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Abstract

The Finite-Difference Time-Domain (FDTD) method is a computational technique for
modelling the behaviour of electromagnetic waves in three-dimensional space. When
executed to solve real-world problems the FDTD method is characterised by long ex-
ecution times involving a large amount of data organised into matrices. The FDTD
method exhibits ample data parallelism, and parallel computing techniques are fre-
quently used to reduce the execution time of FDTD computations. This project ex-
plores the opportunities for accelerating the computation of the FDTD method using
two types of commonly available parallel hardware.

First, the Streaming SIMD Extensions (SSE) capability of the x86 processor ar-
chitecture is considered. The SSE capability of processors based on this architecture
allow a single instruction to be applied to multiple sets of data simultaneously. This
project investigates the possibility of using SSE to accelerate the FDTD method by
performing calculations for multiple matrix elements with a single instruction.

Second, general-purpose computing on graphics processing units (GPUs) is con-
sidered. As the hardware used in GPUs has become less specialised, they have come
to resemble general-purpose, massively parallel processors. Typical modern GPUs
have hundreds of processor cores which operate concurrently, offering the potential to
greatly accelerate computations with sufficient parallelism. This project investigates
the possibility of accelerating the FDTD method using GPU computing.

Both hardware technologies are evaluated for the speedup they offer to the FDTD
method, as well as the complexity of their implementation.
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Chapter 1

Introduction

1.1 Project description

The Finite-Difference Time-Domain (FDTD) method, developed by Kane Yee in 1966,
has become a popular method for solving electro-dynamic problems. The FDTD
method is characterised by long computations over large amounts of data organised
into matrices, where a small number of calculations are performed repeatedly for each
element in each matrix. Due to significant data independence between the calculations
for each point in each particular matrix, the FDTD method gives considerable oppor-
tunities for parallelism. The algorithms of the FDTD method form the basis of this
project.

Single Instruction Multiple Data (SIMD) is a parallel programming paradigm where
multiple data items are subject to the same machine instruction simultaneously. This
is in contrast to the common Single Program Multiple Data (SPMD) paradigm. In
SPMD, multiple instances of the program run in different threads or processes with
each instance operating on a different part of the data. The program instances run
independently from each other except where explicit synchronisation exists in the pro-
gram. In a SIMD program, individual instructions are applied to multiple data items
during a single instruction issue on the hardware.

Starting with the introduction of MMX technology in 1996, x86 architecture pro-
cessors have included SIMD capabilities in hardware (MMX is an initialism with no
official expansion). Current generations of x86 processors have an extended version
of these capabilities known as Streaming SIMD Extensions (SSE). There are multi-
ple generations of SSE, with each generation adding additional functionality, but in
general SSE allows x86 processors to perform arithmetic operations on multiple sets

12



1.2. PROJECT SCOPE 13

of operands simultaneously in a SIMD manner. For example, two double-precision
floating-point additions may be performed concurrently with a single instruction. This
effectively doubles the throughput of the processor compared to issuing one instruction
for each addition operation.

Recently, Graphics Processing Unit (GPU) hardware has become capable of run-
ning general purpose computations. As GPU hardware has evolved from fixed func-
tionality pipelines to programmable massively parallel processing units, they have be-
come an attractive target for scientific calculations. The term for this is General Pur-
pose computing on Graphics Processing Units (GPGPU). GPUs have very high theo-
retical performance bounds for single-precision floating point arithmetic. More recent
GPU hardware also has very high theoretical double-precision floating point perfor-
mance. The actual performance achieved depends on the suitability of the algorithm
for GPGPU, and the ability of the programmer to optimise the algorithm for the given
hardware.

This project assesses both the performance improvements and the implementation
complexity of applying both SSE hardware and GPU hardware to the FDTD method.
There is benefit in reducing the execution time of applications of the FDTD method,
both to increase the speed with which results are obtained for existing models and to
allow larger, more complex situations to be modelled which would previously have
been considered impractical due to the length of time required for execution.

1.2 Project scope

The starting point for this project is a simple Fortran based implementation of the
FDTD method based on an existing implementation provided by the project supervi-
sor. There are many aspects to the FDTD method which can differ based on the exact
real-world scenario being modelled, and these aspects can increase or decrease the
complexity of the implementation. Examples of variable aspects of the FDTD method
include the way in which the source of the electromagnetic signal is modelled, the
boundary conditions applied at the edges of each matrix, and the material being mod-
elled. In this project, a basic form of the FDTD method is used including a hard-source
signal at a single point, a Perfect Electric Conductor boundary condition, and the rep-
resentation of the entire problem space as a vacuum. The algorithm being used in the
initial Fortran implementation is described further in Section 3.1.

SSE instructions are used to optimise the calculations which implement the FDTD
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method equations and are repeated iteratively over each matrix. This is done by in-
tegrating routines written in C into the existing Fortran implementation, with the aim
of minimising the amount of alteration required. The SSE implementation is executed
on three different x86 architecture processors. The results show that the performance
differs greatly on each processor, and the reasons for these differences are investigated.

The GPGPU based implementation is written from scratch using NVIDIA’s CUDA
technology. It is designed to implement exactly the same FDTD model as the Fortran
and SSE based implementations. The CUDA implementation is developed through
gradual improvement from a sequential approach to a multi-threaded approach using
the two-level hierarchy of thread organisation used to express parallelism in CUDA.
The GPGPU implementation is executed on both Tesla hardware (the original NVIDIA
architecture for GPGPU) and Fermi hardware (a more recent architecture with specific
improvements aimed at GPGPU). The GPGPU results are compared to both the orig-
inal Fortran implementation and the SSE optimized implementation in order to assess
the performance advantage offered by each.

1.3 Dissertation overview

This document is structured to broadly reflect the order in which the project progressed:

• Chapter 2 provides in depth background information on the FDTD method, SSE
instructions, and the evolution of GPGPU. In each case, the key information from
the literature is presented and the advantages and disadvantages are discussed.

• Chapter 3 describes the specifics of each implementation, including the reasons
for choosing particular approaches. First, the details of the FDTD implementa-
tion used in this project are presented. Following this, the changes required to
implement the same FDTD approach using SSE instructions and using CUDA
technology for GPGPU computing are presented.

• Chapter 4 presents the performance results of the various implementations. Where
interesting or unexpected results are observed, these results are explored in fur-
ther detail. A number of different configurations including different hardware
and different versions of each implementation are presented and compared.

• Chapter 5 summarises the project, in terms of the work performed and the find-
ings observed from the experiments. Further developments which could build



1.3. DISSERTATION OVERVIEW 15

on the work in this project are discussed.



Chapter 2

Background and Literature

2.1 The Finite-Difference Time-Domain method

The ability to accurately model electromagnetic radiation has a wide range of techno-
logical applications. Examples include modelling the Earth’s electromagnetic field in
the domain of geophysics, detection of breast cancer using ultrawideband radar, and
military defence [1].

Modelling of electromagnetic fields is done through calculating solutions to Maxwell’s
equations [1] [2] [3]. Maxwell’s equations in an isotropic medium are [2] [3] [4]:

∇× E = −∂B
∂t

(2.1)

∇×H =
∂D

∂t
+ J (2.2)

Where E is the electric field and H is the magnetic field. D is electric flux density,
B is magnetic flux density, and J is the conduction current density [4]. Given the
relationships D = εE and B = µH (where ε is permittivity and µ is permeability) and
taking J = 0 (as is the case in a source free medium) these equations can be rewritten
as six partial differential equations, shown in equations 2.3 to 2.8 [4]:

∂Hx

∂t
=

1

µ

(
∂Ey

∂z
− ∂Ez

∂y

)
(2.3)
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∂Hy

∂t
=

1

µ

(
∂Ez

∂x
− ∂Ex

∂z

)
(2.4)

∂Hz

∂t
=

1

µ

(
∂Ex

∂y
− ∂Ey

∂x

)
(2.5)

∂Ex

∂t
=

1

ε

(
∂Hz

∂y
− ∂Hy

∂z

)
(2.6)

∂Ey

∂t
=

1

ε

(
∂Hx

∂z
− ∂Hz

∂x

)
(2.7)

∂Ez

∂t
=

1

ε

(
∂Hy

∂x
− ∂Hx

∂y

)
(2.8)

Yee in 1966 introduced the Finite-Difference Time-Domain (FDTD) method for
solving Maxwell’s equations [2]. The FDTD method has become a popular approach
to solving Maxwell’s equations through computation [1]. Taflove 1998 and 2005 pro-
vide very comprehensive coverage of developments to the FDTD method since its
original introduction [1] [5]. The fundamental basis of Yee’s approach is to use finite-
difference approximations of equations 2.3 to 2.8 [2] [1]. The space being modelled
is discretized into a three-dimensional grid of points [2]. In Figure 2.1, the cube rep-
resents a single point in space following the discretization. The electric field (E) com-
ponents run parallel with edges of the cube, while the magnetic field (H) components
run perpendicular to the faces of the cube. This means that the E and H components
of each point in the grid are interleaved such that each E value is surrounded by 4 H

values and vice versa [2] [1]. For example, in Figure 2.1 Hz runs perpendicular to
the top face of the cube, and is surrounded by 2 edges representing Ex and two edges
representing Ey. Since the dimensions of the cube are one step in space in each axis,
the distance between Hz and the edges representing Ex and Ey is one half of a step in
space.
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Figure 2.1: Yee’s positioning of field components [2]

The values of E and H are calculated at half-time intervals, such that at each half-
step in time either E is calculated from the previous values of H or vice versa [4] [1].
Discretization is performed with respect to time (∆t) and space (∆x, ∆y and ∆z) to
yield equations 2.9 to 2.14 [4] [1].

H
n+ 1

2
x (i,j+ 1

2
,k+ 1

2
) = H

n− 1
2

x (i,j+ 1
2
,k+ 1

2
) (2.9)

+
∆t

µ(i, j +
1

2
, k +

1

2
)∆z

[
En

y (i,j+ 1
2
,k+1)− En

y (i,j+ 1
2
,k)

]

+
∆t

µ(i, j +
1

2
, k +

1

2
)∆y

[
En

z (i,j,k+ 1
2
)− En

z (i,j+1,k+ 1
2
)

]

H
n+ 1

2
y (i+ 1

2
,j,k+ 1

2
) = H

n− 1
2

y (i+ 1
2
,j,k+ 1

2
) (2.10)

+
∆t

µ(i+
1

2
, j, k +

1

2
)∆x

[
En

z (i+1,j,k+ 1
2
)− En

z (i,j,k+ 1
2
)

]
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+
∆t

µ(i+
1

2
, j, k +

1

2
)∆z

[
En

x (i+ 1
2
,j,k)− En

x (i+ 1
2
,j,k+1)

]

H
n+ 1

2
z (i+ 1

2
,j+ 1

2
,k) = H

n− 1
2

z (i+ 1
2
,j+ 1

2
,k) (2.11)

+
∆t

µ(i+
1

2
, j +

1

2
, k)∆y

[
En

x (i+ 1
2
,j+1,k)− En

x (i+ 1
2
,j,k)

]

+
∆t

µ(i+
1

2
, j +

1

2
, k)∆x

[
En

y (i,j+ 1
2
,k)− En

y (i+1,j+ 1
2
,k)

]

En+1
x (i+ 1

2
,j,k) = En

x (i+ 1
2
,j,k) (2.12)

+
∆t

ε(i+
1

2
, j, k)∆y

[
H

n+ 1
2

z (i+ 1
2
,j+ 1

2
,k)−Hn+ 1

2
z (i+ 1

2
,j− 1

2
,k)

]

+
∆t

ε(i+
1

2
, j, k)∆z

[
H

n+ 1
2

y (i+ 1
2
,j,k− 1

2
)−Hn+ 1

2
y (i+ 1

2
,j,k+ 1

2
)

]

En+1
y (i,j+ 1

2
,k) = En

y (i,j+ 1
2
,k) (2.13)

+
∆t

ε(i, j +
1

2
, k)∆z

[
H

n+ 1
2

x (i,j+ 1
2
,k+ 1

2
)−Hn+ 1

2
x (i,j+ 1

2
,k− 1

2
)

]

+
∆t

ε(i, j +
1

2
, k)∆x

[
H

n+ 1
2

z (i− 1
2
,j+ 1

2
,k)−Hn+ 1

2
z (i+ 1

2
,j+ 1

2
,k)

]

En+1
z (i,j,k+ 1

2
) = En

z (i,j,k+ 1
2
) (2.14)

+
∆t

ε(i, j, k +
1

2
)∆x

[
H

n+ 1
2

y (i+ 1
2
,j,k+ 1

2
)−Hn+ 1

2
y (i− 1

2
,j,k+ 1

2
)

]

+
∆t

ε(i, j, k +
1

2
)∆y

[
H

n+ 1
2

x (i,j− 1
2
,k+ 1

2
)−Hn+ 1

2
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Note that due to the half stepping in both time and space the coordinates in equa-
tions 2.9 to 2.14 lie at non-integer values. In order to easily lay these out in a data struc-
ture for a computation, they are required to be integer values. This can be achieved by
placing Ex(0,0,0) , Ey(0,0,0), Ez(0,0,0), Hx(0,0,0), Hy(0,0,0) and Hz(0,0,0) as in Figure 2.2 [3].
The components of E and H are variously offset by half a step in the 3 axes of space
in order to remove the fractional indices.

Figure 2.2: Placement of Ex(0,0,0) , Ey(0,0,0), Ez(0,0,0), Hx(0,0,0), Hy(0,0,0) and Hz(0,0,0) to
allow integer coordinates [3]

This offsetting yields equations 2.15 to 2.20 [4]. The basis of the FDTD method
is iteratively solving each equation for each point in the grid, where each iteration over
the entire grid represents a single time step.

Hn+1
x (i,j,k) = Hn

x (i,j,k) +
∆t

µ(i, j, k)∆z

[
En

y (i,j,k)− En
y (i,j,k−1)

]
(2.15)

− ∆t

µ(i, j, k)∆y
[En

z (i,j,k)− En
z (i,j−1,k)]

Hn+1
y (i,j,k) = Hn

y (i,j,k) +
∆t

µ(i, j, k)∆x
[En

z (i,j,k)− En
z (i−1,j,k)] (2.16)
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− ∆t
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Many FDTD problems are classified as open regions, meaning they extend indefi-
nitely in the spatial domain [1]. A computer can only store and process a finite amount
of data, and therefore the spatial domain needs to be limited [1]. The spatial domain
is extended to the size necessary to enclose the object being modelled, and a boundary
condition at the edges of this domain is used to simulate infinite size [1]. The pur-
pose of the boundary condition is to suppress reflection of outgoing waves. Where the
problem space is represented as matrices, this means manipulating the values at the
faces of the matrices to give the results expected from infinite space. The boundary
condition must simulate open space to the extent necessary to ensure that the FDTD
computation produces results to the required level of accuracy for the given applica-
tion [1]. The common term for such a boundary condition is an absorbing boundary
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condition (ABC) [3]. Material ABCs model the existence of a lossy material around
the spatial domain to dampen outgoing waves [5]. This means padding the matrices in
each direction with additional values, where the values of the padding are set to model
the lossy material. A commonly used material ABC is the Perfectly Matched Layer
(PML) boundary condition technique which is particularly effective at absorption and
therefore at achieving high accuracy [5]. However, the PML technique requires a
boundary of 6 - 10 layers of padding to be effective [3]. Adding extra layers increases
the memory usage of the computation and this can be is undesirable in some cases [3].
An alternative is non-material ABCs that apply one-way wave equations at the bound-
ary to prevent the reflection of outgoing waves [5] [3]. These do not require the
additional boundary layers required by the PML technique but are not as effective at
preventing reflection [5] [3]. There is a trade-off between minimising memory usage
and achieving high accuracy when choosing a boundary condition approach.

In order for an FDTD computation to be valid, the size of the temporal step ∆t

and the spatial step ∆s must satisfy the Courant Friedrichs Lewy (CFL) Condition [3].
Figure 2.3 shows instances where the condition is and is not met. The small circles
represent the spatial grid where the distance between each circle is ∆s. The larger
circles show the propagation of a wave at time n∆t and (n+1)∆t (that is, a single step
in time). In instance (a), the wave moves less that one spatial step for each time step.
This results in a stable solution [3]. In instance (b), the wave moves more than one
spatial step for each time step [3]. This results in an unstable solution. In general for a
stable solution a computation must satisfy the CFL condition shown in equation 2.21
(where c represents the speed of light) [3].

∆t ≤ 1

c

(
1

∆x2
+

1

∆y2
+

1

∆z2

)− 1
2

(2.21)

Adding higher resolution to an FDTD computation can give more accurate results.
A higher resolution means decreasing the value of ∆s and therefore using more points
to represent the same amount of space, which increases the memory usage and the
amount of computation required. Additionally, due to the CFL condition, decreasing
the value of ∆s requires the value of ∆t to be decreased to a value which satisfies
equation 2.21 (where ∆x, ∆y and ∆z are equal to ∆s). This means more iterations are
required to represent the same length of time in the computation, further increasing the
computational cost. As a result, the FDTD method is characterised by large memory
requirements and long execution times.
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Figure 2.3: Representation of the Courant Friedrichs Lewy Condition [3]

The long execution times required to perform an FDTD computation can be miti-
gated by exploiting concurrency in the algorithm. Looking at equations 2.15 to 2.20,
it can be seen that each component of E is dependent on itself and components of H
but not on other values of E. Similarly, each component of H is not dependent on
any other component of H. This means that all the components of E (an x, y and z
axis value for every point in the spatial domain) can be independently calculated, and
similar can be done with the components of H. Since the calculations are independent
from one another they can be easily parallelised, with synchronisation only required
when calculations for all of E or all of H have been completed. For example, Guiffaut
and Mahdjoubi, 2001 present a parallel FDTD implementation using MPI (MPI stands
for Message Passing Interface, and is a standard tool for performing parallel computa-
tion on distributed memory clusters) [6]. They show that on a spatial grid of 60 × 60
× 50, using 200 time steps, their method achieves an efficiency of greater than 80%
with up to 20 processors, meaning a maximum speedup close to 18 compared to the
execution time on a single processor [6]. This result supports the conclusion that the
FDTD method is a good candidate for acceleration through parallel execution.
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2.2 Streaming SIMD extensions

2.2.1 Introduction to SIMD

A conventional single processor architecture such as the Intel Pentium 4 can be de-
scribed as “Single Instruction Single Data” (SISD) [7]. SISD processors have one
stream of instructions and one stream of data, and as such execute in a sequential
manner [7]. Conventional multiprocessor systems, including modern multi-core archi-
tectures, provide a number of processing units where each processing unit is able to
execute its own instructions on its own data. A processing unit in this context may
be a separate processor or one core in a multi-core processor, and is identified gener-
ically as the unit of hardware with its own instruction path and data path. This type
of architecture can be described as “Multiple Instruction Multiple Data” (MIMD) [7].
It is possible for the different processing units in a MIMD machine to each execute a
different program, as may be the case in a multi-tasking operating system. However in
high performance computing it is common to use several processing units in a MIMD
machine to execute different parts of the same program, using loops and branches to
determine which part of the program is executed by which processing unit. This is
described as “Single Program Multiple Data” and is a common parallel programming
paradigm used in high performance computing [7]. Shared memory parallel comput-
ing with OpenMP and distributed memory parallel computing with MPI are common
examples of the SPMD paradigm. Since 2003, conventional CPUs have increasingly
been designed and built with multiple cores, to the point where today, the vast ma-
jority of conventional desktop and server CPUs are multi-core and capable of SPMD
execution [8].

An alternative and less common architecture is to have multiple data streams with
a single instruction stream. Multiple execution units within a processor use different
data but are controlled by a single instruction issue unit and as such the execution units
all execute the same instruction synchronously [7]. This is the ”Single Instruction
Multiple Data” (SIMD) paradigm [7]. It allows very fine-grained data parallelism to
be exploited, where multiple data items follow the same execution path in unison as a
series of SIMD instructions are issued [7].

Figure 2.4 shows how a simple 4-element vector addition would be performed on
an SPMD and a SIMD architecture. In the SPMD version two threads are created, each
containing different instructions and operating on a different part of the data. The two
threads can execute in parallel, but are independent of each other. Note that SPMD
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Figure 2.4: Comparison of SPMD and SIMD execution of a vector addition [9]

does not require that hardware is available to run the two threads in parallel. The
threads are a software construct, and if only a single processing unit is available they
can be executed sequentially. In the SIMD version, a single instruction is passed to 4
execution units, which perform the vector addition in parallel with each execution unit
operating on a different part of the array. SIMD requires specific hardware support for
issuing a single instruction synchronously to the multiple execution units, and so is less
flexible than SPMD. However where hardware is available to support SIMD it may be
more efficient than SPMD for the kind of fine-grained parallelism observed in prob-
lems such as vector addition. Software support for creating and managing threads can
cost many CPU cycles, whereas SIMD is performed using native hardware instructions
so software constructs such as threads are not required.
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2.2.2 Capabilities of the SSE instruction set

Starting with the Pentium III in 1999, Intel introduced Streaming SIMD Extensions
(SSE) to the x86 architecture [9]. Thakkur and Huff, 1999 [9] provide detail on
the capabilities and motivations of SSE. SSE adds eight 128-bit wide registers to the
architecture [9]. In CPUs supporting the first generation of SSE, each register holds
four 32 bit floating-point values (single-precision floating-point numbers) [9]. The x86
instruction set is also extended to provide instructions which operate on the additional
registers [9]. The arithmetic instructions provided with the first generation of SSE
are addition, subtraction, multiplication, division, maximum, minimum, reciprocal,
square-root and reciprocal square-root [9]. These instructions are available in scalar or
packed form [9]. Figure 2.5 shows the difference between scalar and packed execution.

