menu could be reconfigured such that each 

position on the ring corresponds to a value.  

These existing interfaces do not take into account a user’s need to view the scene 

while the menu is active as is the case in visualization software. The latter two interfaces 

benefit from being able to display more information on the screen at a time but require 

additional input beyond a single component of orientation. Because of the need to save 

screen space in visualization programs, simpler input was preferred over displaying many 

menu items. For this reason, the spin menu (concentric or stacked) was used as the basis 

of the interface design developed.  

2.3.2 3D Widgets 

The problem of manipulating the parameters is dependent on the parameter itself, 

for example, whether it is a binary choice or a range of values. It is also dependent on the 

input device. 

The 3D Widgets system [21] [22] is an attempt to standardise 3D elements for use 

within user interfaces. In the same way that 2D interfaces have a standard set of buttons, 

sliders, check boxes, etc.; this system specifies 3D shapes and controls that can be linked 

to them. Because the geometries of the objects are 3D they can be integrated into 3D 

scenes and controlled 3D input devices. Typically this system has been used to place 

widgets as additional objects within a scene to allow object manipulation. The user can 

remain immersed within the scene and still interact with it; they do not need to access 

menus outside of the scene to manipulate objects. 

Object manipulation techniques are mature for positioning objects and orienting 

them in 3D. Therefore, these techniques are used to alter the widgets directly within the 

scene which will in turn alter the scene objects they are connected to. For example, a 
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scale widget similar to a 2D slider bar can be attached to an object. The user can then 

select the widget and position it to alter the scale of the attached object in all three 

dimensions. Without widgets the user must select the object and bring up a menu to alter 

the scale in another interface.  

For visualization systems, this type of interface is not always ideal. The parameters 

that need to be altered within a visualization application are often abstract and have no 

relation to objects in the scene. However, the widgets can also be used to create 

application control interfaces, such as the ring menus above. The widgets are held in a 

menu structure and not placed directly within a scene and widgets themselves are used 

to construct the menus. This technique is used by the VRMenu interface for the 

parameter manipulation tasks with AVS/Express. The only problem with current 

interfaces using this idea, including VRMenu, is that they rely on object selection and 

manipulation methods that inertial sensors cannot support or methods that are 

inefficient. Pointing, absolute position and orientation are required to interact with the 

widgets. The Wii controller cannot produce accurate positional data and pointing using a 

3D input device is inefficient for essentially 2D selection.  

2.3.3 Inertial Sensors for User Interaction 

There is very little research into using purely inertial sensors for application control 

tasks. Typically, as mentioned, inertial sensors are used in conjunction with other sensor 

types. This is the case, for example, in the Nintendo Wii, the sensors are combined with 

an IR sensor and it is this input which is used for the majority of application control tasks.   
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2.4 Designing 3D Interfaces  

Having identified that a 3D user interface is preferable when interacting with a 

visualization process, it is not a trivial task to implement a good user interface or even 

quantify what ‘good’ means in this context. There are important design considerations 

beyond those of a traditional 2D interface to take into account.  

Standard 2D interface designs [23] should: 

 minimise the memory load on the user 

 be easy to learn 

 be safe to use 

 be efficient, minimise the actions required for each task 

 have high utility, offer more functionality to the user to make their task 

easier 

Users are considerably more mobile when using 3D interfaces and also have the 

possibility of their view being obscured or altered. Therefore, designing for safety in 3D 

interfaces is even more relevant. Efficiency is also possibly even more important as in a 

3D interface not only will efficiency improve the performance of the design but also 

reduce the strain on the user (see User Comfort below). 

‘3D User Interfaces Theory and Practise’ [7] identifies feedback, constraints, two-

handed control and user comfort as the principle concerns when designing 3D interfaces.  

Feedback can refer to any form of information relayed to the user, including 

information from the user’s own body, the system and the environment. For this project, 

visual, audio and vibration feedback were available.  At its most basic good visual 

feedback matches real world actions to on screen actions, for example, tilting a controller 
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left tilts the object left. For example, the Nintendo Wii menu system emits a small noise 

and vibration from the controller when menu boundaries are crossed. Low latency 

feedback is also paramount, even small amounts of latency can greatly decrease user 

performance. Also, both latency and poor feedback in general can actually lead to ‘cyber-

sickness’ in users. 

Constraints are important in this context in reducing the number of DOF’s. 

Because the majority of tasks in parameter manipulation are 1D, it is vital that the 6 

DOF’s offered by the controller are constrained in some way to make operation easier. 

This can also be seen in traditional 2D interfaces, for example, a vertical scroll bar is a 1D 

control and so the 2D input from the mouse is constrained such that any horizontal 

movement has no effect on the scrolling. There is obviously a concern that too many 

constraints and the benefits of a higher DOF controller will be lost, as such, the 

constraints must match the task. Different ‘helper’ constraints can also be used in menu 

systems, for example, slowing a user’s movement when they approach the centre of a 

menu item can aid in selection. 

Two handed control can increase performance in certain user interface designs. 

This stems from observing that in reality humans naturally use two hands for the majority 

of tasks. Having identified two main tasks for interaction, viewpoint manipulation and 

application control, it would have been convenient for the user to be able to use one 

hand for each and to be able to do both tasks simultaneously. This technique was used 

successfully in an interactive 3D environment. Users used one hand to manipulate the 

camera and the other to perform object selection and application control tasks. The 

majority of users preferred and, after practise, performed better with the two handed 
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design [24]. As mentioned, while multiple Wii controllers can theoretically be connected 

at once technical issues ruled out this possibility.  

User comfort can be considerably harder to achieve when a 3D user interface is 

used. Typically the user will be standing to operate the system and use more movement 

in their body with less support. Two features of the Wii controller help it perform well in 

this area. A wireless interface and relatively low weight mean comfort is already optimal 

in those areas. However, there are still issues with fatigue. A design needs to limit free 

space interaction, having to hold your hand out in a certain pose for even short amounts 

of time is tiring. The design should require the user to interact for short periods with 

resting in between.  
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2.5 Summary 

Visualization applications are well suited to 3D viewing but also require interaction. 3D 

interaction requires a motion tracking device as well as an interface which can support 

both view point manipulation and application control in the form of parameter 

manipulation.  

Unfortunately, application control in 3D is not a well-developed research area and 

current designs suffer from a lack of constraints making them inefficient. The main design 

considerations which were followed in the development of a custom interface have been 

identified.   

Most existing 3D input devices are expensive. The Wii controller provides a 

cheaper option for motion detection. It uses inertial sensors which provide the primary 

benefits of being unencumbered by range and cheap cost. The main disadvantage of this 

technology is that accuracy of positional data they can provide appears to be poor.  
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3 Investigation of the Wii Controller 

 

For the Wii controller to be used to control visualization software the controller-computer 

interface needed to be created and the properties of the controller’s output data had to 

be understood. This chapter describes the process used to investigate the capabilities of 

the Wii Controller. Several experiments were carried out to test the different components 

of the device. The results of those experiments and the effect those results had on the 

remainder of the project are presented. Details of the software library developed to 

interface with the Wii controller and relevant parts of its functionality are also included. 

3.1 Position and Orientation 

The majority of the user interface research using motion trackers focuses on devices 

which output position and orientation data. The existing VRMenu interface for 

AVS/Express also uses these inputs. Therefore initially, the ability of the Wii controller to 

provide this data was investigated. Using the techniques outlined in section 2.2, a 

software library was built to take the inputs of the Wii controller and supply position and 

orientation as the outputs. The results of this work were in line with previous research. 

The positional data suffered greatly from drift, to the point where it is almost unusable 

even for a few seconds.  

3.1.1 Accelerometer Error 

The acceleration data from the Wii controller has a multitude of error sources, including: 

Digitisation error. The analogue signal from the accelerometer must be digitised 

before it can be stored in the Wii controller’s memory. This digitisation process causes 

some of the data to be lost, resulting in error. The accelerometer in the controller is rated 

to measure at least ±3g [25] on each axis and it reports these measurements as 8 bits per 
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axis. Therefore, the controller can only report accelerations in 0.02g increments at best. 

The specific controller used for the experiments was actually able to sense ±5g, because 

this entire range is reported, the resolution is 0.04g. This digitisation error is a problem if 

we recall that a constant error of 0.001g causes 4.5m of drift after 30 seconds. An error of 

0.001g on the Wii controller could change the output ±0.04g, a constant error of 0.04g 

leads to 176.4m of drift in 30 seconds. This is a large error considering the range of 

human movement is likely to be only ±2m in each direction. 