Figure 2.5: Scalar and packed execution of SSE operations [9]

In scalar form, the lowest 32 bits of each input register are used in the operation
and the result is stored in the lower 32 bits of the output register. The other 96 bits of
the output register are unaffected. In packed form, each 32 bit section of each input
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register is treated as a separate operand. The instruction is performed on each 32 bit
section, meaning that 4 instances of the operation are performed on different data for
a single instruction. The packed form of the SSE registers therefore provides a SIMD
capability, since the single instruction issued is performed on 4 data items simulta-
neously and synchronously. Note that, as shown in Figure 2.5, the SSE instructions
have a two operand format, meaning that the first input register is also the destination
register.

Huynh, 2003 [10] describes how AMD introduced support for SSE starting with
the Athlon MP processor architecture (MP is commonly interpreted as meaning ’Multi-
Processor’ to reflect the dual processor capability of the architecture). Prior to this,
AMD had their own SIMD architecture extensions called “3DNow!” which were par-
tially compatible with Intel’s SSE architecture [10]. Athlon MP introduced an up-
graded version, called “3DNow! Professional” which was fully compatible with the
SSE instruction set [10]. From this point, developers were able to produce software
optimised with SSE instructions and have these optimisations realised on both Intel
and AMD processors. This effectively means that SSE is a ubiquitous technology on
x86 architecture processors produced since 2003.

Thakkur and Huff state that “Streaming SIMD Extensions enable new levels of
visual realism and real-time video encoding on the PC platform and also enhance the
PC’s video decode, speech recognition, and image manipulation capabilities” [9]. Sim-
ilarly, AMD state on their website in relation to “3DNow!” that “This technology is
designed to produce more realistic and lifelike 3D images and graphics, enhanced
sound and video, and an extreme internet experience” [11]. These statements indi-
cate the motivation for the original introduction of SSE was focused on multimedia
applications. In fact, the ability to execute an instruction which operates on 4 sets of
data simultaneously is also an attractive proposition for scientific algorithms such as
the Finite-Difference Time-Domain method described in Section 2.1. Such applica-
tions perform a large number of arithmetic operations and exhibit a significant amount
of data parallelism. However since the first generation of SSE provides only single-
precision floating-point support, it is of limited use in the field of scientific applications
where double-precision is usually required in order to achieve results with the neces-
sary level of accuracy.

Starting with the release of the Pentium 4, Intel introduced a second generation
of Streaming SIMD Extensions, commonly known as SSE2 [12]. Intel’s technical
information on the Pentium 4 [12] shows that SSE2 provides 144 new instructions
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which operate on the 128 bit registers. These instructions include support for double-
precision floating-point values, and integer values of 8, 16, 32, 64 and 128 bits in
size [12]. Figure 2.6 shows how the 128-bit registers can be divided differently to
support different data types [13]. Floating-point arithmetic can be performed on the
types labelled ‘floats’ and ‘doubles’, while integer arithmetic can be performed on the
other data types [13]. SSE2 instructions therefore allow between 1 and 16 arithmetic
operations with a single instruction, depending on the data type in use.

Figure 2.6: Data types supported by SSE2 instructions [13]

Since double-precision floating-point values are 64 bits in length, a single packed
instruction can perform two double-precision floating-point operations at once. The
same arithmetic instructions are available for packed double-precision floating-point
values as with the original set of instructions for single-precision. Executing a packed
SSE instruction on double-precision floating-point numbers effectively causes the hard-
ware to act as a SIMD architecture with 2 execution units.

The Intel software developer’s manual [14] provides detailed information on the
subsequent generations of SSE, which gradually add additional instructions. For ex-
ample, at the time of writing SSE is at version 4.2 in the newest Intel processors, which
adds text-processing instructions [14]. Since the double-precision instructions added
in SSE2 provide the required arithmetic operations for calculating the equations of the
FDTD method this project focuses on the SSE2 instruction set. As well as identifying
SSE2 as sufficient for the FDTD method, there is an additional advantage in limiting
the scope of the project to SSE2. SSE2 is commonly available on both Intel and AMD
processors, whereas SSE3 and above are less widely implemented. Therefore solutions
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based on SSE2 are more widely applicable, and allow the implementations presented
in Chapter 3 to be executed on a wider range of hardware.

2.2.3 Issues with floating point arithmetic

With the introduction of SSE to the x86 architecture, processors based on this archi-
tecture have two execution paths for performing floating-point arithmetic. The original
Floating Point Unit (FPU) of the x86 architecture is commonly referred to as the x87
FPU [14]. The x87 FPU and the scalar versions of the SSE floating point instructions
perform the same function; the execution of arithmetic operations on two operands to
a single result. Due to differences in the internal operation of the two floating-point
paths, logically identical arithmetic expressions may not produce the same result.

Monniaux, 2008 provides a detailed study of the issues of floating point arith-
metic [15]. The IEEE-754 standard for representing numbers in a floating-point format
is universally adopted in modern processors [15]. In short, the bits used to represent a
floating point value are split into a sign bit, a mantissa, and an exponent. The mantissa
is multiplied by 2 to the power of the exponent to give the represented number. There-
fore the size of the exponent determines the range of numbers available while the size
of the mantissa determines the accuracy. That floating point representations cannot
represent every number with exact precision and should only be treated as approxi-
mations is a well known issue [15]. One might expect that given a universal standard
is in use, running the same algorithm on different hardware would produce the same
approximation as the result. This is not always the case for a variety of reasons [15].

In the case of the x86 architecture, one reason for such discrepancies is that while
both the x87 FPU and the SSE registers conform to the IEEE-754 64-bit double pre-
cision format when results are written to memory, they do not use the same repre-
sentations internally [15]. The x87 FPU uses an 80-bit representation internally, with
the results being reduced to 64-bit precision only when written back to memory [15].
Conversely, the SSE registers use a 64-bit representation at all times [15]. This means
that if several arithmetic operations are combined within the registers of the proces-
sor before a final result is written to memory, this result may differ depending on the
execution path taken. This is demonstrated with the code sample in Figure 2.7 which
performs double-precision floating-point arithmetic on some arbitrary values, chosen
to demonstrate the effect.

When compiled and executed on a machine with a 32-bit Intel Core 2 Duo proces-
sor running Linux using the Gnu Compiler Collection (GCC) with the command line
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double x= ( 1 . 2 3 E−0 8 + 0 . 2 3 ) / 0 . 4 5 E16+ 1 . 1 2 3 4 5 ;
double y= ( 0 . 3 4 E−0 8 + 0 . 1 2 ) / 0 . 1 2 E16 + 1 .5645 ;
double z= ( x+y ) / 7 .654E−20;
p r i n t f ( ” z :\ t %22.19 e\n ” , z ) ;

Figure 2.7: Example of a computation which produces different results on different
floating point paths

flag “-mfpmath=387” (which forces the use of the x87 FPU) the resulting output of the
code in Figure 2.7 is:

3.5118238829370265600e+19.
When compiled again with GCC but with the flag “-mfpmath=SSE” (which forces

the use of scalar SSE instructions) the resulting output is:
3.5118238829370261504e+19
The different internal operation of the CPU for the alternative floating-point paths

leads to slightly different results. In a more complicated algorithm with thousands or
millions of floating-point operations where previous results are reused in further cal-
culations, the effect is likely to be magnified to produce differences of greater signif-
icance. This could cause a problem when producing an implementation of the FDTD
method using packed instructions in the SSE registers. The correctness of any new
implementation will usually be judged by comparing the results to those of an existing
implementation. However these results may not be exactly the same if the existing
implementation executes on the x87 FPU.

The matter is further complicated by the fact that on 32-bit x86 architectures, the
x87 FPU is the default execution path for floating-point arithmetic, while on 64-bit
x86 architectures, the SSE scalar instructions form the default execution path [15].
This means that comparing a new implementation to an existing one may show iden-
tical results on a 64-bit machine but show differences on a 32-bit machine. These
complications were taken into account during the implementations and experiments
conducted for this project, and Section 3.5 investigates the accuracy of the various
solutions.

2.2.4 Existing experiments applying SSE to the FDTD method

Recent research by Yu et. al [16] shows the results of using SSE packed instructions
to accelerate an FDTD application. While not explicitly stated in [16], it is observ-
able from the code samples given and description of the method that single-precision
floating point arithmetic is being used, and therefore each packed SSE instruction is
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performing 4 operations at once. Using a simple ideal test case, they find that the per-
formance is close to 4 times faster when using the packed instructions [16]. However
when a more complex, realistic scenario is used, speedup is reduced to around 1.5 [16].

No literature on using the double-precision functionality of SSE2 to accelerate the
FDTD method was found. Since Yu et. al were able to speedup a test case by al-
most four times using single-precision instructions, it may be possible to produce a
speedup of close to two using the double-precision instructions on a similar test case.
This project will investigate the possibility of accelerating the performance of a simple
double-precision FDTD implementation using the SSE registers on x86 architecture
processors.

2.2.5 Advanced Vector Extensions (AVX)

Intel extended the SIMD capabilities of their processors with the introduction of Ad-
vanced Vector Extensions (AVX) to their architecture code-named Sandy Bridge [17].
The second generation of Intel Core processors were the first to be released based on
Sandy Bridge, at the beginning of 2011 [17]. AVX uses 256-bit registers rather than the
128-bit registers used by SSE [17]. These are not new registers, but rather an increase
in the size of the registers used for SSE [17]. The lower 128-bits of these registers
are able to execute SSE instructions to support existing code [17]. AVX introduces
instructions which allow all 256 bits to be used for SIMD operations. AVX there-
fore allows eight single-precision floating-point calculations or four double-precision
floating-point calculations to be performed with a single instruction [17]. This is
twice the throughput of SSE packed instructions. In addition, AVX improves on SSE
by using a three-operand format, so the results of SIMD calculations do not need to
be written over the top of one of the source operands [17]. AVX provides a similar
capability to SSE (floating-point SIMD operations supported in hardware) but with
increased throughput and additional flexibility.

AMD have included support for AVX in the design of their next generation ar-
chitecture code-named Bulldozer [18]. At the time of writing there are no proces-
sors available based on Bulldozer, however they are expected to become available in
September 2011 [19].

Over time, processors with AVX technology are likely to become increasingly com-
mon, as happened with SSE. Eventually the majority of x86 architecture processors in
use will likely contain either Intel or AMD’s implementation of AVX and it will be
become as ubiquitous as SSE2 is today. However at the present time there are very
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few AVX capable processors available and AVX has not been considered for use in
the implementations in this project. Due to the similarity between the operation of
SSE and AVX, the techniques presented in Chapter 3 for applying SSE to the FDTD
method could also be used with AVX. The increased throughput of AVX compared to
SSE means it is reasonable to assume that an AVX based implementation of the FDTD
method would provide higher performance than the SSE implementations developed
in this project.
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2.3 Computing with Graphics Processing Units

2.3.1 The evolution of GPGPU

The use of three-dimensional (3D) graphics applications for computing in professional
environments, such as government, scientific visualisation, and cinematic effects pro-
duction began in the 1980s [20]. During this time, the Silicon Graphics company pro-
duced specialised 3D graphics hardware aimed at the professional environment [20].
In the mid-1990s, the use of 3D graphics in computer games led to increasingly wide
adoption of graphics accelerators in consumer computing [20]. Early consumer graph-
ics processing units (GPUs) such as the GeForce 256 from NVIDIA were constructed
from a fixed function pipeline consisting of vertex processors followed by pixel proces-
sors, reflecting the common sequence of operations performed by applications when
rendering 3D graphics [21]. As GPU technology evolved over time, the vertex and
pixel processors became increasingly programmable, to allow more and more power-
ful graphics applications to be realised [21].

The availability of programmable pipelines led to interest in implementing compu-
tations for purposes other than graphics on GPUs [20]. The high arithmetic throughput
of GPU hardware meant that general purpose computations performed on GPU hard-
ware had the potential to achieve high performance, making them attractive for compu-
tationally expensive tasks such as those often seen in scientific computing [20]. At the
stage of programmable pipelines, the only way to program a GPU was to use a graph-
ics API (Application Programming Interface) such as OpenGL in order to produce
code which could interface with the graphics hardware [20]. Since such APIs focus
specifically on rendering graphics, general purpose applications had to be expressed
in terms of graphics constructs such as colours and pixels. In this way the GPU was
effectively “tricked” into to executing a general purpose computation as if it was a
graphics workload [20]. The expansion in popularity of general purpose computing
on graphics processing units (GPGPU) was therefore held back by the requirement to
learn a graphics API and by the restrictions on program behaviour enforced by such an
API [20] [8].

Gradually, the functionality of vertex processors and pixel processors converged [21].
Due to the convergence, having separate dedicated hardware on a GPU for both pixel
and vertex processing became undesirable. The overall design cost was greater than
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necessary, since the vertex processor and pixel processor were being separately de-
signed while the result of those designs were becoming increasingly similar [21]. Ad-
ditionally, applications which relied more heavily on one processor type than the other
led to inefficiency in terms of hardware usage [21]. For example, in an application
mainly using vertex processors, the pixel processors would be mostly idle despite being
well-suited to performing the work of the application. Lindholm et. al [21] describe
the design of NVIDIA’s Tesla architecture, which features unified processors. The key
parts of the Tesla design are shown in Figure 2.8. GPUs using the Tesla architecture
are made up of an array of streaming multi-processors (marked SM in Figure 2.8),
where each multi-processor contains a group of streaming processor (SP) cores. For
example, the NVIDIA GeForce 8800 GPU has 16 multi-processors, each containing 8
cores, making 128 processor cores in total. The multi-processors are controlled by the
work distribution units. There are separate work distribution units for vertex and pixel
work, reflecting the fact that these share the same processing hardware resources in the
Tesla architecture.

Figure 2.8: The Tesla unified graphics and computing GPU architecture [21]
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In addition there is a compute work distribution unit for dispatching general pur-
pose work to the array of streaming multi-processors. The addition of an architectural
component dedicated to general purpose computing shows that this type of GPU us-
age was recognised as valuable by NVIDIA when Tesla was designed. Significantly,
in conjunction with the introduction of the Tesla architecture, NVIDIA introduced the
Compute Unified Device Architecture programming model (CUDA) [21] [20] [8].
CUDA is an extension to the C and C++ languages [21]. Note that while Lindholm
et. al [21] refer to the hardware architecture as Tesla and the programming model
as CUDA, the more recent literature from Kirk and Hwu [8] and Sanders and Kan-
drot [20] use the term CUDA more loosely to describe both the architecture and the
programming model. For clarity, this document takes the approach of Lindholm et. al
in using the terms Tesla and CUDA to describe the hardware and programming model
respectively.

CUDA allows a programmer to specify which parts of a program should execute
on the CPU as normal, and which parts can be executed on the GPU [21]. Work to be
performed on the GPU is termed a ’kernel’ [21]. Computations suitable for execution
on a GPU are characterised by massive parallelism and a large number of arithmetic
instructions. A CUDA kernel operates over a grid of data, where a grid is divided
into blocks which are specified in either one or two dimensions. Each block is further
divided into threads in one, two or three dimensions. The maximum dimensions of a
grid and a block are hardware specific [20]. A common limit in current CUDA-capable
GPUs is that each grid may not exceed 65,535 in each dimension, and each block is
limited to 512 threads [20]. This gives a maximum of over 2 trillion threads for a single
kernel, allowing for massively parallel execution.

The threads within a single block are grouped together in collections of threads
called ‘warps’ [8]. A warp typically contains 32 threads [8]. All the threads within a
warp are executed on a single streaming multiprocessor (SM), with each thread being
executed on a different SP core. Since there are 32 threads per warp and 8 cores per
SM, it takes 4 cycles for one warp to complete one instruction. Since an SM has one in-
struction issue unit (marked MT Issue in Figure 2.8) for all the SP cores it contains, the
execution of a warp is similar to the single instruction multiple data (SIMD) paradigm
described in Section 2.2.1. The threads within a warp proceed synchronously, so that
each thread must finish an instruction before all threads are issued the next instruction.
However the operation of threads within a warp is more flexible than typical SIMD
operation. It is possible for threads to branch and execute different code paths from
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other threads in their warps [8]. When a thread is issued an instruction which is not
part of its code path (for example an instruction within an IF block while the thread
has branched to the ELSE block), that thread ignores the instruction. Therefore while
thread execution within a warp is functionally able to support diverging code paths
which SIMD cannot support, performance will be lost when divergence occurs since
it leads to some cores being idle. This method of execution employed by the Tesla
architecture is referred to as “Single Instruction Multiple Thread” (SIMT) [8].

In order to maximise performance and make the most of the multi-processing ca-
pability of a GPU, a programmer must be aware of the limitations of the architecture
and the solutions for dealing with them. Kirk and Hwu [8] and Sanders and Kan-
drot [20] describe the limitations and CUDA best practices in detail. Perhaps the main
factor affecting the performance of a GPU kernel is memory access efficiency [8]. For
example, while an NVIDIA G80 GPU has a theoretical performance of 367 gigaflops
(billion floating point operations per second), its global memory access bandwidth
of 86.7 gigabytes per second limits memory throughput to 21.6 giga single-precision
floating-point data per second [8]. Therefore if the number of arithmetic operations
is equal to the number of global memory accesses, memory will be the limiting fac-
tor. The relationship between arithmetic operations and memory accesses is defined
as the compute to global memory access (CGMA) ratio [8]. In general, increasing the
CGMA ratio will increase the performance of a CUDA kernel [8]. In order to increase
the CGMA ratio, the different memory types of the architecture need to be understood.
Figure 2.9 shows the types of memory available in the Tesla architecture [8].

• Registers are allocated per-thread to store private scalar variables, and allow ex-
tremely fast access due to being on-chip [8]. Each streaming multi-processor has
a limited number of registers to dynamically allocate to threads, so excessive use
of registers will reduce the number of threads that can run simultaneously on the
cores of a Streaming Multiprocessor which may reduce performance [8].

• Shared memory is also on-chip (as shown in Figure 2.8), allowing fast access, but
is shared between all threads in a block [8]. This allows threads within the same
block to cooperate and share data [8]. If threads cooperate to load commonly
used data into shared memory, the overall number of accesses to global memory
can be reduced, which can help increase the CGMA ratio [8].

• Constant memory is memory which is populated before a kernel is executed and
cannot be updated during execution of a kernel. Values in constant memory can
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Figure 2.9: The Tesla device memory model [8]

be cached and broadcast to all threads in a block and therefore reduces mem-
ory bandwidth for certain patterns of memory access [20]. The constant cache
hardware which makes this possible is marked “C Cache” in Figure 2.8. Where
constant memory is used appropriately to store data commonly used by many
threads, it can increase the CGMA ratio [8].

• Global memory is very large and is accessible to all threads in all blocks in a
grid. It is shown in Figure 2.8 as DRAM and is connected to all the SM units. It
has limited bandwidth so will limit performance if used too extensively [8]. It is
possible to optimise the performance of access to global memory through “mem-
ory coalescing” [8].The threads within a warp execute synchronously within a
single Streaming Multiprocessor. If they access consecutive memory locations
at a particular instruction in the kernel function the individual memory requests
are combined into a single larger request. Fetching a large, consecutive block
of memory gives more efficient use of the memory bandwidth [8]. Kirk and
Hwu [8] present a Molecular Visualisation example where rearranging the ker-
nel function from an uncoalesced to a coalesced pattern of memory access in-
creases the overall performance of the algorithm by about 20%.

• Local memory is private per thread but is stored in the global memory so has slow
access times [8]. It is used for private array variables declared by a thread within
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a kernel function [8]. Kirk and Hwu [8] state that “From our experience, one
seldom needs to use automatic array variables in kernel and device functions”.
Where it is necessary to use private array variables within a kernel function,
access time to the arrays will be comparable to the access time of global memory,
but without the ability to optimise with coalescing.

Unlike CPUs, Tesla architecture GPUs do not have any layers of cache between the
processors and the global memory. Therefore the programmer cannot rely on a cache
to mitigate the affects of memory access time. Instead the programmer must reduce
the reliance on main memory and increase the CGMA ratio through careful algorithmic
design, maximising the use of registers, shared memory and constant memory.

The SP cores are multiply-add units, meaning they support basic arithmetic op-
erations only. Each SM also includes two special functional units (marked SFU in
Figure 2.8) to carry out operations such as trigonometric functions and reciprocals
[21]. Since there are fewer SFUs than SP cores on each SM, using many operations
requiring the SFU in a GPU kernel will reduce the parallel throughput of the SM and
therefore reduce the performance of the kernel. The first generation of Tesla archi-
tecture GPUs only supported single-precision floating-point operations [22]. While
this was corrected in the second generation of the architecture, double-precision per-
formance was far below that of single-precision [22]. A more recent major revision to
the architecture, named Fermi, introduces much more comprehensive double-precision
support [22]. Fermi also introduces improvements in the memory system. The shared
memory can be configured as partially user programmable and partially a level 1
cache [22]. A level 2 cache to global memory, unified across all SMs, is also intro-
duced [22]. This means that some of the memory optimisation techniques required
to achieve high performance with the first generations of CUDA capable GPUs may
no longer be required. As a result, a programmer implementing a double-precision
computation targeted at a GPU needs to be aware of exactly what level of hardware
the computation will be executed on in order to know what sort of double-precision
support will be available, and what sort of manual memory optimisation techniques in
the code are justified. While CUDA kernels are functionally portable across different
CUDA capable GPU hardware, the performance of a kernel designed for a particular
GPU may not be matched when run on a different GPU.

While CUDA is a powerful and popular method for developing GPGPU applica-
tions, it has a drawback in that it is specific to NVIDIA hardware. As such, it cannot
be used to develop applications for other vendors’ GPU hardware, or other types of
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massively parallel hardware. The Kronos Group, which is the cross-industry group
which manages the OpenGL graphics library, has developed a cross-platform parallel
computing API called OpenCL [8]. The purpose of OpenCL is to allow the develop-
ment of parallel programs which run on heterogeneous hardware, including GPUs [8].
As such, OpenCL is an alternative to CUDA for developing GPGPU applications [8].
OpenCL is compatible with NVIDIA hardware, but also with hardware from other
vendors such as AMD, who are NVIDIA’s main competitors in the consumer graphics
industry [8].

OpenCL has a data-parallel model which directly corresponds to the CUDA model
[8]. OpenCL uses the term kernel to refer to a program which executes on a GPU, as
with CUDA [8]. The concepts of “grid”, “block” and “thread” from CUDA are termed
“NDRange”, “work item” and “work group” in OpenCL [8]. Functionally, the OpenCL
model for programming a GPU is equivalent to that of CUDA and incorporates the
same memory model [8]. Since OpenCL is designed to target a heterogeneous range
of hardware, device management and starting kernels on devices is more complicated
than with CUDA [8]. CUDA is able to hide some of the complexities of identifying
and initialising devices since it is vendor specific, but with OpenCL the programmer
must handle these tasks explicitly [8].

This project uses CUDA as the technology for developing GPGPU implementa-
tions, since NVIDIA hardware was available for the task, and CUDA is considered
more mature and simpler than OpenCL. However it should be noted that the CUDA
implementations presented in Chapter 3 could also be developed in OpenCL due to
the correspondence between the programming models. The solutions devised in this
project for executing the FDTD method on GPU hardware could be applied to devices
from other vendors by re-implementing the solution in the OpenCL language.

2.3.2 Existing research into GPGPU computing

Amorim et al. 2009 [23] look at the difference between using the OpenGL graphics
library and the CUDA method for accelerating the performance of computations. Their
algorithm is a Jacobi Iteration in the domain of cardiac eletrophysiology, chosen due to
its inherent parallelism [23]. The Jacobi Iteration involves several iterations over a ma-
trix, with each element being updated based on its neighbours, so is somewhat similar
to the FDTD method described in Section 2.1. [23] implements an OpenGL version
using the pixel fragment processor of a programmable GPU to map the computation
in terms of graphics constructs such that each element of the matrix is represented as
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a single pixel. [23] also produces a version of the algorithm in CUDA, and seeks to
optimise it using coalesced memory access and shared memory. The results show that
on less powerful GPU hardware, the OpenGL and CUDA versions perform roughly
the same, but on more powerful hardware, the CUDA version provides better perfor-
mance [23]. [23] also comments that the OpenGL implementation was more difficult
to produce due to the reliance on understanding graphics programming [23]. The
results from [23] support NVIDIA’s own claims about the relative ease of use and
performance benefits of using CUDA for GPGPU computing over the original method
of using existing graphics APIs.

Che et al. 2008 use CUDA to develop and evaluate several computationally de-
manding applications [24]. Their chosen applications are traffic simulation, thermal
simulation and k-means (a statistical method for cluster analysis). Compared to se-
quential CPU execution on a Pentium 4, the results show maximum speedups under
CUDA of 40× for traffic simulation, 6.5× for thermal simulation, and 8× for k-means
on an NVIDIA Geforce 8800 GTX [24]. As well as demonstrating further applications
for which GPGPU with CUDA can provide speedup, the results show how different
the level of speedup is depending on the specifics of the application. Additionally, the
results for traffic simulation show that for small problem sizes the CPU implementa-
tion outperforms the CUDA implementation, but this gradually reverses as the problem
size is increased. The graph demonstrating this is shown in Figure 2.10.

Figure 2.10: Results of traffic simulation from Che et al. [24]

Overall, [24] demonstrates that the level of performance increase which may be
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achieved from a CUDA implementation over a CPU implementation is dependent on
both the characteristics of the application and the problem size over which the appli-
cation is executed.

Yu et. al [16] was discussed in Section 2.2.4 in relation to using SSE to accelerate
the FDTD method. The same paper also addresses the application of CUDA to the
FDTD method. The results from [16] show that they are able to outperform a GPU
with 240 cores using an SPMD parallel approach on 4 CPUs with SSE instructions
(termed ‘Vector Arithmetic Logic Unit’ (VALU) in the paper). Figure 2.11 shows the
performance results from [16].

Figure 2.11: Performance of the FDTD method from Yu et al. [16]

As well as being outperformed by the best performing CPU system, the GPU re-
sults show a sudden drop off in performance once the problem size goes beyond 120
million cells (a cell refers to a single point in the three-dimensional problem space
represented by E and H with values in the x,y and z direction, as described in Section
2.1). This implies that the FDTD method does not scale well when implemented in
CUDA and executed on a GPU, and has negative implications for the suitability of
GPU execution for accelerating the FDTD method.

Adams et al. [25] also presents the results of implementing a GPU version of the
FDTD method. The results from [25] show that the FDTD method performs better on
the GPU at larger problem sizes, since this results in all of the many cores on the GPU
being utilised. [25] states that “Generally if the model space was large enough to keep
the fragment processors busy, the GPU version was always several times faster, even
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for the slowest seven series GPU tested”. It should be noted that [25] does not scale
the experiments to a size which exceeds the memory capacity of a single GPU. In this
circumstance, the costs of moving the data in and out of the GPU in partitions or the
costs of communication between multiple GPUs would be incurred and the continually
improving performance as the problem size increases is unlikely to be maintained.

The results from [16] and [25] are somewhat contradictory in that [16] suggests
that the FDTD method does not scale well on a GPU and is easily outperformed by
CPU implementations, whereas [25] suggests that it is only when scaled up that the
FDTD method does perform well, and that it easily outperforms CPU implementations
at larger scales. The differences between generations of GPU hardware and the issues
of memory bandwidth and optimisation described in Section 2.3.1 may explain the
discrepancies between these results. There are many different ways to implement the
same algorithm on a GPU and many different types of hardware on which to execute
the implementations. Section 3.4 describes the implementation of a CUDA version
of the FDTD method, and investigates which optimisations can be used to maximise
the performance on the available hardware. The performance results of experiments
exploring the various optimisations are presented and discussed in Sections 4.3 and
4.4.



Chapter 3

Implementation Methods

3.1 Standard Fortran implementation

In order to judge the performance of the SSE and GPU implementations, a standard
Fortran implementation of the FDTD method was produced. It was derived from an
existing FDTD implementation provided by the project supervisor. The existing im-
plementation required correction in places and was simplified in order to fit the scope
of this project. This implementation represents each of Ex, Ey, Ez, Hx, Hy and Hz

as a separate three-dimensional matrix where each element of each matrix is a double-
precision floating-point number of 8 bytes. The dimensions of each matrix are denoted
i, j and k. Therefore each point in the discretized representation of space is defined
by 6 values Ex(i,j,k), Ey(i,j,k), Ez(i,j,k), Hx(i,j,k), Hy(i,j,k) and Hz(i,j,k). Each matrix re-
quires a single cell of padding in each direction by way of a boundary condition. The
values of each cell in the padding layer remain at zero throughout the execution. This
emulates a boundary consisting of a Perfect Electric Conductor (PEC). A PEC causes
perfect reflection at the boundaries of the problem space. As described in Section 2.1,
there are a variety of boundary condition techniques available for use in FDTD imple-
mentations. Using a PEC boundary simplifies the implementation compared to more
common techniques such as the Perfectly Matched Layer (PML). PML is an absorb-
ing boundary condition which aims to model signals propagating infinitely into space.
PEC is used here due to its simplicity, since the performance of boundary conditions
is not the focus of this project, and adopting a simple option allows development to
focus on other areas. Figure 3.1 shows the arrangement of one of these matrices. It
represents a problem space of 4 cells in each dimension (shown in light grey) with
a single cell of padding in each direction to form the PEC boundary (shown in dark

43
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grey), making a 6 × 6 × 6 matrix.

Figure 3.1: Representation of a matrix used in the standard FDTD implementation.
The nearest face in the j dimension has been removed to show the internal cells.

Performing a single iteration of the FDTD method for the problem space shown in
Figure 3.1 involves using equations 2.15 to 2.20 to update the values of the 64 internal
cells (4 × 4 × 4) for each of Ex, Ey, Ez, Hx, Hy and Hz. The cells of the PEC
boundary are not updated at any point but are referenced in some of the calculations.
Due to the way Fortran arranges data structures in memory, a single increment in the i

dimension means performing a single step in memory, so for example the cellsEx(1,1,1)

and Ex(2,1,1) are adjacent in memory, with their addresses 8 bytes apart due to the size
of a double-precision floating-point number. Similarly, a single increment in the j

dimension performs n steps where n is the dimension of the problem space including
padding, and a single increment in the k dimension performs n2 steps. Therefore in the
example shown in Figure 3.1, Ex(1,1,1) and Ex(1,2,1) are 6 places apart (48 bytes) and
Ex(1,1,1) and Ex(1,1,2) are 36 places apart (288 bytes). As the matrices grow to more
realistic problem sizes, a single increment in the j or k dimension means a large jump
through memory. Standard practice when iterating over data structures is to single-step
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where possible, in order to make efficient use of cache1.
To exploit single stepping, the algorithm solves the equations for each (i,j,k) index

as shown in the code in Figure 3.2.

! Outer loop f o r number o f i t e r a t i o n s
do i t i m e r = 1 , i tmax
! r e v e r s e d f o r column major ( e f f i c i e n t ) a c c e s s
do k = kmin +1 , kmax −1
do j = jmin +1 , jmax −1
do i = imin +1 , imax −1

ex ( i , j , k ) = ex ( i , j , k ) + d t / pmt∗
( ( hz ( i , j +1 , k)−hz ( i , j , k ) ) / dy − ( hy ( i , j , k+1)−hy ( i , j , k ) ) / dz )

ey ( i , j , k ) = ey ( i , j , k ) + d t / pmt∗
( ( hx ( i , j , k+1)−hx ( i , j , k ) ) / dz − ( hz ( i +1 , j , k)−hz ( i , j , k ) ) / dx )

ez ( i , j , k ) = ez ( i , j , k ) + d t / pmt∗
( ( hy ( i +1 , j , k)−hy ( i , j , k ) ) / dx − ( hx ( i , j +1 , k)−hx ( i , j , k ) ) / dy )

end do
end do
end do

! M a i n t a i n s o u r c e v a l u e
ez ( ( imax −2 ) / 2 , ( jmax −2 ) / 2 , ( kmax−2) /2 ) = −Jz ( i t i m e r )

! r e v e r s e d f o r column major ( e f f i c i e n t ) a c c e s s
do k = kmin +1 , kmax −1
do j = jmin +1 , jmax −1
do i = imin + 1 , imax −1

hx ( i , j , k ) = hx ( i , j , k ) − d t / pma∗
( ( ez ( i , j , k)−ez ( i , j −1,k ) ) / dy − ( ey ( i , j , k)−ey ( i , j , k−1) ) / dz )

hy ( i , j , k ) = hy ( i , j , k ) − d t / pma∗
( ( ex ( i , j , k)−ex ( i , j , k−1) ) / dz − ( ez ( i , j , k)−ez ( i −1, j , k ) ) / dx )

hz ( i , j , k ) = hz ( i , j , k ) − d t / pma∗
( ( ey ( i , j , k)−ey ( i −1, j , k ) ) / dx − ( ex ( i , j , k)−ex ( i , j −1,k ) ) / dy )

end do
end do
end do
! end o f i t e r a t i o n s loop .
end do

Figure 3.2: Standard Fortran implementation of the FDTD method

The i dimension is controlled by the innermost loop, then j, then k, achieving the
single-stepping approach. The variable itimer controls the number of times the FDTD
method is applied to the problem space, thus controlling the length of time modelled
by the algorithm. The values imax, jmax and kmax control the size of the problem
space, and are set to the required dimension of the problem space plus 2 (to provide
the padding of the PEC boundary). imin, jmin and kmin are set to 1. Therefore iterating
from imin+1 to imax-1 and so on iterates over the entire problem space excluding the
padding.

1Since populating a single cache line from memory loads several adjacent bytes, single-stepping
minimises cache misses. Each step requests a data item from the same cache line as the previous step,
except where the end of the cache line is reached.
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Note that in equations 2.15 to 2.20, the values of permittivity (represented by ε)
and permeability (represented by µ) are indexed by (i,j,k). This allows them to vary at
each point in the problem space to model a space containing variable materials. In the
implementation used in this project, the entire problem space is modelled as a vacuum,
so the values of permittivity and permeability are fixed for all points in the problem
space. Permittivity is represented by pmt in the code above, while permeability is
represented by pma. This further simplifies the implementation and reduces the overall
amount of data required by the algorithm.

The values of Ex, Ey and Ez are updated in a separate nested loop from Hx, Hy

and Hz in order to allow a single point of Ez in the middle of the problem space to be
altered in between the calculations for E and those of H for each time increment. This
is the statement in Figure 3.2 under the comment “Maintain source value”. When mod-
elling a pulse at a single point to cause activity in an FDTD implementation, there is
a choice between a hard-source and a soft-source [26]. The hard-source technique ap-
plies an electrical field directly in one direction at a single point, such asEz(i,j,k), where
the values of i, j and k control the position of the pulse within the problem space [26].
When using a hard-source the values to be applied to Ez(i,j,k) at each time step can
be computed in advance. The soft-source technique models applying current at the
point of the source, and requires the value of Ez(i,j,k) to be calculated at each time step
using a complex formula which relies on the current values of Hx and Hy [26]. The
soft-source method is more complicated to implement than the hard-source method,
although it produces better accuracy in some circumstances [26]. [26] shows that an
example result from an FDTD execution modelling a vacuum in which the hard-source
and soft-source produce near-identical results. The implementation used in this project
uses the hard-source technique due to its relative lack of complexity, and the the ob-
servation from [26] that it can produce very similar results to the soft-source technique
when modelling a vacuum. The step of updating the source value in between the calcu-
lations for the E matrices and the H matrices is a naturally sequential step which cannot
be parallelised. Using a soft-source rather than a hard-source would be expected to in-
crease the execution time of this sequential step due to the increased complexity, and
would therefore reduce the overall performance benefit of parallelising other parts of
the code. This should be considered with respect to the performance results in Chapter
4, since applying the same parallel programming techniques to implementations using
a soft source may not experience the same benefit.

Since a hard-source is used to model the source signal, the values of the array Jz
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are pre-calculated before the FDTD algorithm begins. Jz represents an electromagnetic
pulse, shaped as shown in Figure 3.3.

Figure 3.3: Shape of hard-source pulse used to excite the problem space

This standard Fortran implementation models the effect of applying this pulse to a
point at the centre of the problem space. All further implementations aim to replicate
this model while accelerating the performance of the calculations of Ex, Ey, Ez, Hx,
Hy and Hz by exploiting the inherent parallelism available in the nested loops of the
code sample above.

3.2 Implementation with SSE instructions in assembly

As described in Section 2.2, x86 architecture processors include Streaming SIMD Ex-
tensions (SSE) to allow an arithmetic instruction to be performed on multiple data
items at once. This is achieved by populating special purpose registers in the processor
with multiple data items and executing instructions using those registers. In general
software development is performed at a higher level than using machine instructions
on specific registers. A compiler is usually relied on to convert the high level code
(such as Fortran) into the appropriate sequence of machine instructions. However in
order to apply packed SSE instructions to the FDTD method the most direct method is
to work explicitly at the lower level and directly specify the use of the SSE registers.

The C programming language provides support for inserting assembly language
instructions into programs. Using the GCC compiler, the keyword asm specifies an
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assembly language sequence within a program [27]. [27] gives the code in Figure 3.4
as an example of the structure of an assembly sequence when using the GCC compiler.

i n t a =10 , b ;
asm ( ” movl %1, %%eax ; ”

” movl %%eax , %0;”
: ” = r ” ( b ) /∗ o u t p u t ∗ /
: ” r ” ( a ) /∗ i n p u t ∗ /
:”% eax ” /∗ c l o b b e r e d r e g i s t e r ∗ /
) ;

Figure 3.4: Example of an assembly language sequence [27]

This simple example moves the contents of the register location representing vari-
able a into the register %%eax and then moves the value from %%eax to the register
location represented by variable b. The variable a is represented by the placeholder %1

and b by the placeholder %0 since b appears before a in the list of inputs and outputs.
The example illustrates the following capabilities of an asm construct:

• Specific registers such as %%eax can be used in instructions when required.

• When it is not desirable to specify registers manually, variables from the C pro-
gram such as a and b can be used. These variables are listed in the input and
output statements and referenced in the assembly instructions as %0, %1 and so
on with the placeholder numbers corresponding to the order of the variables in
the input and output lists.

• Where a specific register such as %%eax is used it is necessary to include it in
the clobber list [27]. This list instructs the compiler that this register is altered
by the assembly sequence so the compiler does not expect its value to preserved
when generating instructions for the high-level language code surrounding the
assembly sequence [27].

• If these rules are followed, complex assembly sequences can be interleaved with
high level language sequences as required to produce correctly functioning pro-
grams.

In general, explicitly adding assembly sequences to code would be bad practice as
it prevents the code from being portable. Whereas C code can be compiled on a wide
array of systems, assembly language is specific to a particular architecture. However in
this case, we are deliberately targeting x86 architecture processors capable of executing
SSE instructions so the use of assembly is acceptable.



3.2. IMPLEMENTATION WITH SSE INSTRUCTIONS IN ASSEMBLY 49

As described in section 2.2.2, there are eight special purpose registers for executing
SSE instructions, each of 128 bits (16 bytes) in size. In assembly programming, they
are named %%xmm0 to %%xmm7 [28]. There are a large number of instructions for
manipulating these registers. These instructions are suffixed as ‘pd’ or ‘ps’ meaning
packed double-precision or packed single-precision respectively. These suffixes indi-
cate how the data in the registers should be interpreted. For example, the instruction
mmaddps %%xmm0 %%xmm1 would interpret the contents of each SSE register as
being 4 single-precision numbers, and perform 4 add operations simultaneously. The
instruction mmaddpd %%xmm0 %%xmm1 would interpret the contents of each SSE
register as 2 double-precision numbers and perform 2 add operations simultaneously.
Since the assembly instructions are below the level of the compiler, such sequences
are not protected from type-casting errors. Therefore if, for example, registers are
loaded with single-precision variables and double-precision instructions are applied to
those registers, the compiler will not catch this and unpredictable results will occur at
run-time.

An important concept when using SSE instructions is that of byte alignment. Each
SSE register is 16 bytes in size, and is most efficiently loaded to and stored from when
using memory addresses which are aligned to a 16-byte boundary. Since each double-
precision floating-point element in each matrix is 8 bytes in size, the elements in the
matrix alternate between being aligned and not. So for example, if Ex(1,1,1) is aligned,
then Ex(3,1,1) and Ex(5,1,1) would also be aligned but Ex(2,1,1) and Ex(4,1,1) would not
be (note that this is using standard Fortran convention, where indexing starts at 1). The
SSE streaming implementations presented here are designed to be correct when the
dimensions of the problem space are a multiple of 2. This gives the property that any
increment or decrement in the index of a matrix in the j and/or k dimensions without
altering the index in the i dimension is guaranteed to maintain alignment or lack of
alignment to a 16 byte boundary. So, for example, if and only if Ex(1,1,1) is aligned,
Ex(1,2,1), Ex(1,1,2) and Ex(1,2,2) are all also aligned. Loading into an SSE register loads
the 16 bytes from the specified address. Therefore loading into an SSE register from
Ex(1,1,1) loads the 8-byte value of Ex(1,1,1) into the lower 64 bits of the register and the
8-byte value of Ex(2,1,1) into the higher 64 bits. It is possible to load on an unaligned
address, but a separate, less efficient instruction is used to do this. By loading and
operating on the values in pairs from aligned addresses, all the variables from each
matrix can be accessed using aligned load instructions. To understand the pattern of
memory access of each step of the FDTD algorithm, the code of the standard Fortran
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implementation can be inspected. This code is given in Figure 3.5.

ex ( i , j , k ) = ex ( i , j , k ) + d t / pmt∗
( ( hz ( i , j +1 , k)−hz ( i , j , k ) ) / dy − ( hy ( i , j , k+1)−hy ( i , j , k ) ) / dz )

ey ( i , j , k ) = ey ( i , j , k ) + d t / pmt∗
( ( hx ( i , j , k+1)−hx ( i , j , k ) ) / dz − ( hz(i+1,j,k)−hz ( i , j , k ) ) / dx )

ez ( i , j , k ) = ez ( i , j , k ) + d t / pmt∗
( ( hy(i+1,j,k)−hy ( i , j , k ) ) / dx − ( hx ( i , j +1 , k)−hx ( i , j , k ) ) / dy )

Figure 3.5: Code showing the memory access pattern of the Fortran implementation

The value of each matrix at a particular (i,j,k) index is updated based on values of
other matrices for the same index and values from other matrices shifted in one of i, j

or k. As described above, the shifts in the j and k dimensions maintain alignment. So in
the code above, if each matrix is byte-aligned at (i,j,k), only the accesses to Hz(i+1,j,k)

and Hy(i+1,j,k) (highlighted in Figure 3.5) are unaligned. Out of 12 matrix accesses in
the Figure 3.5, only the two highlighted will be unaligned if Ex(i,j,k) , Ey(i,j,k), Ez(i,j,k),
Hx(i,j,k), Hy(i,j,k) and Hz(i,j,k) are aligned. By double-stepping the value of i in the
innermost loop, and therefore only considering the aligned (i,j,k) combinations, it can
be ensured that 10 out of 12 of all memory accesses to the matrices are aligned. The
double-stepping is acceptable because at each step the algorithm will now calculate the
result for two elements of a matrix simultaneously, using the packed double-precision
instructions. The operands for Ex(1,1,1) and Ex(2,1,1) are loaded and operated on to-
gether. Once this is complete, the algorithm makes a double-step, jumping to Ex(3,1,1).