Jitter. Digitisation error also makes it difficult to assess the true jitter of the 

sensors. In certain positions there is no spatial jitter (change in the output when the 

device is still) whereas in other positions there is high frequency jitter. The digitisation 

error either masks or amplifies the jitter. For example, if the accelerometer is reporting a 

value of 1g but the true sensor output is 1.019g it only takes an increase of 0.001g and 

the output will change directly to 1.04g. This results in the jitter appearing to be exactly 

0.04g or 0g. Without knowing the true sensor output the only thing that can be said for 

certain is that the maximum jitter magnitude is less than 0.02g, if it was any larger than 

this it would be impossible to find positions where there was no apparent jitter in the 

output. Without knowing the characteristics of the jitter it cannot be removed from the 

output. 

Calibration error. The controller stores two calibrations per axis in on-board 

memory. The zero calibration specifies the output value which corresponds to 0g and the 

gravity calibration specifies the value of 1g. The gravity calibration and nonlinearity of the 

data will only affect the accuracy of the position data and not the drift error as these 

errors will be equal in the positive and negative directions. Therefore these errors are not 

too much of a concern and can be scaled as necessary to provide accurate position. 
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Nonlinearity refers to the case where the output from the controller does not scale 

linearly with the actual acceleration. The zero calibration data however will lead to a 

constant bias error which can cause serious drift as mentioned. The calibrations are 

stored in 8 bits and when the device is in motion this is not precise enough.  

An experiment was designed to test the drift error from the accelerometers and 

the bias error.  The controller was moved along its Z axis 90cm and back to its original 

position several times. The controller’s movement was constrained in the other two 

directions so that rotation and gravity were not a factor.  

When using the on-board calibrations for the Z axis, 119, if the accelerometers are 

aligned with gravity and orthogonal to it, they measure an almost constant 1g and 0.04g 

respectively so the drift was expected to be in the regions discussed earlier (176m over 30 

seconds). As Figure 5 (a) shows, this was the case; 217m of drift after 40 seconds. All of 

the actual movements are obscured by the drift. To determine a more accurate 

calibration value, the velocity was manually reset to zero when the controller was known 

to be still in order to minimise error accumulation. Periods of non-movement had been 

included in the test so that it was obvious when the controller was still; the data was 

reset based on this prior knowledge, automatic detection of the controller being still was 

not used. After 40 seconds of motion using the on-board calibration there was still 17.2m 

of drift (Figure 5 (b)). Using a calibration of 188.1 (which cannot be stored using the same 

scale in 8 bits) on the same data gives a drift of just 0.006m. This more precise calibration 

was calculated by recording the raw output from the controller and then adjusting the 

calibration until the drift was as low as possible. Subsequent tests showed that this was 

the optimal calibration level. 
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 It is impossible to calculate this value when the device is still because of 

digitisation error. For example, the controller will report 118 when the real value is 118.1 

and will not change unless a relatively large change takes place (±0.02g). This means that 

an average of the sensor output when the device is still simply yields 118. If automatic 

detection of the controller being still and the estimation of the gravity component 

orientation were accurate, the calibration value could be obtained automatically. 

However, as described in section 3.1.3, small inaccuracies in these two systems lead to 

large errors. If a user moved the controller for a period and returned the controller to its 

starting position, software could determine the calibration value which would result in 

the lowest drift amount in each dimension.  
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Figure 5: Graphs showing the drift in position over time when using two different 
calibration settings: (a) the data is untouched; (b) the velocity data was reset when the 
device was known to be still. 
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3.1.2 Gyroscope Error 

The gyroscope output data is reported as 14 bits per axis and thus does not suffer from 

digitisation errors to the extent that the accelerometer does. There may be calibration 

data present for the gyroscopes in the controller memory but this information has yet to 

be reverse engineered. From the gyroscope data sheet and experimentation it is known 

that the gyroscopes have two scales depending on the speed of rotation. When the 

controller is moving slowly the controller reports rotational velocity in increments of 

0.05°/s while at high speed it uses steps of 0.25°/s. It reports the scale used interleaved 

with the gyroscope data. This allows the output to be accurate at low speed and also 

cover a larger range of speeds.  

The zero values for the gyroscopes were calculated through experimentation. The 

values were measured while the controller was at rest on a table and also at rest in a 

user’s hand. The output from the gyroscopes whilst at rest on a still surface shows 

considerable jitter. This jitter is normally distributed with varying distribution parameters 

per axis as shown in Figure 6. The yaw noise standard deviation is roughly half that of the 

pitch and roll (0.8, 1.5 and 1.6°/s respectively), this is because the yaw sensor is a 

different model to the other two axis, presumably a more expensive and accurate sensor 

has been used to compensate for not being able to reset yaw from gravity.  
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The output was recorded whilst holding the controller still in a user’s hand to 

better assess whether the controller is not moving as there is a significant difference in 

output compared to when the device is still on a table.  

It was found that the drift was more significant when the high speed mode had 

been used, making it necessary to reset the orientation from gravity. Testing the yaw and 

pitch components using a low speed motor for 10 revolutions there was 50° of drift for 

both axes over a period of roughly 30 seconds. Any readings below 3 standard deviations 

of the jitter frequency for each axis were ignored which is why the pitch result is 

comparable to the yaw result despite an inferior sensor.  

3.1.3 Total Error 

The errors above do not represent the true accuracy of the controller for its 

intended use. When the inputs are combined together to calculate position and the 

movement of the controller is unconstrained, the error increases.  

The main problem is differentiating a still controller from a moving one. In Figure 5 

(b) we can see that the drift is still almost 100m even using the superior calibration when 
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the velocity is not reset. The pattern of the actual movement which took place is 

completely lost in error due to drift. Several techniques were tried to automatically detect 

a still controller. For example, detecting when the magnitude of acceleration is roughly 1g 

for a short period and the gyroscopes report no movement (outside of their standard 

jitter range). In reality it is a difficult balancing act between ignoring very subtle but 

important accelerations and error accumulation due to not resetting the speed values. 

Errors in the estimation of the gravity component orientation are the next biggest 

cause of error. X° of error in this estimation leads to 1g*sin(X°) error in the accelerometer 

data, so even 1° of error can cause 0.017g error.  

These two errors combined lead to an unusable system. Depending on how the 

movement detection is calibrated the system either outputs incorrect/minute position 

data or data which suffers from drift in the hundreds of meters after 30 seconds.  

The orientation information on its own is much more useable as expected. All three 

axes show very little sign of drift for short periods of time. The difficulty encountered 

when attempting to detect whether a controller is still is less of a problem when used to 

trigger a reset of orientation from gravity. For acceleration, if the velocity is not reset at 

the correct time (either too soon or too late), large errors occur which cannot be undone. 

More time can be allowed to assess whether the controller is still in the gyroscope case 

because the orientation is being reset to an absolute reference value. It must be 

remembered that the yaw component cannot be reset from gravity.  

3.2 Software Library  

While the Wii controller uses standard Bluetooth to communicate, it does not 

adhere to standard controller interfaces. Therefore, a computer will recognise the device 

and create a connection to it but cannot access any of the data from the controller. A 
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library called ‘WiiYourself!’ [26] was used to interface with the controller. This library, 

written in C++, handles the connection to the controller and input/output of data to and 

from the controller’s memory. It exposes both the raw values from the sensors and some 

simple manipulations of these values, for example, a method to convert acceleration to 

orientation. At the time of writing it is the only library available with reliable support for 

the Motion Plus extension.  

The software library developed uses its own calibration data for the gyroscopes to 

calculate the rotational velocities. As well as the calibration data, the gyroscope scale 

information is required to convert the raw output into rotational velocities. The 

‘WiiYourself!’ library was therefore modified to expose the gyroscope scale information. 

This also allowed the developed library to monitor whether the controller had used the 

lower accuracy, and more drift prone, scale. 

The developed library can report either rotational velocities or orientation data. 