Ensuring 16-byte alignment at the start of the matrix in C code is straightforward
when using the GCC compiler. For example the code in Figure 3.6 creates an array in
the normal manner but ensures the beginning of the array is 16-byte aligned.

do ub l e a t t r i b u t e ( ( a l i g n e d ( 1 6 ) ) ) a [ 1 0 0 0 ] ;

Figure 3.6: Achieving alignment in C when using the GCC compiler

Since there is a single element layer of padding around each matrix which is not
operated on, the algorithm does not in fact start at first index (by default (1,1,1) in
Fortran or (0,0,0) in C) for each matrix. With the standard Fortran implementation’s
single layer of padding, the first values to be calculated would be at (2,2,2). If the ma-
trices have been 16-byte aligned, addresses at (2,2,2) are guaranteed not to be aligned,
which breaks the efficient memory access pattern. In order to rectify this, an extra
layer of padding is added only in the i dimension. In the Fortran code indexing in the i
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dimension is altered to start at 0, so the first cell in the matrix is at (0,1,1). This means
that when calculations begin at (2,2,2) this location is aligned to a 16-byte boundary in
memory. The structure of the matrices after this additional layer is added is shown in
Figure 3.7.

Figure 3.7: Representation of a matrix with additional padding in the i dimension to
ensure alignment. The nearest face in the j dimension has been removed to show the
internal cells.

A single line of the Fortran implementation expresses a sequence of arithmetic
operations which require several machine instructions to complete. Consider the cal-
culation for a value of Ex given in Figure 3.8.

ex ( i , j , k ) = ex ( i , j , k ) + d t / pmt∗
( ( hz ( i , j +1 , k)−hz ( i , j , k ) ) / dy − ( hy ( i , j , k+1)−hy ( i , j , k ) ) / dz )

Figure 3.8: Calculation of Ex in Fortran

This line of code expresses 8 arithmetic operations. Each calculation of the FDTD
method has the same 8 operation structure, differentiated only by differing variables
and the replacement of subtractions with additions. The generic structure is given in
Figure 3.9.

The values of dx, dy and dz are constant throughout the algorithm, as are the results
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r e s u l t = r e s u l t + d t / ( pmt o r pma ) ∗ (
( c l a u s e 1 1 op c l a u s e 1 2 ) / ( dx o r dy or dz )

− ( c l a u s e 2 1 op c l a u s e 2 2 ) / ( dx o r dy or dz ) )

Figure 3.9: The general structure of an FDTD method calculation

of dividing dt by pmt (permittivity) and pma (permeability). The divisions can there-
fore be pre-calculated and all of the values preloaded into SSE registers. This is done
during program initialisation using the code given in Figure 3.10.

a s m ( ” movapd %0,%%xmm3 \n\ t ”
” movapd %1,%%xmm4 \n\ t ”
” movapd %2,%%xmm5 \n\ t ”
” movapd %3,%%xmm6 \n\ t ”
” movapd %4,%%xmm7 \n\ t ”
: / ∗ no o u t p u t ∗ /
: ”m” ( ddx ) ,

”m” ( ddy ) ,
”m” ( ddz ) ,
”m” ( ddtbpmt ) ,
”m” ( ddtbpma )

/∗ no c l o b b e r s ∗ / ) ;

Figure 3.10: Assembly sequence for storing constants in the SSE registers

The code in Figure 3.10 loads the 5 values into the highest 5 SSE registers, leaving
the lowest 3 free for completing the arithmetic operations at each step in the algorithm.
Figure 3.11 gives the code for the the calculation of a value ofEx in assembly language.

a s m ( ” movapd %1,%%xmm0 \n\ t ” / / l o a d ( hz ( i , j +1 , k )
” movapd %2,%%xmm1 \n\ t ” / / l o a d hz ( i , j , k )
” subpd %%xmm1,%%xmm0 \n\ t ” / / ( hz ( i , j +1 , k)−hz ( i , j , k ) )
” movapd %3,%%xmm1 \n\ t ” / / l o a d ( hy ( i , j , k +1)
” movapd %4,%%xmm2 \n\ t ” / / l o a d hy ( i , j , k )
” subpd %%xmm2,%%xmm1 \n\ t ” / / ( hy ( i , j , k+1)−hy ( i , j , k ) )
” d ivpd %%xmm4,%%xmm0 \n\ t ” / / d i v i d e by dy
” d ivpd %%xmm5,%%xmm1 \n\ t ” / / d i v i d e by dz
” subpd %%xmm1,%%xmm0 \n\ t ” / / s u b t r a c t t h e two c l a u s e s
” mulpd %%xmm6,%%xmm0 \n\ t ” / / m u l t i p l y by d t / pmt
” movapd %5,%%xmm1 \n\ t ” / / l o a d ex ( i , j , k )
” addpd %%xmm1,%%xmm0 \n\ t ” / / add c a l c u l a t i o n t o ex ( i , j , k )
” movapd %%xmm0,%0 \n\ t ” / / s t o r e ex ( i , j , k )
: ” =m” (∗ r e s u l t )
: ”m” (∗ c l a u s e 1 1 ) ,

”m” (∗ c l a u s e 1 2 ) ,
”m” (∗ c l a u s e 2 1 ) ,
”m” (∗ c l a u s e 2 2 ) ,
”m” (∗ r e s u l t )

/∗ no c l o b b e r ∗ / ) ;

Figure 3.11: Calculation of Ex in assembly language using SSE

The same format of embedded assembly instructions is used to calculate each value
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for each matrix. The pointers for the variables passed into the assembly code are
maintained in standard high-level C code.

The standard implementation described in Section 3.1 is based on an existing im-
plementation in Fortran, and it is desirable to avoid a wholesale rewrite of the program.
It is necessary to use C code to produce the assembly sequences, but procedures written
in C can be called from a Fortran program by following a particular naming conven-
tion and using the GCC compiler to link the compilation units together. This allows
the Fortran implementation to call procedures written in C only when required. Exist-
ing sequences in the program, such as the one which pre-calculates the values of Jz to
model the signal can remain unchanged.

If a procedure in a C source file is named calce then it can be referenced in a
corresponding Fortran program as calce. The use of the under-score in the C code
makes the procedure visible to the Fortran program. The C code for the assembly code
version of the FDTD method contains three such functions: calce for performing a
calculation for all of Ex, Ey and Ez; calch for performing a calculation for all of
Hx, Hy and Hz; and setconstants for pre-populating the values of dx, dy and so on
into SSE registers as described above. Separately calling C code for calculating the E

matrices and the H matrices allows the handling of source values from Jz to remain in
the Fortran program.

Fortran, unlike C, does not include a method for dictating the alignment of data
structures. Therefore in order to keep the matrix initialisation code expressed in For-
tran, it is not possible to dictate 16-byte alignment. If the alignment of any of Ex,
Ey Ez, Hx, Hy and Hz is incorrect, the algorithm will fail due to issuing instruc-
tions which expect alignment on unaligned addresses. Therefore in order to achieve
alignment while keeping the bulk of the implementation in Fortran, it is necessary to
dynamically test the starting address of each matrix and change the starting point of
the algorithm within each matrix accordingly. An example of the code for this is given
in Figure 3.12.

The alignment of the first element in the matrix is simply tested by taking the value
of its address modulo 16. If aligned, the values of imin and imax are used as nor-
mal. If not aligned, the starting point is shifted by one in the i dimension. This means
the FDTD algorithm begins at (3,1,1) rather than (2,1,1), and alignment is maintained
throughout the algorithm. The entire code is parameterised on exitop, exibottom and
equivalent variables for the data structures ey, ez, hx, hy and hz. Therefore when shift-
ing is performed on a matrix, all references to that matrix are also shifted. The effect
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p=LOC( ex ( 0 , 1 , 1 ) )
x= modulo ( p , 1 6 )
i f ( x == 0) then

e x i b o t t o m = imin
e x i t o p =imax

e l s e
e x i b o t t o m = imin +1
e x i t o p =imax+1

e n d i f

Figure 3.12: Testing the alignment of a matrix in Fortran

of this shifting is shown in Figure 3.13.

Figure 3.13: Shifting the problem space to ensure alignment to a 16-byte memory
boundary. The nearest face in the j dimension has been removed to show the internal
cells.

As shown in Figure 3.13, the problem space always has at least one layer of padding
in each direction regardless of whether it is shifted or not. This is sufficient to ensure
the algorithm operates correctly by maintaining a PEC boundary of at least one layer
on each face.

The use of extra padding to facilitate an SSE based implementation adds additional
memory usage to the algorithm. The additional memory used is a small fraction of the
total memory usage of the algorithm, and the results in Section 4.1 demonstrate that
even with this extra memory usage the SSE implementation out-performs the standard
implementation in most cases. However as the problem size grows, eventually a point
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would be reached where the standard implementation would fit into memory but the
SSE implementation would not. This is a consequence of requiring a layer of padding
for the algorithm and requiring alignment of the first element within the problem size to
be aligned in memory. To avoid the need for the extra padding, it would be necessary
to have a facility to specify that the matrix is assigned to an unaligned address in
memory, so that for example while Ex(1,1,1) at the start of the matrix was unaligned,
the first calculated address atEx(2,2,2) would be aligned. A facility to specify unaligned
assignment in memory is not available in C or Fortran using the GCC compiler.

3.3 Implementation with SSE instructions using intrin-
sics

Programming using sequences of assembly language instructions is error-prone and
it is desirable to avoid it where possible. A set of functions known as intrinsics are
provided to simplify the task of programming using SSE instructions. Each intrinsic
function represents a single assembly instruction but allows normal C variables to be
specified as inputs and outputs and gives control of register assignment back to the
compiler. The intrinsics library also provides the data-type m128d which represents
a pair of 64-bit double-precision values stored in a 128-bit register. This simplifies
loading and storing from the matrices in memory to the registers. A pointer of type
m128d pointing to the address of Ex(2,2,2) covers the data at this location and Ex(3,2,2).

A single increment of this pointer changes its target to Ex(4,2,2), so the double-stepping
described in Section 3.2 is achieved with a simple pointer increment operation. The use
of the m128d data-type and intrinsic functions greatly simplifies the implementation.
The FDTD algorithm using intrinsics is structured as shown in the code in Figure 3.14.

m128d temp1= mm sub pd (∗ d h y s h i f t k , ∗dhy ) ; / / ( hy ( i , j , k+1)−hy ( i , j , k ) )
temp1= mm div pd ( temp1 , ddz ) ; / / d i v i d e by dz
m128d temp2= mm sub pd (∗ d h z s h i f t j , ∗dhz ) ; / / ( hz ( i , j +1 , k)−hz ( i , j , k ) )

temp2= mm div pd ( temp2 , ddy ) ; / / d i v i d e by dy
temp2= mm sub pd ( temp2 , temp1 ) ; / / s u b t r a c t t h e two c l a u s e s
temp2= mm mul pd ( temp2 , ddtbpmt ) ; / / m u l t i p l y by d t / pmt
∗dex = mm add pd (∗ dex , temp2 ) ; / / add c a l c u l a t i o n t o ex ( i , j , k ) and s t o r e

Figure 3.14: Calculating Ex using SSE intrinsic functions

Each intrinsic function operates on 128-bit values and therefore calculates the re-
sults for two elements of Ex simultaneously. This code completely replaces the as-
sembly code instructions described in Section 3.2. The same issues of alignment and
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padding described in Section 3.2 apply to the intrinsic function implementation. The
intrinsic functions do not dictate the use of specific registers, freeing the compiler to
attempt optimisation in terms of register usage as is done for standard high-level code
implementations.

Documentation on intrinsic functions and particularly material describing their cor-
rect use is not widely available. The best source of detailed specification is on the Mi-
crosoft Developer Network [29]. This source describes the intrinsic functions avail-
able in Microsoft’s Visual Studio development environment. The same functions are
available using the GCC compiler under Linux when using the header emmintrin.h in
the C source files.

The results in Chapter 4 show that the use of intrinsics rather than direct assem-
bly implementation has no significant impact on performance. In addition, while the
assembly implementation failed to execute when moved from a 32-bit to a 64-bit plat-
form, the intrinsics implementation executed correctly on all platforms. Therefore the
intrinsics approach leads to simpler and more portable code without impacting perfor-
mance, and it is recommended based on the experience of this project that intrinsics
are used rather than assembly programming when implementing algorithms with SSE
instructions.

3.4 CUDA GPU implementation

As described in Section 2.3.1, the CUDA programming language allows programs
to be written to execute on the streaming processor array of an NVIDIA Graphics
Processing Unit (GPU). The aim is to find sufficient parallelism in the algorithms of
the program to maximise the use of the many processor cores on the GPU.

The available graphics hardware initially available for this project was a pair of
Tesla T10 processors on a machine at the University of Kyushu in Japan and there-
fore accessed remotely. While this arrangement was suitable for batch execution of
completed implementations, it was not practical during development where it was de-
sirable to frequently execute intermediate builds to test progress. Subsequently addi-
tional GPU hardware was rented from the Amazon cloud computing service, where it
was desirable to keep the amount of time spent executing on the hardware to a min-
imum to reduce cost. This hardware was therefore also no suitable for development
work. In order allow offline development, a CUDA GPU environment was emulated
on a laptop running Linux. The Ocelot project provides a framework allowing CUDA
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programs to be compiled for a variety of targets, including GPUs from manufacturers
other than NVIDIA and x86 architecture CPUs [30]. The CUDA compiler produces
intermediate output in Parallel Thread Execution (PTX) assembly language which is
then usually further compiled to execute on the GPU [30]. Ocelot provides an alterna-
tive set of tools for compiling CUDA code which includes an emulator for executing
PTX instructions on an x86 processor [30]. By using the capabilities of Ocelot it was
possible to create a CUDA development environment on a laptop without CUDA ca-
pable GPU hardware. From the experience of this project, it was found that execution
of CUDA programs on an x86 CPU using Ocelot is much slower than native execu-
tion on GPU hardware, but is sufficient to allow algorithms to be developed and small
problem sizes to be tested before migrating the code to a GPU environment. Using
this approach greatly improved productivity during CUDA development and reduced
the amount of time required on the University of Kyushu machine, which is a shared
resource. It also reduced the amount of execution time required on the Amazon cloud
computing service which is a costly resource.

In Section 3.2, the stated aim was to maintain as much of the original Fortran im-
plementation as possible with only the essential parts being implemented in C. In the
case of the CUDA implementation, the NVIDIA CUDA compiler is designed only for
C and C++ code. Fortran to CUDA compilers are available, but they are commercially
licenced and less widely available so have not been considered here. Due to the sig-
nificant differences between GPU and CPU programming, the GPU implementations
presented here do not attempt to maintain any of the standard Fortran implementation,
and are reimplemented from scratch in C code, following the pattern of the Fortran
implementation as a guide.

Before developing a parallel version of the FDTD method for execution on a GPU,
a sequential version was created to show that the GPU could be accessed and that its
processors execute the calculations correctly. In the sequential implementation, each
element of each matrix is calculated one after the other, on a single core of the GPU’s
streaming processor array. Before the GPU can manipulate data, it is necessary to move
the data from main memory to the global memory of the GPU. Figure 3.15 shows the
sequence of steps used to achieve this.

Lines 1 and 2 allocate space in main memory for the matrix Ex. The variable VOL

gives the number of elements required in the matrix including padding. Unlike the For-
tran based implementations in Sections 3.1 and 3.2, dynamic allocation of a block of
memory is being used to assign enough memory for each matrix rather than assignment
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1 f p t y p e ∗ex ;
2 ex =( f p t y p e ∗ ) m a l lo c ( VOL ∗ s i z e o f ( f p t y p e ) ) ;
3 f p t y p e ∗ dev ex ;
4 cudaMal loc ( ( void ∗∗)& dev ex ,VOL∗ s i z e o f ( f p t y p e ) ) ;
5 cudaMemcpy ( dev ex , ex ,VOL ∗ s i z e o f ( f p t y p e ) , cudaMemcpyHostToDevice ) ;
6
7 / / . . e x e c u t e FDTD a l g o r i t h m
8
9 cudaMemcpy ( ex , dev ex ,VOL ∗ s i z e o f ( f p t y p e ) , cudaMemcpyDeviceToHost ) ;

Figure 3.15: Moving data from main memory to GPU memory

of memory based on multi-dimensional array indices. This is because the C program-
ming language specification limits the size of array that can be statically allocated.
It would be undesirable to produce an implementation whose scalability was limited
by this factor. Additionally, the data structures need to be moved to the GPU using
pointer-based memory copies regardless of the method of assignment, so assigning the
memory using array notation would not significantly simplify the implementation.

Lines 3 and 4 show the allocation of space in the GPU’s global memory, matching
the size of the space allocated in main memory. Line 5 transfers the contents of main
memory to the GPU, and line 9 transfers the contents of memory from the GPU back
to main memory after the execution of the FDTD algorithm. This sequence of instruc-
tions is performed for each of Ex, Ey, Ez, Hx, Hy and Hz. Provided that the FDTD
algorithm is executed correctly on the GPU between the two memory copy instruc-
tions, this will leave a correct FDTD solution in main memory at the end of execution.
Note that the data type fp type is defined in a macro as being equivalent to the standard
type double. Changing this macro from double to float changes the entire program
from double-precision to single-precision without any further changes to the program
being required.

As described in Section 2.3.1, code to be executed on the GPU is termed a kernel.
There is no guarantee of execution order for the threads launched within kernel, and
while synchronisation between threads within a block is possible, synchronisation be-
tween blocks is not. For this reason, the maintenance of the source value at a single
point of Ez to represent an electromagnetic signal should not be performed within a
kernel. Maintaining the value of the source of excitation requires all threads to stop at
the end of the processing of the elements of Ex, Ey and Ez during a particular time-
step, and to resume again processing Hx, Hy and Hz after the source value is updated
by a single thread. This would require application-wide thread synchronisation which
CUDA does not support within a kernel. In order to work around this, the execution of
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Ex, Ey and Ez for a single iteration in time is implemented as one kernel, and the ex-
ecution of Hx, Hy and Hz as another. This means that there are two kernel executions
for each time-step. This approach does not prevent the possibility of high performance
execution as launching a kernel is a lightweight operation. The large memory copy
operations are the bottle-neck of GPU performance, and these only need to be per-
formed once at the beginning and end of the algorithm regardless of the number of
kernel launches performed. The code which performs time-step iterations, launches
kernels, and updates the source value is given in Figure 3.16.

f o r ( t =1 ; t<=ITERATIONS ; t ++)
{

/ / c a l c u l a t e a l l v a l u e s o f E
eKerne l <<<1,1>>>(dev ex , dev ey , dev ez , dev hx , dev hy ,

dev hz , dx , dy , dz , pmt , d t ) ;
/ / Update s o u r c e v a l u e i n main memory
∗ ( ez+ o f f s e t (DIM/2−1 ,DIM/2−1 ,DIM/2−1))=− j z [ t ] ;
/ / Move upda ted s o u r c e v a l u e t o GPU
cudaMemcpy(& d e v e z [ o f f s e t (DIM/2−1 ,DIM/2−1 ,DIM/2−1) ] ,

&ez [ o f f s e t (DIM/2−1 ,DIM/2−1 ,DIM/2−1) ] ,
s i z e o f ( f p t y p e ) , cudaMemcpyHostToDevice ) ;
/ / c a l c u l a t e a l l v a l u e s o f H
hKernel<<<1,1>>>(dev ex , dev ey , dev ez , dev hx ,

dev hy , dev hz , dx , dy , dz , pma , d t ) ;
}

Figure 3.16: Execution of time-steps in the GPU implementation

Note that there is a memory copy between each kernel invocation for each iteration
in time, to move the updated source value to the GPU. This is moving a single element
(4 bytes for single-precision or 8 bytes for double-precision) so does not expose the
algorithm to the cost of the bottleneck of memory copy performance in the way that
repeatedly copying the whole matrices would. If a soft-source rather than hard-source
(see Section 3.1) was used to generate activity within the problem space, the current
value of Ez at the point of the source would be required for the calculation. In that
case, there would be an additional memory copy to bring the current value of Ez from
the GPU memory to main memory before the calculation of the source value could be
performed. The memory copy overhead of updating the source of excitation for a soft
source would therefore be twice that of a hard source.

The addresses of the data-structures in GPU memory (dev ex, dev ey, dev ez, dev hx,
dev hy and dev hz) are passed into the kernels as pointers, while dx, dy, dz, dt, pma

(permeability) and pmt (permittivity) are passed by value as they are not altered by the
kernels. All of these arguments to the kernel functions are stored as private register
variables for each launched thread.
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Since this is a sequential implementation, each kernel is launched as a single block
containing a single thread, as denoted by <<< 1,1 >>> in the kernel launch state-
ment. When a kernel is launched with parameters <<< a,b >>>, a dictates the num-
ber of blocks within the grid for that kernel and b dictates the number of threads within
each block. In this case, since a single thread will be responsible for every calculation
for each matrix, the kernels can simply be implemented using a triply nested loop,
similar to the standard implementation in Section 3.1. The code for the sequential eK-

ernel function is shown in Figure 3.17 (the hKernel function is similarly implemented).
Together, the code in Figure 3.16 and the kernels implemented as per the code in Fig-
ure 3.17 are analogous to the Fortran code in Figure 3.2. Both represent the code for
performing all the time-steps of the FDTD method in a sequential manner.

f o r ( k =1; k<=DIM; k ++)
{

f o r ( j =1 ; j<=DIM; j ++)
{

f o r ( i =1 ; i<=DIM; i ++)
{

i n t c u r r e n t O f f s e t = o f f s e t ( i , j , k ) ;
dex [ c u r r e n t O f f s e t ] = dex [ c u r r e n t O f f s e t ] + d t / pmt ∗ (

( ( dhz [ o f f s e t ( i , j +1 , k ) ] − dhz [ c u r r e n t O f f s e t ] ) / dy ) −
( ( dhy [ o f f s e t ( i , j , k + 1 ) ] − dhy [ c u r r e n t O f f s e t ] ) / dz )

) ;

dey [ c u r r e n t O f f s e t ] = dey [ c u r r e n t O f f s e t ] + d t / pmt ∗ (
( ( dhx [ o f f s e t ( i , j , k + 1 ) ] − dhx [ c u r r e n t O f f s e t ] ) / dz ) −
( ( dhz [ c u r r e n t O f f s e t +1] − dhz [ c u r r e n t O f f s e t ] ) / dx )

) ;

dez [ c u r r e n t O f f s e t ] = dez [ c u r r e n t O f f s e t ] + d t / pmt ∗ (
( ( dhy [ c u r r e n t O f f s e t +1] − dhy [ c u r r e n t O f f s e t ] ) / dx ) −
( ( dhx [ o f f s e t ( i , j +1 , k ) ] − dhx [ c u r r e n t O f f s e t ] ) / dy )

) ;
}

}
}

Figure 3.17: Sequential kernel to update the values of Ex, Ey and Ez

In both C and Fortran, it is normal to reference three dimensional arrays using the
variables i, j and k in that order. In C, the three dimensional structure is stored in a
manner known as “row-major” meaning that for an array a, the location in memory
of a[i,j,k] is followed immediately by the location of a[i,j,k+1]. Conversely, For-
tran stores three dimensional arrays as “column-major” so the array element following
a[i,j,k] in memory would be a[i+1,j,k]. The result is that to achieve single-stepping
through the data in Fortran using a triply nested loop, the i loop should be the inner
loop while the k loop is the outer loop. In the C the reverse is true, single-stepping
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requires i loop should be the outer loop while the k loop is the inner loop. In the case
of this CUDA C implementation, the data structures have not been declared as three
dimensional arrays. Figure 3.15 shows that the data-structure is declared as an allo-
cated block of memory. This is interpreted as a three dimensional structure within the
kernel implementation by using the offset function shown in Figure 3.18.

h o s t d e v i c e i n t o f f s e t ( i n t i , i n t j , i n t k )
{

re turn i + ( j ∗ (DIM+2) ) + ( k ∗ (DIM+2) ∗ (DIM+2) ) ;
}

Figure 3.18: Definition of the offset function

The function offset converts a combination of 3 indices to a one-dimensional offset
within the memory allocated for a particular matrix. It abstracts above the tasks of
multiplying the j index by the dimension of the matrix and the k index by the dimension
squared, and takes the padding for the PEC boundary into account. Because this is a
custom-defined function, there is flexibility in how i, j and k are interpreted. In this
case, the indices are being used in keeping with the Fortran convention. It is a single
increment of the i index rather than the k index which leads to a single step in memory.
By setting k to the outer loop and i to the inner loop in Figure 3.17 single stepping
through memory is achieved. This is equivalent to referencing a statically assigned
three-dimensional array in C using [k,j,i] rather than the more conventional [i,j,k].
This is done to maintain consistency with the Fortran implementations but in the case
of a Tesla GPU there is no cache between the cores of the streaming processor array
and its global memory, and therefore there is no particular benefit to the arrangement
of i, j and k for this sequential implementation.

Declaring offset as both a host and device function allows it to be used throughout
the program regardless of where the calling code will be executed. The compiler will
compile this function twice, once for the CPU and once for the GPU, and take care
of the correct version being called as required. The repeated use of the DIM variable
means that this implementation is limited to FDTD applications where the problem
space is cube-shaped. Where a cuboid shape for the problem space is required, the
implementation would need to be altered to use a different variable to store the size of
each dimension.

This sequential approach produces a correct FDTD implementation, but it is much
slower than the most basic CPU implementation, since it takes advantage of only a
single core of the GPU. Each core of a CUDA capable GPU is less powerful than
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a standard CPU core. For example, each core of the Tesla T10 GPU used in this
project has a clock speed of 1.3GHz (see Table 4.6), while the CPUs used for the
SSE experiments range from 1.9GHz to 3.0GHz (see Table 4.1). More detrimental to
sequential performance than the lack of clock speed is that there is no cache between
the GPU core and the global memory it accesses, so the execution is fully exposed to
the difference between memory throughput and the clock speed of the core [8]. As
shown in Table 4.1, all the CPUs used in this project provide some level of cache
between the CPU and main memory. The implications of the lack of cache in a Tesla
GPU are explored further in Section 4.3.

In order to achieve high performance on a GPU, the concurrency in the algorithm
must be exploited. Each element of the three E matrices can be calculated indepen-
dently of the others, and similarly, each element of the three H matrices are inde-
pendent. Due to the way the kernels have been allocated, this means that all the cal-
culations within one kernel are independent and can be executed in any order and
distributed among many cores.

As described in Section 2.3.1, the data to be processed on a GPU is termed a grid,
and each grid can be divided into blocks in up to two dimensions. Each block can
be further divided into threads in up to 3 dimensions. Therefore there is a two level
hierarchy allowing up to 5 dimensions which determines how many threads are created
to execute a single kernel invocation. Figure 3.19 from [8] illustrates how the data
used by a kernel are represented by a single grid and how the grid is deconstructed into
blocks and threads.

In the case of the FDTD method, the data structures are naturally three dimensional.
A grid of blocks in two dimensions is used here, with threads within each block defined
in one dimension. In the first instance, an implementation was produced using multiple
blocks but only a single thread per block. In order to instruct the CUDA environment
to create multiple blocks for each kernel invocation, the code invoking the kernels had
to be altered. The relevant alterations are shown in Figure 3.20.

The dim3 data type is a built-in type of the CUDA environment which allows multi-
dimensional quantities to be defined. In this case, the number of blocks is being defined
as equal to the problem size in two dimensions while the number of threads per block
remains at 1.

The two dimensions of the blocks were mapped to the j and k dimensions of each
data structure representing the problem space. The number of blocks in a kernel invo-
cation is equivalent to the square of the dimension of the matrices. The single thread
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Figure 3.19: CUDA grid organisation [8]

dim3 b l o c k s (DIM, DIM ) ;
/ / . . .
eKerne l<<<b locks ,1>>>(dev ex , dev ey , dev ez , dev hx

, dev hy , dev hz , dx , dy , dz , pmt , d t ) ;
/ / . . .
hKernel<<<b locks ,1>>>(dev ex , dev ey , dev ez , dev hx ,

dev hy , dev hz , dx , dy , dz , pma , d t ) ;

Figure 3.20: Introducing multiple blocks to the kernel invocations

within each block is therefore responsible for calculating all the elements in the i di-
mension for a particular (j,k) combination, for each matrix. This allocation of work is
shown in Figure 3.21.

Figure 3.21 shows the internals of a matrix for a 4 × 4 × 4 problem size (shown
as light grey cubes) with one element of padding (shown as dark grey cubes) in each
direction. Each block is indexed based on its position in the j and k directions and
the single thread within each block calculates the values for the 4 elements of a single
‘tower’ in the i direction.

With this distribution of work determined, the CUDA framework is then responsi-
ble for launching a single thread running the kernel for each block. Each thread has
access to the indices of its block within the grid in two dimensions, denoted in CUDA
as blockIdx.x and blockIdx.y. These are built in variables of the CUDA environment
and cannot be altered in name. This implementation logically maps blockIdx.x to j and
blockIdx.y to k. The k and j loops are no longer required since they have been replaced
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Figure 3.21: Representation of the division of a matrix into a two dimensional grid of
blocks.

by the launching of multiple blocks, and the triply nested loop of the sequential version
shown in Figure 3.17 is replaced with the code from Figure 3.22.

j = b l o c k I d x . x +1;
k= b l o c k I d x . y +1;
i n t dim=gridDim . x∗blockDim . x
f o r ( i =1 ; i <=(dim ) ; i ++)
{

/ / C a l c u l a t e Ex ( i , j , k ) , Ey ( i , j , k ) and Ez ( i , j , k )
}

Figure 3.22: Amendments to the kernel to handle multiple blocks

The items gridDim.x and blockDim.x are also built-in CUDA variables giving the
size of the grid and of each block in the x dimension. Multiplying them together is
a generic solution for calculating the total problem size in the x dimension. Equiva-
lent variables in the y dimension for the grid and its blocks, and in the z dimension
for blocks only (since blocks can be divided into threads in 3 dimensions) also exist.
Note that since this implementation is limited to dealing with cubic problem spaces,
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multiplying gridDim.x by blockDim.x is sufficient to get the size of the problem space
in every direction.

Each thread is now doing less work than the single thread in the sequential ver-
sion due to have a fixed value for j and k, but multiple threads are launched, and these
threads execute in parallel. Note that the blockIdx.x and blockIdx.y indices of a block
within a CUDA grid always begin from 0, whereas due to the padding on the data struc-
tures of the FDTD method, j and k must start from 1. This is why both are incremented
by 1 when assigned from the block indices. The dimension of the grid defined by mul-
tiplying gridDim.x and blockDim.x does not include the padding since no threads are
required to operate on the PEC boundary which remains at 0 throughout the execution.
The calculations within the i loop are unchanged from those of the sequential version
in Figure 3.17.

As shown in Section 4.3, the performance of this one thread per block implementa-
tion is comparable to the slowest CPU based implementations. The cores of a CUDA
capable GPU are combined in groups of 8 into a Streaming Multiprocessor unit, as
described in Section 2.3.1. So for example the Tesla T10 GPU used in Section 4.3
has 240 cores, grouped into 30 Streaming Multiprocessor units. Each Streaming Mul-
tiprocessor can execute up to eight blocks simultaneously [21]. However, at any one
clock cycle, the threads issued to the eight cores of the Streaming Multiprocessor must
come from the same block [21]. In the case of the one thread per block implementa-
tion presented in Figures 3.20 and 3.22 there is only one thread to be executed for each
block, so each Streaming Multiprocessor will only utilise one core at each clock cycle.
Across a Tesla T10 GPU, this limits the execution to a maximum of 30 concurrent op-
erations rather than 240 concurrent operations if all cores were fully utilised. In order
to fully exploit the parallel processing power of a CUDA capable GPU, it is necessary
to further increase the parallelism of the kernels by increasing the number of threads
executing within a single block. As described in Section 2.3.1, a single block can ac-
commodate up to 512 threads. In order to be flexible, an implementation is required
where the number of threads is not tied to the dimensions of the problem. This means
that each thread will have to execute a sub-set of the elements in the i dimension for
a particular block. There are two different methods for achieving this, as shown in
Figure 3.23.

In Figure 3.23 part a), each column of elements in the i direction, representing the
workload of a single block, is divided into two segments. Each of two threads (denoted
T0 and T1) is assigned a segment of the column to work on. This means an individual
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Figure 3.23: Patterns of memory access for multiple threads in a block.

thread single steps through through the elements in its segment. This would be the
standard approach for dividing an array between threads on a multi-core CPU. Each
core on such a CPU typically has one or more levels of private cache used only by
that core, so single stepping allows a core to load a sequence of elements into a single
cache line and efficiently work through it. However, in the case of Tesla GPUs, there
is no cache. Due to the Single Instruction Multiple Thread (SIMT) approach described
in Section 2.3.1, multiple CUDA threads in a group known as a warp move through
the instructions of a kernel synchronously, meaning that the requests for elements from
memory occur simultaneously [21]. In this case, T0 and T1 would be in the same warp
and would simultaneously access their first element, which would lead to simultane-
ous requests for elements which are spaced far apart in memory. This is uncoalesced
memory access as described in [8] and leads to poor performance. The structure of an
uncoalesced kernel is shown in Figure 3.24.

1 j = b l o c k I d x . x +1;
2 k= b l o c k I d x . y +1;
3 i n t i t e r a t i o n s =gridDim . x /THREAD COUNT;
4 i = t h r e a d I d x . x∗ i t e r a t i o n s +1;
5 whi le ( i<=t h r e a d I d x . x∗ i t e r a t i o n s + i t e r a t i o n s )
6 {
7 / / C a l c u l a t e Ex ( i , j , k ) , Ey ( i , j , k ) and Ez ( i , j , k )
8 i ++;
9 }

Figure 3.24: Structure of the uncoalesced kernel implementation
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Now that the implementation is using multiple threads per block, the built-in vari-
able threadIdx.x gives the index of this thread within the current block. If multiple
dimensions of threads were being used, threadIdx.y and threadIdx.z would also be
available.

The number of iterations is calculated dynamically at line 3 by dividing the size
of the matrices by the number of threads. The starting point for this thread is then
calculated at line 4 by multiplying the thread ID by the number of iterations, effectively
moving through several segments to the correct one for this thread. The for loop is
replace with a while loop checking for the index i to exceed the end of the segment
assigned to this thread. The calculations for the individual elements of the matrices are
unchanged from the sequential GPU version.

Figure 3.23 part b) shows an alternative where the elements are assigned to the
threads in a round-robin fashion. This leads to threads simultaneously requesting adja-
cent elements from memory throughout the execution of the algorithm, which is coa-
lesced memory access [8]. The Streaming Multiprocessor is able to combine adjacent
memory requests into a single request which leads to better global memory throughput
and improved performance [8]. The structure of a coalesced kernel is shown in Figure
3.25.

1 j = b l o c k I d x . x +1;
2 k= b l o c k I d x . y +1;
3 i = t h r e a d I d x . x +1;
4 whi le ( i<=gridDim . x )
5 / / C a l c u l a t e Ex ( i , j , k ) , Ey ( i , j , k ) and Ez ( i , j , k )
6 i +=THREAD COUNT;
7 }

Figure 3.25: Structure of the coalesced kernel implementation

In this case, the starting point for a thread is only based on its thread ID, since
the starting elements for all threads are adjacent at the beginning of the column of
elements in the i dimension. In this case, the termination condition for the while loop
is when the index exceeds the dimension of the matrix, and within each loop, the index
i is incremented by the number of threads. This causes each thread to jump multiple
elements at each iteration (equal to the number of threads in the block) and achieves
the interleaving of threads to elements shown in Figure 3.23 part b).

In both the uncoalesced and coalesced implementations, the kernel invocations
need to be altered to specify the number of threads. The code for this is given in
Figure 3.26.
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dim3 b l o c k s (DIM, DIM ) ;
dim3 t h r e a d s (THREAD COUNT ) ;
/ / . . .
eKerne l<<<b locks , t h r e a d s >>>(dev ex , dev ey , dev ez , dev hx

, dev hy , dev hz , dx , dy , dz , pmt , d t ) ;
/ / . . .
hKernel<<<b locks , t h r e a d s >>>(dev ex , dev ey , dev ez , dev hx ,

dev hy , dev hz , dx , dy , dz , pma , d t ) ;

Figure 3.26: Launching kernels with multiple blocks and multiple threads

The dim3 data type is used to specify the dimensions of both the blocks and the
threads. The variable THREAD COUNT is set by a macro within the source code.

The results in Section 4.3 show that when the number of threads per block is lower,
there is a significant difference between the performance of uncoalesced and coalesced
access, with coalesced executing with better performance. The reasons for and impli-
cations of this are discussed further in Section 4.3.

Due to the large amount of parallelism inherent in the FDTD algorithm and the
flexibility in CUDA of changing the structure of kernels and the dimensions of grids
and blocks, there are many other ways of dividing the algorithm for execution on a
GPU. [8] states that there is not currently an accepted methodology for coming up
with the optimum structure of CUDA based implementation of an algorithm without
using experimental methods, and performing experiments for all possibilities at a vari-
ety of problem sizes can be tedious and time consuming. Here, an iterative process of
refinement has been used to move from a sequential algorithm to one using parallelism
expressed in blocks and threads with coalesced memory access. Decisions about the
correct allocation of work to kernels and the mapping of blocks and threads to the di-
mensions of the matrices have been based on the advice in [8] and [20]. These are the
two major texts on CUDA implementation available at the time of writing. The deci-
sion to limit the experiments to the implementations shown here and not proceed with
further exploration was mainly due to managing the scope of the project, in terms of
the total time available to spend on implementation. With more time, further possibil-
ities such as storing the values of the variables dx, dy, dz, dt, pmt and pma in constant
memory and utilising shared memory for cooperation between threads would have
been explored. The theory behind the application of these techniques to this project is
explored further in Section 4.3.
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3.5 Implementation accuracy

As detailed in Section 2.2.3, the same floating point arithmetic calculations can pro-
duce different results depending on a variety of environmental factors such as hard-
ware, compiler, and level of precision. In this project, there are 3 different hardware
types (32 bit CPUs, 64 bit CPUs, CUDA capable GPUs), 3 compilers (GNU Fortran,
GNU C, and CUDA C), and two possible levels of precision (8 byte double preci-
sion or 4 byte single precision). It is important to know whether these differing op-
tions produce outputs resulting in significantly varying solutions to an application of
the FDTD method. If the implementations produce significantly different output they
cannot be considered equivalent in terms of accuracy and therefore their comparative
performance does not hold as much relevance. In order to test this, the value of Ez

at a point displaced 10 places in the i dimension from the source was measured and
recorded at each time step during an execution of the FDTD method. The source is
at the centre of the problem space using the pulse described in Section 3.1 and illus-
trated in Figure 3.3. A problem dimension of 256 was used, and the implementations
were executed for 5000 time-steps. Three different CPU based implementations were
measured:

• The standard Fortran implementation compiled to use the default x87 floating-
point path.

• The standard Fortran implementation compiled to use the SSE floating-point
path.

• The SSE streaming Fortran implementation.

The different floating point paths available on x86 architecture processors are de-
scribed further in Section 2.2.3. The Intel Core 2 Duo 32-bit machine and the Intel
Xeon 64-bit machine used in performance experiments were used for measuring accu-
racy. The exact specifications of these machines are detailed in Table 4.1. Note that
on the 64-bit architecture, the SSE floating-point path is the default so in that case, the
x87 FPU result was not measured.

The GPU result was measured using the Tesla T10 GPU described in Table 4.6.
The GPU implementation with 64 threads per block and coalesced memory access was
used, as described in Section 3.4. Note that all GPU implementations were observed to
produce identical output, and therefore the results in this section represent the accuracy
of the whole class of GPU implementations produced in this project.
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The accuracy measurements were performed for both double and single precision.
The results are shown in Figure 3.27.

Figure 3.27: Results over time of measuring the effect of the source pulse at a problem
size of 256 for several implementation options.
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The results of each implementation are so similar that the individual lines cannot
be distinguished on the graphs in Figure 3.27. There are in fact slight differences
between some of the results. The CPU result for the x87 floating-point path differs
from the SSE results. The standard implementation compiled for the SSE registers
produces identical results to the streaming SSE implementation, indicating that the two
implementations are exactly equivalent when executed on the same hardware. There is
no difference between the SSE results on 32-bit and 64-bit hardware. Furthermore, the
GPU implementation produces slightly different results from both CPU paths. There
are therefore 3 different result-sets at each level of precision, corresponding to the 3
different floating-point hardware options in use.

In the double-precision results, the 3 result-sets are equal to at least 4 significant
figures at each time step, for single-precision this is reduced to 3 significant figures.
The different approaches taken to accelerate the FDTD computation in this project
produce results which are very close to that of the standard sequential Fortran imple-
mentation, indicating that they are suitable alternatives in terms of accuracy. Chapter
4 explores the performance benefits of each approach.

As can be observed in Figure 3.27, the single and double precision implemen-
tations produce very similar results. In fact, the single-precision results match the
double-precision results to 3 significant figures. For this application, a switch to single-
precision arithmetic does not result in a major loss of accuracy. This challenges the
assumption that all scientific algorithms require double-precision accuracy, and is sim-
ilar to the results of the Magnetic Resonance Imaging (MRI) example given in [8]. [8]
shows that for their MRI application, single precision execution gives acceptable ac-
curacy and greatly improved performance over double precision. These results do not
extend to concluding that single-precision is acceptable in the general case, since ev-
ery application has different requirements. For example, here the most simple form of
the FDTD method is being used which does not consider the electric flux density field
component (denoted as D). This field component is of the order of 10−12 of the size
of the values of the E component, therefore more complex applications of the FDTD
method which include D require greater precision. However these results do suggest
that the necessity for double-precision should be scrutinised on a case by case basis
when implementing algorithms which rely heavily on floating-point arithmetic, due to
the potential performance benefits of executing with single-precision.



Chapter 4

Results of Experimentation

4.1 Results of SSE experiments

The SSE implementations described in Sections 3.2 and 3.3 were performance tested
on four hardware architectures, described in Table 4.1. Note that each architecture
has a varying number of cores available. The implementations produced in this project
only exploit the SIMD hardware available on a single processor core, and do not exploit
multiple cores using multi-thread or multi-process techniques. Since only a single core
is being used when executing on each architecture, the number of cores is not expected
to impact the performance results.

The GCC compiler was used on each architecture to compile both the Fortran and
the C components of the implementation. As indicated in Table 4.1, the architectures
do not all share the same version of the GCC compiler. In addition to the SSE im-
plementations, the standard Fortran version described in Section 3.1 was executed to
provide a baseline against which the performance of the SSE implementations could
be compared.