However, it only provides acceleration data due to the problems with generating 

positional data.  The final software library includes the following features: 

3.2.1 Automatic Gyroscope Calibration 

The exact properties of each Wii controller are different, including zero 

calibrations for each Motion Plus accessory. Therefore, an automatic calibration method 

was developed for the library which records 500 samples of data from the gyroscopes 

(while the device is at rest on a still surface), and uses the average values as the zero 

calibration. The standard deviation of the jitter is also recorded. When the library is used, 

any gyroscope readings less than 3.5 times this standard deviation are ignored. This is 

done per axis because, as mentioned, the different gyroscope axes have different jitter 

characteristics. 
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3.2.2 Orientation Tracking with Automatic Reset 

The library can output both rotational velocity and orientation. The pitch and roll 

components of the orientation are reset using the accelerometer values when all of the 

following are true: 

 The magnitude of the accelerometers vector is 1 or less for at least two 

consecutive updates 

 The rotational velocity has been below 10 standard deviations of the jitter data for 

two consecutive updates 

 The high speed gyroscope mode has been used 

The first two conditions attempt to ensure the controller is still enough that only the 

gravity response component is being reported. The last condition prevents resets when 

they are not necessary.  

3.2.3 Acceleration Due to Movement 

The gravity component of the acceleration data is removed leaving only the acceleration 

due to movement. This is achieved by rotating the gravity component using data from the 

gyroscopes. The gravity component is reset when the conditions listed above are met. 

This method suffers from the errors describe previously.  

3.2.4 Multiple Controllers 

The library developed has the ability to support as many controllers as can be connected 

via Bluetooth. The library monitors all connected controllers and makes their data 

available. Unfortunately, due to issues with the Microsoft Windows Bluetooth 

implementation, it was never possible to reliably connect more than a single controller.  
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3.3 Summary 

While it is theoretically possible to generate absolute position from the Wii controller, the 

level of tuning required and the resulting low accuracy mean this is not the best way to 

utilise the controller. It also means it would be difficult to use the controller in existing 

interfaces. While the orientation data produced is more accurate, it still suffers from drift 

and the yaw component cannot be reset. For these reasons and some design 

considerations (sections 4 and 5), rotation velocity is used as the input to the custom 

interface developed. 

A software library was developed which allows simple access to the Wii controller 

data. An auto calibration method was developed to provide superior calibrations to those 

used by the ‘WiiYourself!’ library. These calibrations allow the developed library to 

provide accurate orientation data or rotational velocity data with reduced jitter.  The poor 

accuracy of the positional data generated by the accelerometers meant that the Wii 

controller could not be used with traditional 3D interfaces. Therefore, the custom 3D 

interface developed for visualization applications was designed to operate solely on 

orientation/rotational velocity data. 

 Designs for two handed control, involving multiple controllers, had to be abandoned 

for technical reasons.  
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4 Developing a Suitable Menu Interface 

 

The limitations of the Wii controller mean that it cannot easily be used with a traditional 

3D interface. Existing interfaces are also inefficient due to their lack of constraints. This 

chapter contains information regarding the development of an interface for manipulating 

a visualization using the Wii controller. It details the key decisions made in the design of 

the interface with regards to the demands of a visualization system, the limitations of the 

Wii controller, and the feedback received from users during prototyping. The 

development of the completed interface is described and the novel features are 

highlighted.  

4.1 Interface Requirements 

The following requirements were identified for a visualization interface: 

 The interface must allow the selection of modules and adjustment parameters 

within each module. Parameters can be: 

o Choices (including binary on/off choices). 

o Values (continuous or discreet). 

o Symbolic input (text).  

 Menus must be able to support an infinite number of menu elements and menu 

nesting to an infinite depth.  

Symbolic input is not provided by the developed interface, this is an input method which 

is much better suited to a keyboard. However, consideration for a full onscreen keyboard 

operated by orientation is made; see dial-pad in section 4.3.3. 



43 
 

4.2 Design Considerations 

In addition to those presented in section 2.4, the following considerations were 

identified: 

 The interface should obscure the users view of the visualization as little as 

possible, 

 A user should be able to switch between menu navigation/parameter 

manipulation and viewpoint control at any time. 

The notion of constraints was heavily used. Two tasks were required by the interface: 

selecting an item(s) from a list and selecting a value from a range. Strictly speaking, both 

of these tasks require only 1DOF. Selecting items from a list could be implemented as a 

2D item array. This would allow more items to be displayed at a time than a 1D list and 

the time taken to select an item might be reduced because the maximum distance 

between elements is reduced. For example, a menu with 9 elements has a maximum 

distance of 9 in a straight line compared to 4.2 (√     ) if the elements are laid out in a 

square. However, value selection for a single parameter can only be a 1D task. Menu 

selection was constrained to 1DOF for the following reasons: 

 Consistency; a linear menu matches the control and aesthetics of the value 

selection control. 

 Screen space; a 1D menu takes up less screen space than a 2D menu. 

 Constraints; a user can theoretically be more accurate when required to use fewer 

DOFs 

 Subgroups; by using subgroups (AVS/Express modules have already been 

identified as valid subgroups) the benefits of a higher dimensional menu are 

reduced. Subgroups reduce the number of elements which need to be displayed in 
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any given menu. Subgroups reduce the maximum distance between menu 

elements but also increase time spent traversing menus. If elements which are 

used together frequently are provided in the same subgroup then any menu 

traversal time is also reduced. 

Therefore, the entire interface (with one minor exception see dial-pad in section 4.3.3) is 

constrained to 1 DOF. This is more constrained than both a traditional mouse interface 

which uses 2 DOF and the VRMenu interface used with a traditional tracking device which 

requires 5DOF.   

 User comfort was also heavily considered when designing the interface. Thanks to 

the advantages of inertial sensors (not requiring line of sight or to be in range of an 

emitter) and the design of the interface, the user can operate the interface sitting down 

and with minimal movement. Control of the interface and the camera is based on 

rotational velocities rather than orientation. This means that the users can adopt any 

pose as their neutral pose. For example, the controller does not need to be level in the 

physical sense for the selection to be central in the menus. The user can operate the 

interface with the controller pointed to the floor as their neutral pose if they choose; the 

same interactions will still work (although they may not be as intuitive for a first time 

user). The range of movements required can all be achieved using wrist rotations. 

Therefore, the user’s arm can remain stationary allowing them to rest it upon a support. 

The limited range of movement required also increases the user’s safety when using the 

interface. These considerations do not mean that the interface cannot be used standing 

up at a large distance away from the output device. In fact, the above example shows that 

when a user is standing, the interface still offers comfort. By using the device pointed 

down as the neutral position, the user does not have to hold their arm out to use the 
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interface when standing, reducing strain. They can still use all of the benefits of 3D 

control to interact with the camera at the same time.  

4.3 Implemented Features  

Based on the requirements of a visualization system, three menu elements were created: 

1. Menu hierarchies, allowing elements with similar functionality to be grouped 

together. 

2. Choice rings, providing support for options. Can be configured to allow selection 

from any number of choices. 

3. Value selection rings, for choosing a value from a specified range. 

The design and operation of these elements, including the various additional features 

designed to aid the user, are described below. The controls for the interface are shown in 

Table 1. The home button is used to allow the user to change between the menu 

interface and camera control at any point.  

Button Menu / Choice Ring Value Selection Ring Out of Menu 

A Select menu items / 
Toggle choice item 

Select current value Adjust camera 
rotation (hold) 

B Go back one menu 
level 

Close selection ring Adjust camera 
position (hold) 

Home Show/Hide the menu 

1  Specify zoom region (hold) Enables camera 
centre selection 
mode (A button to 
confirm) 

2  Opens dial-pad Switch to direct 
control camera 

+  Increment value   

-  Decrement value   

 

Table 1: The various controls used in the custom interface. 
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4.3.1 Menu Hierarchies 

The concentric Spin Menu was used as a basis for the design of the menu hierarchies.  

In order to minimise the amount of screen space the menu required the rings used were 

elongated and oriented almost parallel to the user. A larger ring means that the same 

amount of menu elements can appear on screen but the menu takes up less space as the 

visible curvature is reduced. In the final design the curvature of the ring is almost 

unperceivable (when using a 2D output device) but the menu ring and its elements are in 

fact 3D objects. The menus can be oriented either horizontally or vertically. Vertical 

menus were used in the evaluation because standard output devices are wider than they 

are tall. Thus the number of available on screen elements was sacrificed to increase the 

amount of space available to view the visualization.  

 

Figure 7: The menu hierarchy interface and a value selection ring showing the visual 
feedback used. Previous menu choices are highlighted. Rings are the colour of their 
parent menu choice. The limits of selection, current selection and stored selection are 
all shown on the value ring. The currently open menu is the largest amount of screen 
space the menu can occupy (with the exception of the dial-pad, section 4.3.3). 
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Several visual feedback techniques, shown in Figure 7, are employed to aid the user 

navigate the menus. The menu elements themselves are different colours and for 

submenus, the colour of the ring itself is the same as the menu element which opened it. 

This additional visual information is designed to reduce the memory load on a user. 

Submenus ‘grow’ out from the parent menu with a smooth transitional animation and the 

element selected in the parent menu remains highlighted. This indicates which submenu 

the user is navigating, analogous to how a 2D drop down list submenu grows from its 

parent and the parent remains highlighted. When the user exits a menu, the menu simply 

disappears, no animation is used. During prototyping it was found that while users 

appreciated the animation on the opening of menus, when they were exiting a menu, the 

animation was unnecessary and was slowing down use of the interface.  When the user 

navigates to menus more than 3 levels deep the entire menu shifts to remove the highest 

level menu from the screen. This ensures that even with an infinite number of submenus, 

the menu cannot grow to obscure the screen. This shift is again animated smoothly to 

indicate to the user what has taken place. The menu is shifted back into position when 

the user returns towards the top level menus.  

Control of the menus is linked to changes in the pitch of the controller (or yaw if 

horizontal menus are used). The direction of physical movement matches the movement 

of the selection. Menu elements are highlighted as the selection passes over them. The 

movement speed of the selection was configured to allow the user to reach the top and 

bottom of the menu within the comfortable range of hand orientation. To support an 

infinite number of menu elements some elements must be off-screen at any given time. 

Therefore, for the user to access these elements comfortably a virtual travel type of 

control is needed. When the user reaches close to the top of the menu (and the limit of 

their comfortable range) the menu scrolls in the opposite direction to reveal the hidden 
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elements. The speed at which the ring rotates is dependent on how far the user goes 

beyond the limit; tilting the controller further makes the ring spin faster. When the user 

returns to a position below the limit the ring becomes stationary and control over the 

selection is resumed.  

An alternate method of control was implemented where changes in the orientation of 

the controller controlled the orientation of the ring with the selection area remaining 

static. The previously described control was preferred because users found it more 

intuitive, it matched the control method used for the value selection rings, and because 

the virtual travel technique used above is confusing to users with this system. If a user 

tilted the controller to the limit and the ring continues to spin (with the selection area 

remaining in the middle of the screen), when the user comes to the area they require and 

tilts the controller back past the limit, the controller is oriented near the limit but the 

selection area remains in the middle. To move the ring so as to select the next item, the 

user cannot simply tilt the controller because this will take them beyond the limit and 

trigger virtual movement again.  

4.3.2 Choice Rings 

Choice elements are derived from standard menu elements. The elements are added to a 

menu and are displayed in the same way as sub-menu elements. Each ring of choice 

elements can be configured as either a check or toggle choice. Toggle menus allow only a 

single element to be selected at a given time while check menus allow any number of 

elements to be active. The check menu has the advantage of allowing multiple binary 

decisions to be grouped onto a single ring. Toggle menus provide support for any decision 

with greater than two options. 
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4.3.3 Value Selection Rings 

Value selection rings can be configured to support any range of numbers and any 

increment size. For example, both a continuous selection from 0 to 1 and a discreet 

selection from 0 to 255 in steps of 1 can be configured. The limits of the range are 

displayed at the limits of the ring. The stored value and the current value at the position 

of the cursor are also both displayed. While the user moves the controller the current 

value is updated on the screen, this may seem trivial but can improve a user’s 

performance see section 7.3.3.  

The value at the cursor is committed to the stored value when the user presses 

the A button. If the A button is held, the value at the current position is continuously 

stored. This can be disabled which is useful in instances where committing a value triggers 

an expensive computing operation. This is common is visualization where altering certain 

values can cause the entire geometry of the scene to be recomputed. If the user was 

allowed to alter the value continuously, large blocks of computing would be queued 

causing the system to become unresponsive. (This is not the case in my simulation 

environment as any current work is stopped if a new value is selected. However this may 

not be the case for example, in AVS/Express).  

This ring offers increased efficiency when compared to a 2D slider bar projected 

into 3D. Repeated value adjustments are expected in visualization applications as 

parameters are explored. Using the value selection ring, once a ring has been chosen 

(using 1DOF in the menus), multiple adjustments can be made without needing to 

reselect the parameter. In a converted design, 5DOF are required to select the slider bar’s 

current position (typically a small target) and for each subsequent value change the bar 

must be selected again.  
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Two advanced controls are included to aid the user in selecting a value, zooming 

and a dial pad.  

The movement speed of the current selection area is calculated based on the 

range. This means that the user can navigate the range 0 to 200 with the same degree of 

movement as navigating the range 0 to 5000. This ensures the user does not have to 

move the controller outside of a confortable range, minimising strain. However, when a 

large range is used, small movements of the controller cause large changes in the value, 

making it hard to pick a certain value precisely. Zooming allows the user to specify a new 

range by selecting a region of the current range. By choosing a smaller range the 

movement speed is reduced and the user can be more precise with their selection.  

 

Another option available to the user is to open up a dial-pad (Figure 8). This is useful if 

the user knows the exact number they want to enter or if they want to enter it to a high 

level of precision. A menu with buttons for each of the ten numeric characters as well as 

buttons to clear the value, add a decimal point, cancel the entry, accept the entry, and a 

Figure 8: The dial-pad interface can be used to input the desired value  
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negation button is presented. The user navigates this menu in the same way as the 

menus except that the yaw of the controller is now used to move across the rows of the 

menus. If necessary, the author feels this approach could be extend to include all 

alphanumeric keys for true symbolic input. Unlike the menu hierarchy, a 2D menu 

structure was deemed to be superior to a 1D structure in this case. There are a number of 

reasons for this: 

 A 2D structure means the familiar 3x3 numerical layout can be used. 

 The dial-pad is only open briefly (in comparison to the menu), and while it is open 

the visualization cannot change. Therefore nothing is lost by obscuring the users 

view.  

 Unlike a menu hierarchy there is no relationship between the menu elements, all 

buttons have an equal chance of being pressed, and any sequence is equally likely. 

Therefore you cannot use submenus to make sure that related items are close 

together in the menu. As such with a 1D structure there may have been much 

traversal of the menu between selections. This problem is compounded by the 

fact that the fifteen elements required could not all be displayed simultaneously in 

the 1D menus used.  

 Users will select multiple items within a short space of time, unlike in the menus. 

Therefore, distance between elements must be minimised to improve efficiency.  

4.4 Background Menu Movement 

The decision to continue showing the previous level of a menu to aid the user presents an 

interesting problem when the user navigates between menu levels. The initial selection 

when the user enters a menu can cause both physical strain and confusion. Physical strain 

occurs when the initial selection is in the opposite position to the current orientation of 
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the controller. For example, if the controller is pointing as low as is comfortable for the 

user and a new menu is entered where the initial selection is the top most menu item, 

the user cannot select any of the lower menu items without strain. This is easily solved 

when advancing forwards in the menus by passing the controller orientation information 

forward (Figure 9). The user enters the menu at the same position as they left the last one 

and can navigate the full range of the menu without strain.  

User advances to 2nd 
level menu

User movement is passed to 
the currently hidden 2nd 

menu level

User can operate the entire 
menu with out strain

 

However, when the user returns from a menu, the problem is not so easily solved, 

see Figure 10. Because the previous menu selection is displayed on the screen, the user 

expects that the current selection will be centred on that item when they return to that 

menu. In the evaluation of the interface, the system was configured such that the 

selection changed from the previously selected item to a position where the users hand 

orientation was taken into account. This gave the impression that the selection was 

moving ‘on its own’, causing users to compensate by tilting the controller in the opposite 

Figure 9: Background movement when opening a menu. 



53 
 

direction to the movement. The effect is more apparent on menus with fewer elements. 

As the animation does not highlight each element along its path, a large menu makes it is 

easier to see that the position jumps, with a small menu it can appear as if the position is 

moving.  

User returns from 2nd 
level menu

Or
Controller orientation has 

been altered while the user 
was in the 2nd level menu

User cannot navigate 
upwards without hand strain

The menu jumps to match 
controller position 

possibly confusing the 
user

 

This is fine in the sense that orientation has been taken into account and hand 

strain has been avoided. However, some users frequently moved off the item they 

required by compensating for the movement, forcing them to move back to the original 

position to reacquire the target, reducing the efficiency of the interface with unnecessary 

movement.  