Initially, four problem sizes of 64, 128, 192 and 256 in each dimension were used.
The FDTD method was executed for 5000 time steps at each problem size. The ex-
ecution was timed from the beginning of the 5000 time-steps to the end of the 5000
time-steps. The routines which initialise the matrices and pre-calculate the values used
for the source of excitation were not included in the measured execution time. These
areas of the code do not contain any optimisations so by excluding them, the results
focus only on the level improvement experienced in the optimised section of the code.

Each timed result was produced ten times at each problem size on each architecture,
with the average execution time of the ten being used. Figures 4.1 to 4.4 show the

72
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Table 4.1: Details of architectures used for SSE experiments

results of these executions. The execution time in seconds is plotted on the y-axis and
the different implementations are grouped by architecture on the x-axis.

Note that at all problem sizes, there are only SSE assembly implementation results
for the 32-bit machine. The hand-coded assembly was developed using the 32-bit ma-
chine and did not run correctly on the 64-bit machines. The cause of the failure to run
on the 64-bit machines was unclear. It could be that the 64-bit x86 architecture requires
different SSE instructions, although there is no indication of this in Intel’s technical
documentation. Alternatively, it could be that the older compiler versions on the 64-bit
machines are not able to correctly handle the inline assembly instructions in C code or
that the 64-bit compilers make use of the SSE registers for their own purposes and this
clashes with the hand-coded use of these registers in the assembly sequences. Figures
4.1 to 4.4 show that the implementation using SSE streaming with assembly and SSE
streaming with intrinsic functions perform almost identically on the 32-bit architecture.
As described in Chapter 3, it was found during implementation that programming with
intrinsic functions was simpler than programming with assembly instructions. These
results show in addition that the intrinsic function implementation is more portable,
without significant detriment to performance. The conclusion is that using intrinsic
functions is the better approach for making use of streaming SSE capabilities, and for
this reason the hand coded assembly implementation was not pursued further to make
it work on the 64-bit architectures.

The Standard Fortran implementation listed in Figures 4.1 to 4.4 was compiled
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Figure 4.1: Performance results for the 64 × 64 × 64 problem size.

without forcing the use of a particular floating point unit, allowing the default floating
point unit to be used. The command-line compilation scripts are given in Figure 4.5.

This means that on the 32-bit architecture this compilation results in execution on
the x87 Floating point unit, whereas on the 64-bit architectures it results in execu-
tion using the SSE registers and the related SSE instructions (these are the scalar SSE
instructions for performing one floating-point calculation at a time, not the packed
instructions for performing SIMD operations).

The “Standard Fortran - SSE FP Path” implementation included in Figures 4.1 to
4.4 is the same code as the Standard Fortran implementation but compiled to force the
use of the scalar SSE instructions to perform floating point arithmetic. The command-
line compilation script used is also given in Figure 4.5.

Since the SSE path is the default path on the 64-bit architectures, the two compila-
tions labelled “Standard Fortran” and “Standard Fortran - SSE FP Path” in Figures 4.1
to 4.4 are identical on the 64-bit machines. This is reflected in the Figures since the
two compilations produce virtually identical performance results on each of the 64-bit
machines. On the 32-bit machine, the two compilations differ and produce different
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Figure 4.2: Performance results for the 128 × 128 × 128 problem size.

performance results. The default compilation of the standard implementation is out-
performed by about 10% when the same implementation is compiled explicitly to use
the SSE floating point path on the same 32-bit machine. This indicates that the default
x87 floating-point unit is suboptimal and that instructing the compiler to execute float-
ing point instructions using the SSE registers may in general provide a performance
improvement without any code changes being required.

The SSE streaming implementations require a compilation script which separately
compiles the Fortran wrapper code and the C code containing the optimised SSE
streaming routines, and then combines them into a single executable. The command-
line compilation script is also given in Figure 4.5.

When using SSE streaming with double precision, two arithmetic instructions are
performed at once rather than one, so the theoretical ideal speedup is 2. On the 32-bit
architecture, the SSE streaming implementations give a speed up 1.64 at a problem
size of 64, increasing gradually to 1.75 for a problem size of 256. This is a reasonable
increase in performance but falls short of ideal speedup. This is in comparison to
the standard Fortran implementation compiled to use the SSE floating point path. On
the Intel Xeon, the SSE streaming implementation provides a speedup of 2 compared
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Figure 4.3: Performance results for the 192 × 192 × 192 problem size.

to the standard Fortran implementation (with either compilation since the standard
implementation is the same for both compilations on this machine). Therefore on the
Intel Xeon, the use of SSE instructions is able to deliver ideal speedup for this FDTD
algorithm.

On the AMD Athlon machine, the SSE streaming implementation does not give
the high levels of speedup seen on both Intel architectures. At problem sizes of 64 and
128 the performance of the SSE streaming implementation is very slightly better than
the standard implementation, and at a problem size of 256 the performance is identical.
At the problem size of 192, the SSE streaming implementation is significantly slower
than the standard implementation.

The AMD Opteron achieves a speedup of 2 using the SSE streaming implemen-
tation at problem sizes of 64, 128 and 256, similar to the results on the Intel Xeon
machine at these sizes. Execution on the AMD Opteron is in general a little slower
than on the other architectures, which is not unexpected given that each core on the
AMD Opteron has a slower clock speed than the other architectures, and the imple-
mentations are not exploiting the large number of cores available on the machine. The
AMD Opteron suffers the same loss in performance observed on the AMD Athlon
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Figure 4.4: Performance results for the 256 × 256 × 256 problem size.

#For c o m p i l i n g F o r t r a n u s i n g t h e d e f a u l t f l o a t i n g p o i n t pa th
# ! / b i n / bash
g f o r t r a n −O2 −o $1 . x $1 . f90

#For c o m p i l i n g F o r t r a n u s i n g t h e SSE f l o a t i n g p o i n t pa th
# ! / b i n / bash
g f o r t r a n −O2 −mfpmath= s s e −msse2 −o $1 . s s e . x $1 . f90

#For i n t e g r a t i n g F o r t r a n and C code i n t o a s i n g l e e x e c u t a b l e
# ! / b i n / bash
g f o r t r a n −O2 −c −msse2 −mfpmath= s s e −o $ 1 f . o $1 . f90
gcc −c −O2 −msse2 −mfpmath= s s e −s t d =c99 −o $1 c . o $1 . c
g f o r t r a n −O2 −msse2 −mfpmath= s s e −o $1 . x $1 c . o $ 1 f . o

Figure 4.5: Compilation scripts for the CPU implementations

when executing the SSE streaming implementation at a problem size of 192. This loss
of performance at a particular problem size on both AMD machines stands out as the
most anomalous result in Figures 4.1 to 4.4 and is explored separately in Section 4.2.

At problem sizes of 64, 128 and 256, the AMD Athlon machine is the only one
not to offer a large performance increase when using SSE streaming. The investigation
into this observation focused on why the AMD Athlon machine did not offer the same
performance benefits as the Xeon machine and AMD Opteron machine, since these
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machines also implement the 64-bit version of the x86 instruction set. The differing
compiler versions were first considered. While the AMD Athlon uses GCC 4.3.0, the
other two 64-bit machines use GCC 4.1.2. The assembly output that the compiler on
each machine produces for the key parts of the SSE intrinsic function implementation
was inspected. A summary of the instructions produced is shown in Table 4.2.

The instructions output by the compiler on each architecture are very similar. There
is a difference between the AMD Athlon machine and the other machines in that the
AMD Athlon machine produces a few extra addq instructions. These instructions are
integer additions and should not cause the sort of performance difference observed in
the results. In order to check this, the assembly output from the Intel Xeon machine
was cross-compiled to execute on the AMD Athlon machine. The C code including the
intrinsic functions was compiled to object code on the Intel Xeon machine, and this was
combined with the Fortran wrapper on the AMD Athlon machine to be compiled into
a complete program. This allowed a compatible binary for the AMD Athlon machine
to be produced while the performance critical sections matched the assembly output
produced by the compiler on the Intel Xeon machine. When executed on the AMD
Athlon machine, the result was a slight degradation in performance compared to the
native compilation. This supported the conclusion that the additional addq instructions
were not responsible for the failure of the AMD Athlon machine to provide speedup
when using the streaming SSE instructions.

Since the AMD Athlon machine has a newer version of the GCC compiler, one
possibility considered was that the code was being subject to auto-vectorisation on this
machine, but not on the others. As detailed in [31], the GCC compiler has the capabil-
ity to detect loops which are suitable for SIMD operation and convert sequential loops
into a structure suitable for vectorisation on the available SIMD hardware. This is
known as auto-vectorisation due to the close relationship between SIMD and comput-
ing with vectors. If the compiler on the AMD Athlon was autovectorising the standard
Fortran implementation by introducing SIMD instructions, it could result in a com-
piled program equivalent to the SSE streaming implementation, which would account
for the lack of difference in performance. This possibility was rejected for several
reasons. Auto-vectorisation requires the compiler to be able to detect the data inde-
pendence within the loop to be converted to SIMD operation [31]. In the case of the
FDTD method in use in this project, each iteration of each triply nested loop updates
an element from each of three matrices, using elements from six other matrices. While
the data independence may be easily apparent to a person with an understanding of the
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Table 4.2: Summary of assembly instructions produced by the GCC compiler on each
architecture.
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FDTD method, it may not be apparent to a compiler without this domain knowledge.
The FDTD method would not be a trivial case in which to apply autovectorisation.
Additionally, the release notes of the GCC 4.1 series shows that autovectorisation was
in place for that generation of the compiler [32]. Therefore the compilers on the Intel
Xeon and AMD Opteron machines are also capable of autovectorisation. In fact, anal-
ysis of the assembly code produced by the compilers shows that no autovectorization
took place on any of the machines, since no packed SSE instructions were present in
the assembly code produced for the standard Fortran implementation on any machine.

An alternative cause of the performance difference is how the architectures ex-
ecute the code. As shown in Table 4.1, the AMD Athlon processor has no level 3
cache, while the AMD Opteron and Intel Xeon each have a large level 3 cache. The
Intel Xeon and AMD Opteron machines can therefore fit a much greater proportion
of the data used in the algorithm into cache, which may result in better performance.
However if this was the cause, it would be expected to affect the standard Fortran im-
plementation as well as the SSE streaming implementation. This is not the case, since
for the standard Fortran implementation, performance on the AMD Athlon is close to
that of the Intel Xeon and AMD Opteron. If there was any general architectural ben-
efit to the Xeon machine and AMD Opteron machine over the AMD Athlon machine
for this FDTD algorithm, it should manifest itself in both the standard implementation
and the streaming implementation since they are very similar apart from the use of SSE
streaming instructions.

Since the compilers produce nearly identical code on all three 64-bit machines, and
these three machines provide similar performance for the standard implementation,
the performance difference of the SSE streaming implementation is considered likely
to be caused by the speed with which each processor executes SSE instructions. As
described in Section 2.2.2, the SSE2 instruction set is sufficient for implementing the
FDTD algorithm. Table 4.1 shows that while the processor in the AMD Athlon proces-
sor implements SSE2, the Intel processors and the AMD Opteron processor implement
variants of SSE4. The documentation of SSE3 and SSE4 only covers the additional in-
structions added beyond SSE2, there is no documented improvement in execution of
the existing instructions. However, it may be that processors implementing more re-
cent versions of SSE are able to execute all SSE instructions with higher performance.
No documentation was found for any of the processors regarding the expected ex-
ecution speed of SSE instructions, therefore it is difficult to form firm conclusions.
However based on the investigations performed in this project, the most likely cause of
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the difference in performance between the AMD Athlon processor and the other three
processors when executing the SSE streaming implementation is that the AMD Athlon
processor has an inferior implementation of the relevant SSE instructions due to being
of an older generation of SSE and requires more CPU time to execute the instructions.

4.2 Detrimental effects of memory allocation behaviour

The most unusual result in Section 4.1 is the SSE Streaming result of the AMD archi-
tectures in Figure 4.3. Both AMD machines execute the SSE streaming implementa-
tion significantly slower than the standard implementation. This is the only problem
size at which this large drop in performance is observed in the results in Section 4.1. In
order to understand the cause of this result, it is useful to observe the performance at a
greater range of problem sizes. Figures 4.6 and 4.7 shows the performance of various
implementations at all problem sizes from 16 to 256 at intervals of 2. Since packed
SSE instructions require pairs of 64 bit operands which are aligned in memory on 16
byte boundaries, the SSE streaming implementations only works with problem sizes
which are even numbers. Compared to the experiments described in Section 4.1, the
number of time-steps for these experiments was reduced from 5000 to 1000, and the
number of instances of each metric taken to form an average was reduced from 10 to
4. This was necessary in order to acquire all the data within the time-scales of this
project.

Performance is defined as the execution time in microseconds divided by the cube
of the problem size. The cube of the problem size gives the number of elements in each
matrix, so this measurement of performance represents the amount of time spent by the
processor on each point in the problem space. A smaller number therefore represents
better performance. A line parallel to the x-axis would represent an implementation
where the execution time scales linearly with the problem size. This is equivalent to
stating that the time required to calculate the result for a single element remains con-
stant as the problem size changes. On each architecture, the Standard Fortran imple-
mentation using the default floating-point path and the SSE Streaming implementation
using intrinsics was executed.

Although originally executed to investigate the anomalous result on the AMD pro-
cessors, the execution at a large range of problem sizes also reveals an interesting result
on the Intel machines. Figure 4.6 shows that both the standard implementation and the
SSE streaming implementation experience a sudden move to inferior performance at
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Figure 4.6: Performance of FDTD implementations on Intel architectures

a problem dimension of 24 on the Intel Core 2 Duo machine. Often when such drops
in performance are observed in algorithms dealing with large data-sets, these are asso-
ciated with the problem size reaching a point that the data no longer fit entirely into a
level of cache, causing memory accesses which were not required at smaller problem
sizes. However, the size of the matrices at problem dimensions of 22 and 24 do not
correspond to any of the caches of the Intel Core 2 Duo processor. Figure 4.8 shows
the cache organisation of each processor. For the standard Fortran implementation, the
matrix size in bytes is calculated as (Dimension+ 2)3× 8. This is because the matrix
is a cube with a one-element padding on each side and each double-precision floating-
point value is 8 bytes. For a problem dimension of 22, this gives 110,592 bytes. This
is well above the 32KB size of the level 1 data cache of the Intel Core 2 Duo processor
but well below the 6MB size of the level 2 cache. In this case, data no longer fitting
entirely into cache does not appear to be the cause of the sudden performance drop at
a problem size of 24.

Analysing the memory allocation behaviour of a program using the Unix com-
mand pmap shows which areas of main memory are being used by the program. Using
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Figure 4.7: Performance of FDTD implementations on AMD architectures

this command, it was observed that at all problem sizes the standard Fortran imple-
mentation’s machine code was stored at relatively low addresses, such as 080480016

(hexadecimal). The program stack was allocated to a relatively high address such as
bfd800016. Repeated executions of the program on the Core 2 Duo machine show
that this same memory allocation policy was used each time regardless of problem di-
mension. This was also the case for the SSE streaming implementation. The address
of the memory block used to store the arrays representing the matrices Ex, Ey, Ez,
Hx, Hy and Hz differs depending on problem size. This memory block is simple to
identify among the output of the pmap command as it corresponds closely to the size
of the arrays when calculated using (Dimension + 2)3 × 8. At problem sizes of 22
and below, the memory for the arrays is allocated immediately after the program code,
with a low memory address. At problem sizes of 24 and above, the memory for the
arrays is allocated just below the stack, at a relatively high memory address. This was
verified using the Fortran function LOC() which gives the address in memory of an
array. The memory addresses reported by this function corresponded to the observa-
tions taken from using the pmap command. The sudden drop in performance shown in
Figure 4.6 corresponds exactly with the point at which memory allocation of the arrays
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changes from low memory addresses to high memory addresses. This could be due to
different address translation requirements from virtual addresses to physical addresses,
or could be due to the high memory addresses competing for space in the cache with
other activity running on the machine which does not compete with the lower memory
addresses. It was found that the same memory allocation behaviour occurs on the Intel
Xeon machine, with the array allocation moving from high to low memory addresses
depending on problem size. However as shown in Figure 4.6, the Intel Xeon does not
suffer a sudden drop in performance at any point for either implementation. As shown
in Table 4.1 and Figure 4.8 there are many differences between the software set-up and
hardware organisation of the Intel Core 2 Duo and Intel Xeon machines. It appears
that there is a particular characteristic of the Intel Core 2 Duo machine which causes
the FDTD algorithms developed in this project to exhibit poorer performance when the
arrays representing the matrices are stored near the stack rather than the program code,
and that this characteristic is not shared by the Intel Xeon machine. It was not possible
to identify the specific characteristic causing this effect. In real world applications of
the FDTD method, a problem size much larger than 24 would typically be used. From
a problem size of 24 and upwards, the Intel Core 2 Duo shows a fairly uniform grad-
ual improvement in performance as the problem size increases, with the SSE streaming
implementation performing about twice as well as the standard implementation at each
problem size. This should be considered the useful performance level of this machine
since the improved performance observed at smaller problem sizes is not useful to real
world applications of the FDTD method. The Intel Xeon machine shows the same
gradual improvement in performance and the same difference in performance between
the SSE streaming and standard implementations, which corresponds to the speedup
of 2 seen in the results in Section 4.1.

Figure 4.7 shows that both the standard and SSE streaming implementations show
frequent and significant dips in performance at various problem sizes on both AMD
machines. The most serious dips represent a 50% reduction in performance for the
standard implementation on both architectures. The SSE streaming implementation
suffers up to a 30% reduction in performance on the AMD Athlon and greater than
50% on the AMD Opteron. It can be seen that the drop in performance at a problem
size of 192 observed in Figure 4.3 is not an isolated anomaly but rather one instance of
a recurring loss of performance.

There is no immediately discernible pattern to the dips in performance in Figure
4.7. Since the dips in performance happen at particular problem sizes, but performance
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Figure 4.8: Cache organisation of the various processors

returns to normal for subsequent problem sizes, scalability of the algorithm is not the
likely cause. Issues of scalability in high performance computing are characterised by
a gradual loss in performance as the problem size grows and the execution performance
fails to keep-up. The first hypothesis investigated as a possible cause for the sporadic
dips in performance observed in Figure 4.7 was that the memory access pattern at
particular problem sizes causes inefficient use of the cache.

As shown in Figure 4.8, the AMD processors each have a 64KB (kilo-byte) level
1 data-cache which is two-way set associative. Figure 4.9 illustrates the layout of a
64KB two-way set associative cache. Each 64B (byte) cache line can hold a contigu-
ous 64B block from main memory. Figure 4.9 shows how a 64B line can hold eight
double-precision values (since each is 8 bytes in size). Since the 64KB cache is split
in to two sets, each 64B block in memory competes with other 64B blocks at 32KB
intervals. In this context, “compete” means that separate 64B blocks from main mem-
ory with different addresses occupy the same cache line location. This is inevitable
since cache is always much smaller than main memory. When a 64B block from main
memory is moved into a line in the cache, the existing data in that line is evicted back
to main memory. Where two or more 64B blocks would reside in the same cache
line, and therefore would evict each other when loaded into cache, they are said to be
competing. In the case of the AMD processors used in these experiments, the main
memory address of the 64B block modulo 32768 identifies the cache line address to
which that block should be stored. These cache-line addresses range from 0 to 32704
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at 64B intervals. Since the level 1 data-cache is two-way associative, there are two
positions for each cache line address and two competing blocks can reside in cache
together, one in each set. However as soon as a third competing block is accessed, one
of the existing blocks must be evicted from its cache line to make room for the new
block.

Figure 4.9: Level 1 cache behaviour of the AMD processors

The level 2 cache of both AMD processors is 512KB, and is 16-way set associative.
Since the 512KB is split 16 ways, competing addresses at this level of cache also lie
at 32KB intervals in memory. However since the level 2 cache has 16 sets to which
each address can be cached it is more resilient to clashes, since 16 competing addresses
would need to be accessed to evict a particular address from the cache. Similarly, the
level 3 cache of the AMD Opteron processor is 48-way associative and therefore very
resilient to clashes between competing cache addresses.

For the AMD processor-based systems used in these experiments, if the main mem-
ory addresses of the beginning of each of the six matrices Ex, Ey, Ez, Hx, Hy and Hz

happened to give the same result modulo 32768 (32KB), the matrices can be said to be
aligned with respect to the level 1 data-cache. When this alignment is present,the 64B
blocks starting at Ex(0,0,0), Ey(0,0,0), Ez(0,0,0), Hx(0,0,0), Hy(0,0,0) and Hz(0,0,0) will all
resolve to the same cache line address. Since all six matrices are identical in size and
structure, any two elements with the same indices but from different matrices would
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compete for the same position in cache when the matrices are aligned.
Equations 2.15 to 2.20 show that in the FDTD algorithm, the calculation for a

single element of a particular matrix is dependent on the values of four elements from
other matrices. In each equation, two of these four elements share the same indices as
the dependent element being calculated. The algorithm single steps through memory,
meaning that the addresses used to calculate a particular element are only 8 bytes away
from the addresses used to calculate the previous element. Since each cache line is
64B, the eviction of a cache line removes eight double-precision floating-point values
from cache, data required by up to the next 7 steps in the algorithm. If the matrices are
aligned modulo 32768, the elements with the same indices during each step through
the equations of the FDTD algorithm would all target the same cache line address and
frequent cache evictions would occur as these elements are accessed. At the next step
through the equations the number of cache misses and accesses to main memory would
be increased due to the eviction of data during the previous step.