The author proposes two ways to alleviate this problem: 

Figure 10: Problems when using background movement as a menu is closed. 
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 Alter the animation or simply do not animate the automatic movement. If the 

selection instantaneously changes to the correct position rather than appearing to 

move there, the user will not feel like they are causing the automatic change in 

selection. 

 Have a secondary visual effect to signify which element the user would be 

selecting based on their hand orientation. The current selection can then animate 

to this point with the user knowing why it’s moving and where to. The user can 

then continue to navigate the menu while the animation catches up. This 

secondary visual effect can be hidden when the current pointing position and the 

current select are synchronised. 

Users who were more experienced at using the system and understood what was 

occurring when a menu was exited suffered less from this problem. Some users used the 

system to their advantage. By changing their hand position slightly prior and during the 

exit of a menu, these users were already targeting the selection they required when the 

animation completed.  

4.5 Summary 

The developed interface uses rotation velocity to allow a user to control a 

visualization application in 3D. The design considerations identified were followed to 

create controls for menu navigation, choice selection and value selection.  

 The efficiency of the design for value selection is better than converted 2D 

designs which use 3D pointers for control.  

 The input of the 3D device is constrained to match the tasks (1DOF used at 

almost all times). 
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 The range of movement required to operate the interface has been 

minimised to reduce physical strain. Strain is further reduced by the use of 

relative orientation.  

 Increased utility, in the form of zooming and a dial-pad, has been provided 

for the commonly used value selection ring.  

 Use of visual feedback attempts to reduce the memory load on the user. 

The key issue of background movement has been identified when using rotation 

velocities instead of absolute orientation for control.    
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5 Developing a Camera Interface 

 

As discussed, it is possible to correct errors in the orientation output more so than 

positioning data. Orientation from inertial sensors has therefore been used more often in 

existing systems. For example, inertial sensors have been used to track head orientation 

for use in virtual environments. This is a form of viewpoint manipulation using inertial 

sensors. However, attaching the sensors to a user’s head reduces the sensors ability to be 

used for application control tasks. This method is also less than ideal for visualization as to 

orbit an object of interest the user would have to be constantly physically spinning 

around.  

A different approach was therefore taken to operate the camera in this interface. 

This chapter describes two camera modes used in the custom interface and some of the 

problems encountered. 

5.1 Orbit Camera 

A standard virtual camera within a scene requires 6DOF to control fully. In many 

applications, the camera is often constrained in some way based on the type of 

application and the control devices in use. For example, computer games with a direct 

control camera (sometimes known as first person camera) are often limited to 4DOF. 

Users do not typically need roll their heads or significantly alter their Y-position above the 

floor (i.e. fly), and this maps nicely onto the typical dual joystick (4DOF) controllers used. 

In visualization applications, the standard camera manipulation use case is to 

explore a 3D model. The model is not positioned in a scene, or virtual environment, it is 

typically the only object rendered. To make exploring the model as efficient as possible 

the focus must remain on the model. As such, in this design, the centre of the camera 
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(the position it is directed at) has been fixed within the model itself. Movement of the 

controller affects the rotation of the camera around this point. Because of the duality of 

camera systems, if the direction of rotation is reversed this is equivalent to the camera 

being fixed and the object rotating in the same direction as the controller. This was found 

to be more intuitive than rotating the camera during prototyping. 

 Using this system there only needs to be 1 positional control. Because the centre 

is fixed, movements of the camera up/down and left/right are analogous to rotating the 

camera in those directions. Movement forwards/backwards is equivalent to zooming 

in/out to the model. Because positional data from the Wii has been discounted, this 4DOF 

(roll, pitch, yaw, and zoom) camera was mapped onto the 3 orientations of the Wii 

controller. The rotational controls are mapped as expect and zoom is mapped to the pitch 

of the controller when a different button is held.  

The problem with this camera model is the positioning of the centre. Having a fixed 

centre makes it impossible to view the model from certain angles. Without positional 

data a novel approach had to be taken. Two methods were tested for moving the centre 

within the scene. The first used the movement controls from the direct control camera 

model to control the centre; however this method has some usability problems (section 

5.2 below). The second method uses the idea that the position of the centre in the x and y 

positions (relative to the viewpoint) can be set by rotating the camera, the only problem 

is setting the depth of the centre along the z-axis, into the screen. Two methods were 

implemented to solve this problem: 

1. Attach the camera to the centre as the user moves it along the z axis. This allows 

the user to see how far they have travelled. This approach works well for hollow 

3D models or positioning the centre outside of the model. However, the types of 
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model used in visualizations are typically volumetric and thus have geometry 

within in them. This can sometimes make it impossible to tell how far in the model 

a user has actually travelled as their view becomes obscured. 

2. Render a plane aligned with the screen positioned on the centre. As the centre 

(and thus the plane) travels away from the user more of the model is revealed 

through the plane allowing the user to tell how far the centre has travelled though 

the model. This method only works well for selecting up to the point within the 

model which corresponds to largest part of the model from the current camera 

perspective. After that no more of the model is revealed and thus the distance 

travelled cannot be determined. 

A further method is proposed but was not implemented: 

3. Show another view of the scene offset from current camera. This would allow the 

user to view the centre travelling along the z axis. The problem now becomes how 

to position the camera. If it is to be positioned automatically, it is necessary to 

know the size of the model so that the camera is not positioned inside the model, 

too far away so that the user cannot be precise, or too close such that the entire 

model is not in view. The first problem with this is that the size of the model may 

not be easy to determine. The size of the data being used is known but the 

visualization options may only be causing parts of this data to be rendered. The 

second problem is that the user may wish to alter the view, for example to zoom 

into a large model to precisely position the centre. This means giving the user 

another set of commands and controls to remember. In testing it was found that 

even implementation 2 above required too many controls and actions for a first 

time user to remember. 
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5.2 Direct Control Camera 

There are scenarios in visualization software where the orbit camera is insufficient. A 

direct control camera model was developed to investigate whether such a camera could 

be controlled using just orientation data. This work is also important if the Wii controller 

is to be used in other 3D applications where direct control cameras are the standard. The 

orientation of the camera is controlled as expected using the orientation of the device. A 

second mode was introduced to allow the same orientation data to be used to 

manipulate the position of the camera. The data mapping here is somewhat arbitrary 

because the physical motions (rotation) do not match the desired result (translation). 

However, the configuration which felt most natural was using yaw to control left/right 

movement, pitch to control forwards/backwards movement, and roll to adjust the height 

of the camera.  

 Because the motions do not match the intended result, it is difficult to manipulate 

all three positional components simultaneously with this method. It becomes very 

difficult to calculate what action will achieve the required result. In light of this, the 

camera is limited to moving in one direction at a time. When rotation in the controller is 

detected the component with the largest value is selected as the direction of travel and 

this direction is locked until the user releases the control button. Initially the direction 

was unlocked when the controller was still; however, this did not test well. When users 

paused momentarily for any reason and the direction became unlocked it became 

confusing. When the user resumed their rotations expecting to continue in the same 

direction their rotations were often fine adjustments making it more difficult to 

distinguish the required direction. Therefore, a different direction could be selected and 

the user would have to pause to unlock and try again.  It was more efficient for the user if 

they had manual control over the direction lock. 



60 
 

5.3 Virtual Travel 

In virtual reality systems the main concern for camera control is how to travel large 

distances through the scene without the user having to actually physically move the same 

distance. Obviously physical space is limited (when compared to virtual space) so the user 

cannot move around great distances to move the same distance in virtual reality. While 

positional data is not being used in this interface, the same problem is encountered. 

These systems typically use ‘virtual travelling’, where input corresponds to velocity rather 

than position. If the visualization model is very large the virtual travel may become 

necessary for zooming when using the orbit camera. Virtual travel is also necessary for 

large movements using the direct control camera. Two methods were implemented, both 

with unsatisfactory results.  

1. If the orientation of the controller does not alter the position of the camera but 

rather the velocity of the camera, the user can travel at the speed they require. 

This allows them to cover large distances quickly. However, this technique does 

not match the camera orientation controls. Users found it confusing when forced 

to change between direct control of camera orientation and velocity control for 

position. Users also found it harder to stop the position movement where they 

required even when a larger dead zone had been added to the controls (a region 

of orientation where the velocity is set to zero).  

2. The system used in the menus of the custom interface was applied to travel. 

Orientation directly controlled position until the user passed a limit. Distance past 

the limit then controlled the velocity of positional movement. The problem with 

this approach occurs when the user attempts to end virtual travel. Users expected 

that velocity would return to zero when the controller was level. Initially this was 

not the case, virtual travel ended when the users crossed the limit. Therefore as 
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the user continued towards levelling the controller the camera moves in the 

opposite direction as direct control has resumed. When the controls were 

modified to disable travel once the user levelled the controller the users 

expectation differed again from the reality. Because virtual travel had been active 

as they passed the limit and returned to the level position, when the user tilted 

the controller back towards the limit they expected this to be controlling velocity, 

when in fact direct control had been resumed.  

The second implementation shows promise but requires more work to match users 

expectations. Another possible option is to have both direct control and velocity control 

but keep them totally separate. The user can then decide what is needed. However, this 

does add additional complexity to the controls. 

5.4 Relative Camera Movement 

A virtual camera within a scene has a position and orientation, and as such, control of the 

camera can be mapped naturally onto a standard 6DOF controller. For a system with a 

head mounted display method and head tracking it is easy to see that this mapping makes 

sense, the user simply moves around the scene as if it was a real environment.  However, 

while a one-to-one mapping of the controls is a natural way to map the controls, it may 

not always be the easiest or most intuitive system to use. A system with a fixed screen 

would require the user to manipulate the controller into unnatural positions in order to 

rotate the camera fully. When using a hand held device the user will expect to be able to 

relax and not have to maintain a pose to hold a camera fixed. If the systems allows the 

user to disconnect control for these periods, when control resumes the camera will jump 

to a new orientation if the controller is not in the previous position, which could be 

confusing for the user. This situation also arises when interacting with menus, if the same 
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device is used and camera control is not disabled the camera will be altered by menu 

interaction. Likewise, if it is disabled in-menu, when the user exits the menu the view will 

be altered. 

The camera controls in this project are therefore all relative rather than absolute. 

Changes in orientation the user makes while holding down a button are added to the 

current view. To ensure that rotations remain related to the current orientation of the 

controller (Figure 11), rotations are stored in a temporary value while the button is held. 

The temporary rotations are multiplied into the scene when it is rendered to ensure the 

view updates with the user’s movement. However, the temporary value is not multiplied 

into the total stored rotation for the scene until the button is released.  
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(a)

(b)

 

5.5 Summary 

The camera controls used in the custom interface use rotation velocity to manipulate the 

viewpoint. Two camera modes are offered; the orbit camera which should cover the 

majority of viewpoint manipulation within a visualization application and the direct 

control camera for the minority of times when the orbit camera is insufficient.  

 Selecting the centre of the orbit is identified as a major problem when positional 

control is not available. More work is needed in this area to develop a viable solution for 

all situations.  

Figure 11: The effects of controller rotation on an object within the scene; (a) the 
effect when using temporary rotations, the rotations are relative to the controller, (b) 
the effect when all rotations are stored as they happen, the rotations are relative to a 
fixed coordinate frame. 
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Emulation of position using orientation was implemented using virtual travel with 

varying results. Again more work is needed, mainly identifying what a user expects from 

the interface. 

As with the menu interface, strain has been minimised by using relational orientation 

input. At its simplest the camera only requires two buttons to operate reducing memory 

load on the user. Efficiency of the camera orientation control is better than that of a 

mouse interface, all three camera orientation components can be adjusted 

simultaneously (compared to two with a mouse). However, control over the camera 

position is less efficient than both a mouse interface and an interface which uses position 

data from a 3D tracker.  Only one position can be adjusted at a time compared to 3 with a 

3D tracker and 2 with a mouse. The specific needs of a visualization application (exploited 

by the orbit camera) mask this deficiency.   
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6 Integration with Existing Systems 

 

The test system available for the project typifies a visualization setup for complex data 

sets and also for other immersive 3D systems. The visualization calculations; filtering, 

mapping and rendering, are performed on a high performance computer while the user 

input and the output of the visualization is delivered to/from a standard desktop. This 

allows the user to work with large data sets from the comfort of their own desk without 

needing a large computer/server in the room. A framework for using novel input devices 

with immersive interactive tools is used to standardise this interaction. 

Trackd [27] is a standard framework which enables the sending of ‘tracker’ data 

collected on a client computer to a server computer. There are two benefits in using this 

standardised framework. Firstly, a controller integrated into the trackd client software 

allows it to control existing interfaces with support for trackd. Secondly, any interface 

designed with trackd support can make use of any device which has trackd support. This 

acts a layer of separation between the hardware control and the interface, preventing 

code cross over and making sure the interface is not tied too closely to the hardware.  

  The trackd framework operates by storing input data to a shared memory 

address. Applications then read from this memory location to access the data. To operate 

on remote systems, a network address rather than a memory location can be used. 

Another instance of trackd is run on the remote computer which reads data from the 

network and stores it in shared memory. 
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Software which utilises both ends of this framework was developed during this project. 

The Wii controller library reports its data to the common framework and the custom 

interface reads its controller inputs from the framework. The extent of the integration 

into this existing framework and some of the limitations are described in the remainder of 

this chapter.  
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6.1 Wii Controller Integration 

The Wii controller library was written using the trackd SDK which allows the trackd 

system to read the data of the Wii controller (Figure 12 (a) (b) (d)). The 7 buttons of the 

controller are reported as well as the 8 way directional pad which is reported as 2 

Figure 12: Some possible combinations of hardware and software made available 
using the trackd framework (elements in red were written as part of this project): (a) 
the custom interface using a Wii controller connected to a remote computer; (b) same 
as (a) but with the device connected locally; (c) existing hardware connected to the 
custom interface; (d) the Wii controller connected to existing software. 
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valuators. Where trackd expects position and orientation data, the raw accelerations and 

rotational velocities are reported respectively. The library was written this way such that 

the developed interface could work with the raw controller data. Unfortunately, this 

prevents the device from being used with existing tools expecting position and 

orientation. To integrate with existing tools, the library can be configured to report 

orientation instead of rotational velocity. This would allow the device to be used in any 

interface which required orientation data and/or a set of buttons and has support for 

trackd. Although this integration is possible it has never been tested.  

The library is also configurable to allow a number of gestures to be sent as binary 

data. The gestures are sent as additional buttons allowing them to be used by any existing 

software like any other button. To test this functionality a set of gestures which were 

simple thresholds of the acceleration data in each dimension were used and successfully 

transmitted to another computer. Neither the final library nor the custom interface make 

use of this functionality.  

6.2 Interface Integration 

The custom interface uses the trackd API to read input data from a shared memory 

location (Figure 12 (a) (b) (c)). The data can come from any device supporting the trackd 

interface, theoretically allowing any of these devices to be used with the interface. In 

reality two restrictions apply: 

1. The device must report either rotational velocity or absolute orientation 

2. The device must have at least 3 buttons 

However, these restrictions need not be fulfilled by a single device. A number of devices 

can be combined using trackd, for example, a pure orientation tracking device with a 
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single button could be used in combination with any device which has a further two 

buttons.  

A special version of the user interface was developed to accept absolute 

orientation data instead of rotation velocities. This allows devices which report absolute 

orientation (such as the Polhemus Fastrak) to be used with the developed interface. The 

software converts the absolute orientation data into rotational velocities simply by 

differentiating the input. The difference between the previous orientation and the 

current one is divided by the time between updates.  

The button limitation is to ensure that the basic menu functionality can be 

achieved, see Table 1. The 3 buttons are used to emulate the A, B, and Home buttons on 

the Wii controller which are required for basic use of the menus. A further 2 buttons 

emulate the 1 and 2 buttons, if present, for some of the more advanced functionality. A 

device with 7 buttons has the same functionality as the Wii controller, with the last two 

buttons emulating the + and – buttons. This system has been successfully tested using the 

Polhemus Fastrak system, with the basic 3 button functionality.  

6.3 Summary 

Thanks to integration with trackd, the custom interface is able to accept input from a 

number of devices, connected both locally and/or remotely, provided a small set of 

restrictions are met. On the other side of the interface, the Wii controller can be used 

with any tool which supports trackd. Because of a lack of positional data, the extent to 

which this would be useful is dependent on the individual tool.  

The good ergonomics, large number of buttons, price, and wireless interface of the 

controller make it an attractive device to use in combination with other devices within 

trackd as described earlier. It could be easily used to add a set of buttons into a system 



69 
 

with devices which may provide tracking data but no buttons, for example, a head 

tracker.  
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7 Evaluating the Interface 

 

The project followed a usability engineering process [28] shown in Figure 13. This 

methodology involved task analysis, expert analysis, a cycle of formative evaluation and 

improved prototypes, and finished with a summative evaluation.  