Figure 4.9 shows how the cache line eviction may occur in the level 1 data-cache
of the AMD processors when executing a calculation for an element of Ey. When
calculating Ey(i,j,k), the values of Hx(i,j,k) and Hz(i,j,k) are required operands. In the
example shown in Figure 4.9, the memory addresses of these values both resolve to
the first cache-line, and therefore each is loaded into one of the two sets available. In
addition, the value of Hz(i+1,j,k) used in the calculation is loaded since it is adjacent
to Hz(i,j,k) and resides in the same 64B block of main memory. When the value of
Ey(i,j,k) is subsequently required to complete the calculation, it must be placed in the
first cache line of one of the two sets. This will lead to either the values of Hx(i,j,k)

to Hx(i+7,j,k) or Hz(i,j,k) to Hz(i+7,j,k) being evicted, even though these values will be
required in several calculations immediately following the calculation of Ey(i,j,k) being
considered in Figure 4.9. The resulting cache misses lead to main memory accesses
and impair the performance of algorithms. This could account for the observed loss in
performance at certain problem sizes shown in Figure 4.7.

In order to test this hypothesis, it was necessary to compare the problem sizes
at which a loss of performance occurs to problem sizes at which memory alignment
occurs. To determine whether the matrices are aligned with respect to the level 1 data-
cache, the size of each matrix in bytes was considered. Assuming that each matrix
is assigned contiguously in memory to the others, then any problem size which leads
to a matrix whose size divides exactly by 32768 would lead to the cache alignment
problem.
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For the standard Fortran implementation, matrix size in bytes is calculated as
(Dimension + 2)3 × 8 as before. Table 4.3 shows this for a subset of problem sizes.
Those problem sizes showing a loss in performance are highlighted.

Table 4.3: Matrix size information at various problem sizes for the standard Fortran
implementation

Table 4.3 shows that matrix sizes with poorer performance do not divide perfectly
by 32768. In fact, the only problem size in the table which does produce 0 modulo
32768 is a size of 158, which is not one of those experiencing loss in performance.
Those experiencing performance loss are those that come close to being a multiple
of 32768 bytes without quite doing so. They have the highest values modulo 32768
meaning they are close to wrapping around to 0, which would lead to perfect alignment
of the matrices. Almost perfect alignment does not cause the caching effects described
above, as it would not bring elements with the same indices from different matrices to
the same cache line1.

The conclusions drawn from Table 4.3 are based on the assumption that each matrix
is assigned to memory in a directly contiguous fashion to the other matrices. Analysis
of the addresses assigned to the matrices on the AMD machines shows that this is not
the case. Each matrix is assigned to start in memory slightly beyond the end of the
previous matrix, aligned to the next 4KB (4096 bytes) boundary. Where the matrices
would align perfectly to a 4KB boundary (such as a size of 158), an extra 4KB space is
left between each matrix. For those cases in the Table 4.3 where the alignment is close
to an exact multiple of 32KB, the next 4KB boundary is also a 32KB boundary. The

1Note that since the sizes of the matrices in Table 4.3 are much bigger than the size of the caches in
the AMD processor, cache eviction will occur regardless of alignment. However, it is only when ma-
trices are aligned in memory that the repeated eviction of values required by the immediately following
steps in the algorithm occurs. When matrices are not aligned, eviction occurs on cache lines which are
likely to have been utilised earlier and which are no longer useful to the algorithm.
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Table 4.4: Matrix size information adjusted to compensate for alignment to 4KB
boundaries

memory assignment is being rounded up to cause perfect 32KB alignment, while when
32KB alignment would occur in a contiguous assignment, the rounding up is breaking
the alignment. Calculating matrix size again but adjusting for a shift of memory allo-
cation to the next 4KB boundary, we find that those dimensions which lead to dramatic
loss in performance correlate perfectly with those dimensions calculated to be aligned
on a 32KB boundary. Table 4.4 shows the updated calculations.

In addition to the serious drop in performance caused by 32KB alignment, it is
observed that those dimensions which cause alignment to a 16KB boundary also suffer
a drop in performance. This is the case for problem sizes of 146 and 150 in Table
4.4. The loss in performance is less severe when this “half alignment” occurs but
is still noticeable. In this case each matrix is 32KB aligned with half of the other
matrices, so less cache contention occurs. Figure 4.10 isolates the performance result
for the standard Fortran implementation on the AMD machines, and shows the problem
sizes which incur perfect alignment to 32KB boundaries and half alignment to 16KB
boundaries.

Figure 4.10 shows that severe drops in performance correlate exactly with perfect
alignment to 32KB boundaries, while the lesser drops in throughput correlate closely
with half alignment to 16KB boundaries. This indicates very strongly that alignment
in memory, leading to excessive eviction of cache lines, is the cause of the drop in
performance.

The SSE streaming implementation exhibits the same relationship between align-
ment and loss of performance, however the alignment occurs at different points since
the algorithm uses an extra layer of padding in the i dimension, as described in Sec-
tion 3.2. Table 4.5 shows a sample of problem sizes leading to alignment for the SSE
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Figure 4.10: Performance of the standard Fortran implementation on the AMD ma-
chines, cross-referenced with alignment to 16KB and 32KB boundaries

streaming implementation. In a similar fashion to the information shown in Table 4.4
for the standard implementation, it is observed for the SSE streaming implementation
that when alignment to a 32KB boundary occurs, the performance suffers a significant
reduction.

Figure 4.11 shows the performance of the SSE streaming implementation on the
AMD machines, and shows the alignment points in this case. This demonstrates that
the larger drops in performance correlate exactly with those problem sizes causing
perfect alignment and the smaller drops in performance correlate exactly with those
problem sizes causing half alignment.

A possible solution to the memory alignment problem is to introduce memory al-
location logic into the code in order to increase the space between each matrix and
ensure that alignment does not occur. This needs to be done selectively, otherwise
while alignment will be removed for some problem sizes it will be introduced to other
problem sizes which previously did not suffer from it. A solution should therefore test
whether the size of the matrices is such that alignment would occur before taking any
remedial action.
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Table 4.5: Matrix size information for the SSE streaming implementation

Figure 4.11: Performance of the SSE streaming implementation on the AMD ma-
chines, cross-referenced with alignment to 16KB and 32KB boundaries

Having calculated that a particular problem size would cause alignment and re-
quires adjustment, the simplest solution is to allocate some unneeded memory of
greater that 4KB between each matrix, forcing misalignment. In order to reduce ex-
cessive memory usage, it is desirable to use as little memory as possible in order to
achieve this. Unfortunately, experimentation with Fortran memory allocation showed
that large data structures get assigned elsewhere in memory than relatively small ones.
This meant that for small problem sizes such as 20, alignment could be prevented by
including statements allocating memory for redundant 4KB data structures between
the statements allocating memory for the matrices required by the algorithm. However
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with larger problem sizes such as 100, the redundant 4KB structures are much smaller
than the matrices and are allocated to a different part of memory so do not cause the
required misalignment effect.

An alternative approach is to add redundant elements to the beginning of each
matrix. In Fortran, array indices can begin at any integer including negative numbers.
For all problem sizes which would suffer from perfect or half alignment, extra space
is allocated at the beginning of each matrix without affecting the algorithm. The extra
space is given negative indices and therefore is ignored by the code which traverses
the matrices using positive indices. This approach was implemented using a simple
method which sets the starting index in one axis to the negative of one eighth the
dimension for the problem size when memory alignment is detected. It was found
that for larger matrices, an extra 8th in size causes a significant increase in the amount
of memory used. In these cases, a single extra layer in one dimension is sufficient to
increase the size of a matrix by more than 4KB. Using logic to determine when a single
layer would be sufficient, the two techniques were combined and the code for this is
shown in Figure 4.12.

Figure 4.13 shows the performance results for the standard and SSE streaming
implementations on the AMD machines after the memory alignment fix was in place.

There are many fewer instances of loss of performance with the memory alignment
fix in place. Where the drop in performance still occurs, this is caused by problem sizes
where adding an extra layer alters the size of the matrices by an exact 32KB amount.
This is the case for example with a problem size of 88. The original size of a matrix
at this problem size for the standard implementation is (88 + 2)3 × 8 = 5832000

bytes. This result rounds up to 5,832,704 bytes as the next 4KB boundary, which
divides exactly by 32768 to give 178. An extra layer at this size adds (88 + 2)2 × 8 =

64800 bytes for a total of 5,896,800 bytes. This rounds to 5,898,240 bytes as the next
4KB boundary which divides exactly by 32768 to give 180. The single extra layer
leads to matrices which are still assigned at 32KB intervals in memory so fails to
prevent alignment with respect to the level 1 data-cache on the AMD machines and the
corresponding drop in performance.

More complex algorithms for preventing memory alignment could be pursued, but
these would lead to increasingly complex logic for assigning memory to matrices,
harming the readability and reusability of the code. Moreover, such fixes would only
be relevant to processors with the particular cache size and organisation being used
in the two AMD processors described here. Other processors with different cache
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! m s i z e i s t o t a l b y t e s used i n one ma t r i x , rounded t o
! 4KB boundary
m s i z e = c e i l i n g ( imax ∗∗3∗8 /4096 .0 )∗4096
! a l l o c a t e w i t h padding i f a l i g n m e n t
! or h a l f a l i g n m e n t w i l l occur
i f ( modulo ( m size , 3 2 7 6 8 ) . eq . 0 . o r . &

& modulo ( m size , 3 2 7 6 8 ) . eq . ( 3 2 7 6 8 / 2 ) ) then
! f o r s m a l l m a t r i c e s , add an e x t r a 8 t h o f volume

i f ( ( imax )∗∗2<4096) then
a l l o c a t e ( ex ( imin : imax , jmin : jmax ,(−kmax / 8 ) : kmax ) )
a l l o c a t e ( ey ( imin : imax , jmin : jmax ,(−kmax / 8 ) : kmax ) )
a l l o c a t e ( ez ( imin : imax , jmin : jmax ,(−kmax / 8 ) : kmax ) )
a l l o c a t e ( hx ( imin : imax , jmin : jmax ,(−kmax / 8 ) : kmax ) )
a l l o c a t e ( hy ( imin : imax , jmin : jmax ,(−kmax / 8 ) : kmax ) )
a l l o c a t e ( hz ( imin : imax , jmin : jmax ,(−kmax / 8 ) : kmax ) )

! f o r l a r g e m a t r i c e s , one e x t r a l a y e r o f padding i s s u f f i c i e n t
e l s e

a l l o c a t e ( ex ( imin : imax , jmin : jmax , ( kmin−1): kmax ) )
a l l o c a t e ( ey ( imin : imax , jmin : jmax , ( kmin−1): kmax ) )
a l l o c a t e ( ez ( imin : imax , jmin : jmax , ( kmin−1): kmax ) )
a l l o c a t e ( hx ( imin : imax , jmin : jmax , ( kmin−1): kmax ) )
a l l o c a t e ( hy ( imin : imax , jmin : jmax , ( kmin−1): kmax ) )
a l l o c a t e ( hz ( imin : imax , jmin : jmax , ( kmin−1): kmax ) )

end i f
! a l l o c a t e as normal i f a l i g n m e n t w i l l n o t occur
e l s e

a l l o c a t e ( ex ( imin : imax , jmin : jmax , kmin : kmax ) )
a l l o c a t e ( ey ( imin : imax , jmin : jmax , kmin : kmax ) )
a l l o c a t e ( ez ( imin : imax , jmin : jmax , kmin : kmax ) )
a l l o c a t e ( hx ( imin : imax , jmin : jmax , kmin : kmax ) )
a l l o c a t e ( hy ( imin : imax , jmin : jmax , kmin : kmax ) )
a l l o c a t e ( hz ( imin : imax , jmin : jmax , kmin : kmax ) )

end i f

Figure 4.12: Allocating extra memory when initializing the matrices to avoid align-
ment to the L1 cache

sizes and different cache allocation policies would exhibit different behaviour and re-
quire their own solutions. Additionally, other compilers may use different libraries to
handle memory allocation and always allocating data structures to start at 4096 byte
boundaries may not be the behaviour of all such libraries. Due to the complexity of
implementing memory alignment prevention which would work at all problem sizes,
and due to the lack of portability that such a solution would offer, a more practical
solution may be to be aware of those dimensions which cause cache contention due to
alignment on a particular machine, and avoid those sizes. For example, the standard
implementation suffers severe loss of performance at a dimension of 208 on the AMD
machines. By adjusting to a problem size of 204 or 212, performance is returned to
normal. In typical applications of the FDTD method, such an adjustment would not
invalidate the results.

Figure 4.6 shows that the Intel machines do not exhibit the same pattern of perfor-
mance drops seen with the AMD machines. This indicates that alignment leading to
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Figure 4.13: Performance of on the AMD machines following the memory alignment
fix

excessive cache evictions is not an issue on the Intel machines. This is in spite of the
Intel machines having level 1 data-caches which are half the size of those on the AMD
machines, as shown in Figure 4.8. The level 1 data-caches on the Intel machines are 8-
way set associative rather than 2-way. This means that the 32KB cache is split 8 times,
into 8 groups of 4096 bytes. Competing memory addresses would therefore be found
at 4KB intervals in memory. This is much more frequent than the 32KB interval of the
AMD level 1 data caches. In fact, the Intel machines have the same policy of aligning
the data structures to 4KB boundaries in main memory, so matrices are aligned with
respect to the level 1 data-cache at every problem size. For a particular (i,j,k) index, the
element with that index from each matrix would correspond to the same level 1 cache
line address at every problem size on the Intel machines. However, because the level
1 data-cache is 8-way set associative, each cache line address corresponds to 8 slots in
the cache. Since there are only 6 matrices in the FDTD algorithm, the 64B cache lines
containing the elements indexed by a particular (i,j,k) index from each matrix can all
reside in cache simultaneously, using 6 of the available 8 positions for that cache line
address. For the FDTD algorithm being used in this project, an 8-way set associative
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data cache is more beneficial than a 2-way set associative data cache in terms of avoid-
ing excessive eviction of useful data from cache caused by alignment of the matrices
in memory.

4.3 Results of GPGPU Experiments

The CUDA implementations described in Section 3.4 were executed on a machine
containing two NVIDIA Tesla T10 CUDA processors. The specification of a single
Tesla T10 GPU is shown in Table 4.6. The information in this table is taken from
executing the “enum gpu” program from chapter 3 of [20] and from the information
published by NVIDIA in [33].

Table 4.6: Specification of a Tesla T10 GPU

Each Tesla T10 is a CUDA capable GPU processor supporting CUDA compute ca-
pability 1.3. Compute capabilities describe the generations of NVIDIA’s CUDA capa-
ble GPUs. Capability 1.3 means that the processor provides double precision support,
but not at the levels of performance of the more recent Fermi architecture (compute
capability 2.0) graphics processors [22] [34]. As shown in Table 4.6, the stated double
precision performance of 78 GFlops (Giga Floating Point Operations Per Second) is
well below the single-precision performance of 933 GFlops. Each T10 contains 30
streaming multiprocessors. As described in Section 2.3.1 a single streaming multi-
processor has 8 cores, meaning that each Tesla T10 contains 240 cores in total. The
implementations described in Section 3.4 were designed for use on a single GPU, so
only one of the two available GPUs was used during execution of these experiments.

As with the CPU experiments performed in Section 4.1, the GPU implementations
were executed for 5000 time-steps at problem sizes of 64, 128, 192 and 256. Each
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metric was taken ten times and the average used as the timed result. The performance
results when using double precision arithmetic are shown in Figures 4.14 to 4.17. In
each case, the performance of the SSE streaming implementation on the Intel Xeon
machine (as described in Section 4.1) is used to provide a comparison between CPU
and GPU performance. This represents the highest performing CPU implementation
based on the results in Section 4.1. The sequential GPU implementation described in
Section 3.4 is not included as it was not designed to offer high performance and takes
impractically long to execute at these problem sizes.

Figure 4.14: Double precision performance of GPU implementations at a problem size
of 64

At each problem size, GPU implementations with increasing thread counts per
block are used. Thread counts of 1, 8, 32 and 64 are used in each case. Where more
than one thread per block is used, the results for both coalesced and uncoalesced mem-
ory access are given. At the larger problem sizes, even greater thread counts were
possible. At the problem size of 128, 128 threads per block was executed. At the prob-
lem size of 192, 192 threads per block was executed. At the problem size of 256, 128
threads per block and 256 threads per block were executed. Note that for the approach
used in these GPU implementations, it is necessary for the problem size to be an exact
multiple of the thread count, and the thread count may not exceed the problem size.

At each problem size, the single thread per block GPU implementation is around
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Figure 4.15: Double precision performance of GPU implementations at a problem size
of 128

Figure 4.16: Double precision performance of GPU implementations at a problem size
of 192

2.5 times slower than the SSE streaming CPU implementation. In this case, exploiting
parallelism at the block level alone is not sufficient to get acceptable performance from
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Figure 4.17: Double precision performance of GPU implementations at a problem size
of 256

the GPU. When uncoalesced memory access is used, increasing the thread count con-
sistently improves performance at each problem size. Coalesced memory access gives
higher performance than uncoalesced memory access at the lower thread counts. This
difference gradually diminishes as the thread count increases. At each problem size,
the highest thread count gives very near equal performance between uncoalesced and
coalesced memory access. As described in Section 3.4, the coalescing approach re-
lates to how the elements in the i dimension of each matrix are assigned to the threads.
When the thread count is equal to the number of items in the i dimension, as is the case
at the largest thread count shown for each problem size in Figures 4.14 to 4.17, both
the coalesced and uncoalesced approaches assign one element per thread. This means
the behaviour at run-time of the coalesced and coalesced implementations is almost
identical, with only slight differences in the calculation used to determine the index for
each thread. Therefore the similarity in execution time when the thread count equals
the problem size is to be expected.

The best performing implementation varies with problem size. At the problem size
of 64, there are three implementations providing the best execution time of 9 seconds.
At the problem size of 128, it is the coalesced approach using 64 threads per block (so
each thread is assigned two elements in the i dimension of each matrix) which provides
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the best performance. At the problem size of 192, it is also the coalesced approach
using 64 threads per block (in this case each thread is assigned three elements in the i

dimension of each matrix) which provides the best performance. At the problem size
of 256, it is the coalesced approach with 32 threads per block (meaning 8 elements per
thread) which performs best. It is therefore not possible to provide a single solution
which gives the best performance at all problem sizes. However, it can be seen that
when using coalesced memory accesses the results for 32 threads and above differ by
only a few percent from each other. If a uniform solution was required, these results
show that using the coalesced approach with a 32 or 64 threads per block gives an
implementation which will execute at each problem size and give performance close
to the highest observed.

Compared to the best CPU implementation, the best GPU implementation gives a
speedup of between 7 and 8.5 at each problem size. While the CPU implementation
uses the SSE registers to execute in parallel, it uses only a single CPU core. Modern
CPUs typically contain multiple cores, and [6] shows that multi-core versions of the
FDTD algorithm can provide speedup with efficiency of greater than 80%. If multi-
core execution was applied to the SSE streaming CPU implementation with this level
of efficiency, it would require 8 cores to provide performance comparable to the best
GPU implementations presented here. Typical modern desktop processors have up to
4 cores but rarely 8 or more. Therefore it could be expected that a modern desktop
containing a CUDA capable GPU would execute the FDTD algorithm with higher
performance using the GPU rather than the CPU. However, servers with 8 cores or
more are now common place and therefore in these environments, a multi-core CPU
implementation may offer higher performance than the GPU implementation. This
is conjecture based on the ability execute with SSE streaming in parallel on multiple
cores, which would be a useful follow up to the implementation described in Section
3.3.

As described in section 2.3.1, CUDA capable GPUs are expected to give signifi-
cantly better single precision performance than double precision. To test this, the same
experiments were performed using single precision versions of the GPU implementa-
tions. To provide a useful comparison, a single precision version of the SSE streaming
with intrinsics implementation was also developed, and executed on the Intel Xeon ma-
chine. As described in Section 2.2, single-precision SSE instructions can perform four
floating-point operations at once, compared to two operations for double-precision.
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The SSE streaming implementation therefore had to be altered to step through the ma-
trices 4 elements at a time rather than two, and the intrinsic functions for performing
packed double-precision instructions were replaced with intrinsic functions for packed
single-precision instructions. These were the only changes required to develop a cor-
rect single-precision implementation. The results of the single-precision experiments
are shown in Figures 4.18 to 4.21.

Figure 4.18: Single precision performance of GPU implementations at a problem size
of 64

At each problem size, the single-precision SSE streaming CPU implementation is
about 3 times faster than the equivalent double-precision CPU implementation. Using
single-precision to perform 4 operations at once rather than two operations doubles
throughput, and the additional speedup beyond the doubling of throughput is likely due
to the lower memory bandwidth required by single-precision. Since a single-precision
floating-point value is only 4 bytes rather than 8 bytes, a single cache line contains
twice as many single-precision values, effectively halving the cache miss rate when
stepping sequentially through memory as is the case with this algorithm.

In general, the pattern of performance for the single precision GPU implementa-
tions is quite similar to that of double precision. Increasing the thread count is more
beneficial to uncoalesced than coalesced performance, and coalesced performance is
generally better than uncoalesced performance, especially at lower thread counts. The
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Figure 4.19: Single precision performance of GPU implementations at a problem size
of 128

Figure 4.20: Single precision performance of GPU implementations at a problem size
of 192

single-precision results differ from the double-precision results on the GPU in that the
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Figure 4.21: Single precision performance of GPU implementations at a problem size
of 256

coalesced implementation with the highest thread count at each problem size is always
the best performing, although jointly with the uncoalesced implementation at the high-
est thread count in each case. This differs from the double precision results where
the best performing configuration differed slightly at different problem sizes. With the
single precision implementation, high performance can be reliably achieved by setting
the thread count to equal the problem size. This could be done all the way up to a
problem size of 512, since 512 is the maximum number of threads per block allowed
in CUDA [8].