Gather 
Requirements

Expert Evaluation

Summative  
Evaluation

Task Descriptions 
and Sequences

Improved UI Design

Iteratively Refined 
Design

Start

Final Product

Formative 
Evaluation

Prototype

 

The requirements for the interface have already been discussed in section 4. That 

section also described the decisions taken from the iterative prototyping and formative 

evaluation cycle which took place. During the evaluations in these cycles, users were 

given tasks to carry out using prototypes of the interface. This was followed by an 

Figure 13: Usability Engineering Process [28] 
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informal discussion with the group of users to establish which interaction method, out of 

a selection, they preferred. This information was used to steer the direction of future 

prototypes. 

Typically in an expert analysis phase, multiple user interface experts evaluate the 

design based on a set of guidelines in order to produce an improved and more 

streamlined design. This system is less effective for 3D user interfaces as there is, of yet, 

no standard guideline framework for 3D interfaces. Because of this and because such 

resources were not available, the design was constantly evaluated by the author based on 

the criteria outlined in section 2.4.  

Information about evaluation techniques, details of the summative evaluation 

carried out, and the results of that evaluation are presented in the following sections.  

7.1 Evaluation Process 

There is no simple metric of performance in a user interface. There are various 

empirical metrics that can be used to rate performance but there are also subjective 

indicators such as the ‘feel’ or ‘intuitiveness’ of a design. This makes a design difficult  to 

evaluate.  

Evaluating new user interfaces can be especially difficult when novel input devices 

are involved. There is a question of potential users; visualization is a fairly specialised 

domain and also few users have experience when using 3D input/output devices. 

Compounding this, typically all 3D interfaces are somewhat unique; there is no one 

system which dominates 3D UIs in the same way that WIMP (Windows Icons Menus and 

Pointing devices) dominates the 2D field.  
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Many 3D interface evaluations focus on a user’s feeling of ‘presence’ within the 

system because the applications are typically virtual reality based. This is an abstract idea 

which describes how immersed the user is in the experience. This is naturally hard to 

quantify but fortunately for the application being used this is a secondary concern. The 

application focuses on usability rather than immersion, visualization software offers 

functional tools to expose information from data. Data from simulations do not typically 

represent a real world scene and it is unnecessary for the user to feel like they are in a 

virtual world. 

7.2 Summative Evaluation 

A user study involving the custom interface was carried out to evaluate its performance. 

Qualitative information in the form of questionnaire answers and quantitative data from 

automatic metrics in the system were recorded. At this point the interface had already 

been tested to ensure that it could provide the desired functionality. The criteria for 

success was slightly strange in this evaluation as the custom design did not necessarily 

have to outperform the existing VRMenu interface (when used with a mouse or the 

Polhemus Fastrak Device) for it to be considered successful. The custom interface and Wii 

remote combination can be used in immersive environments which a mouse device 

cannot, and is much cheaper than the Polhemus Fastrak device. These separate 

advantages mean that performance needed only to be as good as/close to the exiting 

interface. 

A set of ten users completed a small number of visualization tasks using the Wii 

controller and the custom interface. A subset of the same tasks was also carried out by 

the users using a VRMenu interface with both the mouse and the Polhemus Fastrak 

device.  
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A test program was developed containing a small subset of visualization software 

functionality. This program allowed the user to load different 3D data sets, select the 

rendering mode, and adjust the parameters for each rendering mode. Various options for 

altering global setting such as lighting were also included. All of this functionality was 

exposed using the custom interface. 6 data sets containing volumetric data [29] were 

used in the evaluation. Users used two of the models to acclimatise themselves with the 

various functions of the system and the controls. The remaining four were used in the 

evaluation tasks. 

For the evaluation involving the VRMenu interface (shown in Figure 14), an 

approximation of this test program was built using AVS/Express. Because of the 

differences in interface style and the different level of functionality available in 

AVS/Express, the menus constructed did not match the custom interface identically. The 

evaluation was designed to test the best case performance of the custom interface 

against the best performance of an existing system. Therefore, the menus were 

constructed to play to the strengths of each system. The global options as well as some of 

the rendering options were removed in the VRMenu interface. The VRMenu interface was 

also used to evaluate the mouse as the menu controls are essentially identical to the 

standard AVS/Express interface but all unnecessary menus and options are hidden from 

the user. The camera controls are the same in the AVS/Express standard interface and the 

VRMenu interface. This ensures a fairer comparison with the other two input devices. 
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The test evaluations were performed with each interface running on a computer with 

a trackd instance receiving the user input over the network from the Wii 

controller/Polhemus Fastrak connected to a separate computer. This setup represents 

the worst case scenario for latency in the system. 

The users were asked to complete 4 tasks which in total required them to use all 

aspects of the interface. The four tasks emulated small visualization workflows and in 

total, took an average of 15 minutes to complete. Performance analysis focused on 3 

factors: 

1. Navigating to/selecting the required menu item. 

2. Adjusting parameter values. 

3. Manipulation of the camera. 

Figure 14: The VRMenu interface used in the evaluation. The image shows how not 
only the menu, but also the visual representation of the pointer (purple area), can take 
up a large area of the screen. 
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Each of these factors was measured by timing the users as they completed the tasks. 

Additionally for the evaluation of the custom interface and Wii controller the number of 

errors the users made as well as their accuracy (measured in the number of menu 

elements users missed the required elements by) was recorded. Each user filled out a 

questionnaire following their evaluation to gather subjective data. Users were requested 

to comment on: 

 Each interfaces intuitiveness/ease of use. 

 Particular frustrations encountered. 

 The perceived responsiveness of each interface. 

 Any physical strain experienced. 

 Their experience with similar interfaces, devices, and the Nintendo Wii. 
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7.3 Results 

 

Figure 15 shows the average time users took to complete tasks using the three different 

systems. The tasks have been separated based on the factors above. Because of the 

differences in the interface styles the number of actual menu element selection tasks 

performed per task is not consistent. For example, to select the rendering mode menu in 

the VRMenu interface was a single selection because it is a top level option. In the custom 

interface two selections are required as the option is part of the Visualization submenu. 

Additionally, tasks in the VRMenu interface were timed per selection whereas for the 

custom interface timings were taken from the beginning of a complete task up to the final 

selection. To reflect this difference, for menu selection tasks, an adjusted Wii value has 

been included which crudely divides the time take for these total tasks by the number of 

selections required. 
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Figure 15: The average time users took to complete the various types of task. The 
average time for menu selection tasks using the Wii controller has been adjusted to 
reflect the number of number of menus traversed. 
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During the evaluation, the tasks required users to adjust the parameters of various 

properties. Some tasks required the user to select a specific value (e.g. set the isolevel to 

value 10) while others required the user to pick an approximate value (e.g. set the 

orthoslice plane value to around 50%). This was designed to reflect the exploratory 

nature of visualization interaction. The user may not know in advance the exact value 

they wish to use but are instead proceeding by trial and error to find the correct value. 

When using the custom interface, users were asked to use the standard value selection 

ring for some of the precise selections and use dial-pad for the others. A breakdown of 

timing results for these value selection tasks is shown in  Figure 16. 
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Figure 16: A breakdown of the average time taken to complete value adjustment 
tasks. During the evaluation users were asked to use the dial-pad feature of the 
custom interface to select a precise value in some of the tasks and use the value 
selection ring in others. The Wii average value is an average of all the value selection 
tasks regardless of the selection mechanism employed. 
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 Experience Users First Time Users All Users 

Average number of errors 
made per selection 

0.25 0.57 0.44 

Average number of 
inaccuracies per selection 

0.25 2.04 1.33 

Average magnitude of 
inaccuracies 

0.28 2.66 2.00 

 

The number of errors (selecting the wrong menu element), the number of 

inaccuracies (instances where the user missed the desired menu element), and the 

magnitude of those inaccuracies (measured by the number of elements missed by) are 

shown in Table 2. These measurements were taken only for the custom interface.  

Experienced users made, on average, 50% less errors per selection compared to 

first time users.  First time users missed their targets, on average, just over 8 times as 

many times as experienced users and the margin by which they missed was over 10 times 

larger. While the sample size for this evaluation was very small, it is clear that within that 

sample, experience significantly improved a user’s ability to operate the interface. Fewer 

errors and fewer/smaller inaccuracies will lead to more efficient menu usage and a 

reduction in operating time. Therefore with experienced users it may be expected that 

the menu selection task times would have been reduced for the custom interface and Wii 

controller system. The same observation may be true of the VRMenu interface and the 

Polhemus Fastrak system as most evaluation participants had not used these systems 

before. However, the VRMenu interface is a projection of a 2D style interface into 3D and 

as such users may have been more comfortable using the interface as they have 

experienced this style of interface before. Therefore, the possible improvement in 

selection times gained from experience may not be of the same magnitude for this 

interface. All users have extensive experience in using the mouse device and thus 

Table 2: Measurments taken from users evaluating the custom interface. 
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improvement from further experience for this interface/device combination may be 

lower still.  

7.3.1 Custom Interface and Wii Controller 

All users completed the tasks successfully using this interface/device combination.  All 

users commented that the Wii Controller and custom interface was responsive and 

accurate, while one user also commented that it was not as accurate as a mouse. No 

users complained of any jitter effects. The Wii controller software library succeeded in 

masking the jitter of the gyroscopes without affecting the responsiveness of the 

controller. No users experienced any noticeable latency between their physical actions 

and the corresponding movement onscreen. Although the evaluation only took a short 

amount of time, no users experienced any serious physical strain. Two users initially 

found manipulating the camera was forcing them to move the controller into 

uncomfortable positions. However, after some practise using the interface they began to 

take advantage of the relative control system, i.e. releasing the camera control once an 

uncomfortable position had been reached, returning to a comfortable position, and 

continuing from there.  

The camera controls were well received by those people with 3D interface 

experience. Two users with no experience of working in a 3D environment really 

struggled to position the camera, generally reverting to using a random movement trial-

and-error approach.  

Those users who had previous experience of the Nintendo Wii system had trouble 

adjusting to the movements required. The Nintendo Wii typically requires large fast 

movements in games (measuring responses with the accelerometer) and uses the IR 

pointing mechanism for menus. This led to these users using a mixed of positional 
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movements and pointing techniques whilst carrying out the tasks. Interestingly, although 

these users were operating this interface as if the IR sensor and accelerometers were in 

use, they managed to complete the tasks and had no complaints regarding the interface. 

Evidently the design of the menus emulates a pointing device to such an extent that the 

users did not perceive a difference. While this was not the intention of the interface it is a 

helpful side effect if users are able to familiarise themselves with the interface more 

quickly because it emulates an interface style they already know. Regarding positional 

movement, it was noted that when users were moving the controller rather than rotating 

it, they did actually unknowingly rotate the controller naturally. This caused a response 

from the interface, reinforcing the user’s impression that positional movement was 

required. The unintended rotations actually matched what the user was attempting to 

achieve with positional movement. This was an unintended but welcome result. For 

example, when trying to zoom in and out, the users were moving the controller forwards 

and backwards. However, when moving the controller forwards they also naturally tilted 

the device down and tilted it up when moving it toward themselves.  This causes the 

correct response from the interface. While this is not the most efficient way to use the 

interface and will cause unnecessary strain in the long term, it does indicate that the 

movements required are intuitive to the user. 

7.3.2 VRMenu and Mouse/Keyboard 

All users completed the tasks successfully using this interface/device combination. The 

mouse was perceived to be the most accurate device of the three as expected. There 

were also no reports of any physical discomfort. The camera controls received a lot of 

criticism from first time users. Experienced users were able to use keyboard shortcuts to 

change between camera modes. The alternative was to select the modes from a toolbar. 

In line with expectations, rotations proved difficult using the mouse. This was 
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compounded by the fact that the interface translates the velocity of the mouse when the 

mouse button is released into the velocity of the object. Therefore, if the mouse is not 

stationary when the button is released the object continues to move. Several users 

managed to lose the object from view in this way. Users highlighted negatively the large 

number of small movements required with the mouse to achieve the required camera 

positions. This was caused both by the need to translate 2D movement into 3D and 

because of the limited space afforded by the mouse pad. 

7.3.3 VRMenu and Polhemus Fastrak 

All users completed the tasks successfully using this interface/device combination. 

During this evaluation, two problems with this interface were identified which could be 

solved without totally redesigning the interface: 

1. Destructible menus; because the menus are objects within the scene, they 

can be selected and manipulated as any other object can. Thus they can be 

rotated and moved. Some users managed to accidentally select parts of the 

interface and alter their positions/orientations, effectively destroying the 

menu. This could be solved by restricting general interaction to scene 

objects. 

2. Intermediate value selection; the value selection slider bars can be set in 

two modes. One where each movement triggers an update of the network 

and the current value display. This can causes long load times for every 

slight movement. The other mode updates the network only when the user 

releases control. Unfortunately the current value is also not updated until 

this time so the user cannot see what value they are selecting until after 

they select it. This leads to multiple selections as the user tries to find the 
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correct value. A mode is needed where the network is not updated until the 

user releases control but the current value indicator is updated for every 

movement.  

Users found camera manipulation with this device to be difficult. As shown in Figure 

15, users were actually slower using this device for camera manipulation than when using 

the mouse. This is surprising given the 3D nature of the Polhemus Fastrak device and the 

fact that the camera model was almost identical to the one used in the custom interface. 

Some users commented that the ergonomics of the device and the wire interface was 

causing problems for them both when manipulating the camera and when pointing. The 

grip used on the controller does not match the grip one would use when pointing a wand. 

So the physical grip did not match the virtual representation.  

7.4 Summary 

This user evaluation serves to prove the concept that inertial sensors can be used for 

visualization control. The results above show that the custom interface coupled with the 

Wii controller is a match for two existing interface/device combinations when measuring 

time to complete tasks. It is hoped that the efficiency of the custom interface is an 

improvement on existing designs. Unfortunately, this claim remains untested. 

Subjectively however, users did find the custom interface easier to use. A more in depth 

evaluation with a larger group of users is needed to make any further comment about the 

performance of the interface. 

One interesting point is that of user experience. All users in the evaluation have had 

years of training while using mouse devices and interfaces deigned for mouse input. Some 

users involved have had experience with the Wii controller (although never used in this 

way) and/or the Polhemus Fastrak device but not to the extent of the mouse experience.  
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More evaluation is needed to assess whether with further use and training, the 

performance of users with the 3D input devices would improve. The initial tests above 

suggest that even with a small amount of experience (compared to experience gained 

with a mouse) user performance was noticeably better. However, a very small sample 

was used in the evaluation and a larger group would need to be evaluated over a longer 

period to certify this claim.  
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8 Conclusions and Future Work 

 

This project has shown that inertial sensors can be successfully used to control 

visualization applications. Software has been developed that allows the Wii controller to 

be used within the trackd framework and a custom interface was developed to allow 

visualization control using solely orientation data.  

The developed interface outperformed (in terms of time) the existing VRMenu 

interface when used with a more expensive 3D tracking device for all types of task 

analysed (if the adjusted metrics are used) in the small final evaluation performed. The 

custom interface was also very near to the performance of the mouse controlled 

interface for application control tasks and outperformed it for camera manipulation tasks. 

However, further evaluation is needed to cement these claims. Qualitative feedback 

suggests that users preferred the custom interface overall. Metrics such as efficiency 

(number of button presses and amount of user movement), memory load, and physical 

strain were only improved upon in the custom interface theoretically. Further evaluation 

is needed to prove these improvements, although testing for these metrics is typically 

difficult.  

To take the custom interface forward and improve upon the design a deeper 

evaluation must take place. A longer user trial of the interface within a real visualization 

environment will allow better understanding of the deficiencies of the interface. Various 

features such and audio and haptic (vibration) feedback should be investigated to 

determine their effect on user performance. 

Further work is needed to make use of the accelerometer data. Either more 

sophisticated techniques, such as a Kalman filter, need to be employed to generate 
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accurate positional data, or the acceleration data should be used in another way.  One 

possible use is in the generation of gesture data, this is the technique used within the 

Nintendo Wii itself to make use of the accelerometer data. 

 The ability for the custom interface developed to be used in other 3D applications 

beyond visualization should be investigated. Many applications do not require more 

interaction methods than the interface currently provides. Lack of full symbolic input is 

the interfaces largest current deficiency in the author’s opinion if it is to be used in other 

applications. The dial-pad interface should be extended as suggest to bring full symbolic 

input to the interface. Also, the custom interface itself needs to be integrated into an 

existing visualization application such as AVS/Express. 
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