The best performing single precision GPU implementation at each problem size is
around 2 times faster than the best performing double precision GPU implementation.
This is unexpected, since the double-precision performance of GPUs with compute
capability 1.3 (those that precede the Fermi architecture) is expected to be around 8
times slower than single-precision performance (see Table 4.6). This expected dif-
ference in performance is because each streaming multiprocessor in the GPU con-
tains 8 single-precision floating-point units but only 1 double-precision floating-point
unit [34]. The scheduler for a warp of 32 threads (see Section 2.3) can issue a single-
precision floating-point instruction to all 32 threads in 4 cycles, but requires 32 cycles
to issue a double-precision floating-point instruction to all 32 threads [34]. Since this
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difference in performance is not observed in the results presented here, the implication
is that arithmetic throughput is not the limiting factor for these GPU implementations.
It is likely that memory bandwidth is the limiting factor, and therefore each stream-
ing multiprocessor is not able to fully exploit the processing power of its cores. Since
single-precision values are half the size of double-precision values, the overall global
memory bandwidth required by the single-precision implementations is half that of the
double-precision implementations. This correlates with the observed doubling in per-
formance at single-precision and reinforces the conclusion that it is memory bandwidth
which is the limiting factor. As described in Section 2.3, the ratio of arithmetic instruc-
tions to memory accesses is called the Compute to Global Memory Access (CGMA)
ratio. To measure this ratio for these implementations, it is necessary to look at a
typical line from the kernels, given in Figure 4.22.

dex [ c u r r e n t O f f s e t ] = dex [ c u r r e n t O f f s e t ] + d t / pmt ∗ (
( ( dhz [ o f f s e t ( i , j +1 , k , gr idDim . x ) ] − dhz [ c u r r e n t O f f s e t ] ) / dy ) −
( ( dhy [ o f f s e t ( i , j , k +1 , gr idDim . x ) ] − dhy [ c u r r e n t O f f s e t ] ) / dz )

) ;

Figure 4.22: Typical FDTD calculation from the CUDA kernels

The code in Figure 4.22 performs 5 global memory reads to access values from
the matrices, and 1 global memory write to assign the result, making 6 global memory
accesses in total. There are 8 floating point arithmetic instructions and two integer
additions (j+1 and k+1). There are also two calls to the offset function, shown in
Figure 4.23.

h o s t d e v i c e i n t o f f s e t ( i n t i , i n t j , i n t k )
{

re turn i + ( j ∗ (DIM+2) ) + ( k ∗ (DIM+2) ∗ (DIM+2) ) ;
}

Figure 4.23: The offset function

Assuming the compiler optimizes to only perform the DIM+2 calculation once,
each call to this function performs 6 arithmetic operations. This makes a total of 22
arithmetic operations (8 floating point and 2 integer along with two instances of the
6 operation offset function) for every 6 global memory accesses for this line of code,
which is representative of the majority of work done by both kernels in the implemen-
tation. This gives a CGMA ratio of 22 ÷ 6, approximately 3.7. According to [35],
the maximum single-precision performance of a Tesla T10 GPU is 933 Gigaflops (one
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Gigaflop is 230 Floating Point Operations Per Second). The peak global memory band-
width is 102 gigabytes per second, which equates to a maximum memory throughput
of 25.5∗230 single-precision floating-point values per second. The arithmetic through-
put is 37 times greater than the memory bandwidth (calculated as 933 ÷ 25.5) and
therefore in order to achieve the maximum possible single-precision performance, the
CGMA ratio would need to be 37 or greater.

According to [8], increasing the CGMA ratio is typically done by introducing ei-
ther constant memory or shared memory access. As described in Section 2.3, constant
memory allows frequently accessed values which do not change during program execu-
tion to be broadcast to multiple threads. However in this implementation the program
constants, such as dt, pma and pmt are already held in each thread’s local registers,
the fastest type of storage available. The constants are not held in global memory and
therefore introducing constant memory would not reduce the number of global mem-
ory accesses and would not be expected to improve performance.

Shared memory is intended to allow a thread to store values in fast local storage
which is accessible to the other threads in the same block. If more than one thread uses
the same value, having one thread store the value in shared memory and having the
other threads read it from shared memory rather than global memory reduces the total
number of global memory accesses.

dez [ c u r r e n t O f f s e t ] = dez [ c u r r e n t O f f s e t ] + d t / pmt ∗ (
( ( dhy [ c u r r e n t O f f s e t +1] − dhy [ c u r r e n t O f f s e t ] ) / dx ) −
( ( dhx [ o f f s e t ( i , j +1 , k , gr idDim . x ) ] − dhx [ c u r r e n t O f f s e t ] ) / dy )

) ;

Figure 4.24: Calculation of Ez in the CUDA kernel

An example of this can be observed in the calculation for a value of the matrix
Ez given in Figure 4.24. Consider the thread executing this instruction as T0. T0 ac-
cesses both dhy[currentOffset] and dhy[currentOffset+1] which are adjacent in mem-
ory. When using coalesced memory access, the thread adjacent to T0 (call it T1)
will have a value of currentOffset which is greater by 1. Therefore when T0 accesses
dhy[currentOffset+1] and T1 accesses dhy[currentOffset], they are accessing the same
memory location. If T0 stores the value in shared memory, T1 can access it from shared
memory, reducing the number of global memory accesses. Four out of six of the matrix
element calculation statements include a single memory access fitting this pattern (the
calculations for Ey, Ez, Hy and Hz). This means an average reduction per statement
of two thirds of an access for threads which benefit. However, only half of the threads
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do benefit, since one out of every two threads would be responsible for accessing the
data from main memory and storing it in shared memory. Therefore exploiting this
technique would reduce the average number of global memory accesses for a single
statement by one third of one access, from 6 to 5.7. This increases the CGMA ratio
to 3.9. The logic of the kernel would become significantly more complex for only a
slight improvement in the CGMA ratio. The cost of synchronising between threads
to enable coordination of sharing values in this way would most likely cancel out any
benefit from increasing the CGMA ratio and would probably lead to an overall drop in
performance.

A better approach may be to exploit the fact that when calculating Ex, Ey and Ez,
values from Hx, Hy and Hz are used multiple times and vice-versa. For example, in
Figures 4.22 and 4.24, the calculations of Ex and Ez both rely on dhy[currentOffset].
In the existing algorithm, this value would be loaded from global memory twice by
the same thread. As an alternative, this value could be stored locally in a register
variable and then reused as required. There are three such paired accesses across the
three statements that make up one iteration within a kernel so this would reduce the
number of global memory accesses on average by one per statement, from 6 to 5. This
increases the CGMA ratio to 4.4, a greater increase than the shared memory technique,
but still not enough to fully maximise the arithmetic throughput of the GPU.

The need to increase the the CGMA ratio is due to the lack of cache between global
memory and the processing units in a CUDA capable GPU with compute capability
1.3. GPUs with compute capability 2.0 (commonly known as Fermi GPUs) do include
cache between the processing units and the global memory. Section 4.4 demonstrates
the use of a Fermi GPU to execute the GPU based FDTD implementations.

4.4 Experiments with a Fermi GPU

In order to test the performance of the CUDA FDTD implementations on Fermi hard-
ware, a GPU Cluster instance was leased from Amazon’s Elastic Cloud Computing
(EC2) service. EC2 provides virtual machine instances of various configurations that
are paid for by the hour. Performing these experiments required nine hours of com-
puting time on a single GPU Cluster instance resulting in a total cost of £22.72. Ama-
zon EC2 offers the GPU Cluster instance type containing two NVIDIA Fermi M2050
graphics processors. The specification of an M2050 processor is shown in Table 4.7.
The information in this table was obtained executing the “enum gpu” CUDA program
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Table 4.7: Specification of a Fermi M2050 GPU

from chapter 3 of [20] and from the information published by NVIDIA in [22] and [36].
The GPU Cluster instances available on the EC2 service have 16 Intel Xeon proces-

sor cores and 22GB memory, making them powerful machines before taking account
of their graphics processing capability. However for this exercise the compute inten-
sive parts of the GPU implementations execute on the GPU hardware only and so the
overall CPU processing power and main memory of the machine have no bearing on
the performance results.

Comparing Table 4.7 to Table 4.6, there are several noticeable differences between
the Fermi based Tesla M2050 GPU and the Tesla T10 GPU used in Section 4.1. Al-
though the Fermi GPU has significantly fewer Streaming Multiprocessors (14 com-
pared to 30), the Fermi architecture specifies 32 cores per Streaming Multiprocessor
rather than 8, giving an overall count of 448 cores in the M2050 GPU, compared to 240
cores in the Tesla T10 GPU. The Fermi GPU also has slightly lower clock speed. The
net result of the different organisation, quantity and speed of the cores is that the Fermi
GPU has a maximum performance of 1030 GFlops (Giga Floating Point Operations
Per Second) for single-precision arithmetic, only slightly greater than the maximum
performance of 933 GFlops in the Tesla T10. The difference for double-precision
arithmetic is much greater, with the Fermi GPU giving 515 GFlops compared to 78
GFlops in the Tesla T10 GPU. Note that while NVIDIA lists these performance figures
in their documentation in [33] and [36], they do not explain exactly how the GFlops
figure is derived from the number of cores and the scheduling of threads to them. The
Fermi GPU has twice as many registers per Streaming Multiprocessor, but has four
times as many cores per Streaming Multiprocessor, meaning that there are as half as
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many registers available on a per core basis compared to the Tesla T10 GPU. This may
adversely affect programs which rely on a large number of registers per thread since a
Streaming Multiprocessor will only support as many threads as it can provide registers
for, potentially limiting the number of threads running on a Streaming Multiprocessor
at run-time [8].

The Fermi GPU has twice as much shared memory for each Streaming Multipro-
cessor and this shared memory can be configured so that either 16KB or 48KB are
used as an level 1 cache, with the remainder operating as user programmable shared
memory [22]. In the Tesla T10, shared memory is only user programmable, there is no
option to use it as level 1 cache. The Fermi GPU also includes an level 2 cache uni-
fied across all streaming multiprocessors which does not exist at all in the Tesla T10.
Additionally, the Fermi GPU has a global memory bandwidth of 140GB per second,
greater than the 102GB per second on the Tesla T10. The combination of two levels
of cache and additional memory bandwidth means that the Fermi GPU is better able
to satisfy the memory requests of the threads in a CUDA kernel in a timely manner to
allow the processor cores to remain busy for a greater portion of the time.

The experiments executed on the Fermi GPU used the same configuration as previ-
ous experiments, with four problem sizes of 64, 128, 192 and 256 with 5000 time-step
iterations. Since access to EC2 virtual machines has an associated cost, only 3 execu-
tions were performed for each implementation at each problem size, with the average
of these 3 executions being used. While this is less than the 10 executions used in
Section 4.3, the timing results of the 3 executions were very uniform in each instance,
so confidence in the validity of these timing results remains high. Similarly, due to
the cost associated with executing on the Fermi GPU, the lower thread counts of 1 and
8 threads per block used in Section 4.3 were not executed in this case. The results
in Figures 4.14 to 4.17 and 4.18 to 4.21 show that these thread counts do not offer
good performance compared to higher thread counts on the Tesla T10 gpu so it was
decided it was not worth executing them on the Fermi GPU as this trend was likely to
be repeated. The GPU implementations in this project do not use the programmable
shared memory, so the level 1 cache of each Streaming Multiprocessor was set to its
maximum 48KB. This configuration is the default option on Fermi GPUs so did not
require any special parameters during compilation.

Figures 4.25 to 4.28 show the double-precision performance of various thread
counts per block for both uncoalesced and coalesced memory access when executed
on the Fermi GPU. The best performing CPU based implementation from Section 4.1
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and the best performing Tesla T10 GPU based implementation from Section 4.3 are
included at each problem size to allow for comparison.

Figure 4.25: Double precision performance of GPU implementations on the Fermi
GPU at a problem size of 64

At a problem size of 64, the best performing double-precision implementations on
the Fermi GPU are those using 64 threads per block, for both uncoalesced memory
and coalesced memory (as explained in Section 4.3, when the thread count is equal to
problem size there is essentially no difference between the uncoalesced and coalesced
memory option in terms of the execution at run-time). This result is nearly twice as
fast than the best performing GPU implementation on the Tesla T10 GPU, and 13 times
faster than the best performing CPU implementation.

At a problem size of 128, the best performing double-precision implementation
on the Fermi GPU is again at 64 threads per block, but this time exclusively for co-
alesced memory access. This is more than twice as fast as the best performing GPU
implementation on the Tesla T10 GPU and 18 times faster than the best CPU based
implementation.

Similar results are seen at a problem size of 192, with 64 threads per block and
coalesced memory access on the Fermi GPU performing more than twice as fast as the
best GPU implementation on the Tesla T10 GPU and 19 times faster than the best CPU
based implementation.
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Figure 4.26: Double precision performance of GPU implementations on the Fermi
GPU at a problem size of 128

Figure 4.27: Double precision performance of GPU implementations on the Fermi
GPU at a problem size of 192
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Figure 4.28: Double precision performance of GPU implementations on the Fermi
GPU at a problem size of 256

At the largest problem size of 256, the best implementation on the Fermi GPU is
again the 64 threads per block with coalesced memory configuration, and it performs
even better compared to the Tesla T10 GPU at over 2.5 times faster, while being 19.5
times faster than the best CPU based implementation.

In general it can be seen that the Fermi GPU offers much greater performance than
the Tesla T10 GPU. In addition, the performance difference increases as the prob-
lem size is increased, indicating that the CUDA implementation of the FDTD method
scales better on the Fermi GPU than the Tesla T10 GPU. This is likely due to the fact
that as the problem size increases, so the number of blocks created for each kernel
increases and therefore the overall number of threads launched increases. This is due
to the design decision from Section 3.4 that the number of blocks is set to the square of
the problem dimension. Since the Fermi GPU has a greater number of cores, it can run
more threads in parallel than the Tesla T10 GPU, and needs a larger number of threads
to achieve its maximum performance.

There are many features of compute capability 2.0 (present in the Fermi M2050
GPU) which would allow for this improvement over compute capability 1.3 (present
in the Tesla T10 GPU). Compute capability 2.0 offers much greater double-precision
performance, has greater memory bandwidth, and has L1 and L2 cache to reduce the
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number of requests made to global memory. It is not possible to isolate directly how
each feature contributes to the increase in performance. However if the performance
increase was entirely due to the greater double-precision performance and not due to
the global memory bandwidth and cache features, then it would be expected that the
performance increase would not be repeated for the single-precision implementations
since there is not a large difference in the maximum single-precision performance of
the Fermi GPU and the Tesla T10 GPU (1030 GFlops compared to 933 GFlops). The
same experiments were repeated for single-precision, with the results shown in Figures
4.29 to 4.32.

Figure 4.29: Single precision performance of GPU implementations on the Fermi GPU
at a problem size of 64

At a problem size of 64 using single-precision arithmetic, the uncoalesced and
coalesced 64 threads per block implementations give the best performance. However
this performance is equal to that seen on the Tesla T10 GPU and only 5 times faster
than the CPU based implementation.

At a problem size of 128, it is coalesced memory access with 128 threads per block
which performs best on the Fermi GPU, which is 1.5 times faster than the best Tesla
T10 implementation and 8 times faster than the best CPU implementation.

At a problem size of 192, the coalesced 64 threads per block implementation gives
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Figure 4.30: Single precision performance of GPU implementations on the Fermi GPU
at a problem size of 128

Figure 4.31: Single precision performance of GPU implementations on the Fermi GPU
at a problem size of 192
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Figure 4.32: Single precision performance of GPU implementations on the Fermi GPU
at a problem size of 256

the best performance and the performance difference to the best Tesla T10 implemen-
tation is again 1.5, while being 8.5 times faster than the best CPU implementation.

At a problem size of 256, coalesced memory access with 128 threads per block
performs best on the Fermi GPU. This is 1.75 times faster than the best Tesla T10 GPU
implementation and nearly 10 times faster than the best CPU based implementation.

The single-precision performance difference between the Fermi GPU and both the
Tesla T10 GPU and the CPU increases gradually as the problem size increases, repeat-
ing the observation seen with double-precision. However, across the problem sizes,
the difference in performance is much lower for the single-precision implementations
than double-precision. This suggests that it is the increased double-precision perfor-
mance of the Fermi GPU which accounts for much of the performance difference seen
for double-precision arithmetic. However, there is some performance difference with
single-precision, so this indicates that the memory bandwidth and cache enhancements
also provide some performance improvement to the implementations in this project.

Overall, the Fermi GPU with compute capability 2.0 provides performance im-
provements over the Tesla T10 GPU with compute capability 1.3 when executing the
CUDA based FDTD implementations developed in this project. This is particularly
the case when using double-precision arithmetic. Compared to the best CPU based
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implementation, the Fermi GPU offers up to a 20 times performance improvement
when using double-precision, with this improvement increasing as the problem size
increases. It would require a parallel implementation run across at least 20 cores (de-
pending on efficiency) to match this performance using CPU hardware, even when
incorporating the SSE streaming techniques from Section 3.2. A single Fermi GPU
device provides a level of performance which would require significant amounts of
parallel CPU hardware to match. This suggests that a Fermi GPU is a good choice for
executing the FDTD method. It should be noted however that the size of the global
memory limits the maximum problem size to which the GPU implementations in this
project can scale. The total memory usage of an implementation is measured as the
dimensions of the problem (plus padding) cubed, multiplied by the size of a floating
point value (8 bytes for double-precision), multiplied by 6 for the number of matri-
ces used by the algorithm. This means that the 3GB global memory of the M2050
Fermi GPU used here can support a maximum problem size 400 for double-precision,
since 4023 × 8 × 6 gives 3,118,310,784 bytes, slightly less than the 3GB limit. This
limit could be worked around by moving the matrices on to the GPU in segments for
processing. However the cumulative effect of moving the necessary segments around
would mean copying the whole of the matrices Ex, Ey, Ez, Hx, Hy and Hz on to the
GPU and back to main memory for each time step, introducing a significant overhead
to the algorithm.

As shown in [36], there are other Fermi GPUs such as the Tesla M2090 available
with up to 6GB of global memory, allowing a double-precision problem size of up to
510 to be used ( 5123 × 8× 6 is exactly 6GB). In addition, the Tesla M2090 GPU has
an increased global memory bandwidth of 177 GB per second and an increased peak
double-precision performance of 665 GFlops. This GPU would therefore likely offer
greater performance improvements as well as supporting larger problem sizes.

4.5 Performance to price comparison

Table 4.8 gives the cost of some of the processing hardware used in this project to exe-
cute the various FDTD implementations. Prices of computing hardware can be volatile
over time and from different retailers, but the prices here were all taken from a single
retailer, uk.insight.com, on the same day, so represent a relatively fair comparison.
In each case, the price includes the processing unit only and not an entire machine.
The CPU hardware would require a compatible motherboard and other components to
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make a working system, and similarly the GPUs would require a motherboard with a
PCI express slot available and other components to form a complete system. For the
purposes of this comparison the assumption is being made that the cost of the addi-
tional hardware would be equal for each processing unit and therefore comparing the
cost of the processing hardware alone is sufficient.

Table 4.8: Cost comparison of various processing hardware

The Tesla T10 GPU used for the experiments in 4.3 is sold as the internal process-
ing unit of packaged units with different names. One of these, the Tesla C1060, is
still listed at the retailer being used for this comparison but is no longer available for
sale. Where the Tesla C1060 can be found at other retailers, it is similarly priced to
the Fermi GPU. In general the latest generation of Fermi capable GPUs are similarly
priced to the previous generation Tesla GPUs and as described in Section 4.4, the Fermi
GPU offered better performance for the experiments in this project. The implication
of this is that it is clearly more cost effective from a price to performance perspective
to acquire a Fermi GPU rather than an older Tesla GPU. For this reason the Tesla T10
GPU is considered obsolete and will not be considered further in this comparison.

Performance comparisons are made using the results at a problem size of 256 (since
larger problem sizes are more representative of real-world FDTD applications) and
using double-precision (since double-precision results are available for all process-
ing units and as described in Section 3.5 double precision is considered necessary for
more complex FDTD applications). At this problem size, the AMD Opteron executes
the SSE streaming implementation in 4827.5 seconds. The Intel Xeon executes this
implementation in 4030 seconds. Since the Intel Xeon is approximately half the cost
of the AMD Opteron and provides better performance, it clearly offers superior price
to performance for the implementations in this project. The best configuration on
the Fermi M2050 GPU executes in 207 seconds at a problem size of 256 for double-
precision. This is a speed up of 19.5 compared to the Intel Xeon, while costing only
3.4 times more.
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By measuring throughput as the number of elements in the problem size (2563 =

16, 777, 216) divided by execution time, this gives a measure of the number of elements
executed by a processor for each second of execution time. Dividing this throughput
metric by the cost of a processor, the result gives the number of elements processed
per second per pound spent. This can be used as a price-performance metric allowing
objective comparison between the different processing units. Table 4.9 shows this
calculation for each processing unit for which cost information is available and clearly
shows that the Fermi GPU provides much better value in terms of performance per cost
of hardware.

Table 4.9: Throughput per cost of hardware

However, the CPU implementations in this project do not attempt to make use of
the multiple cores available on the CPUs, whereas the GPU implementations attempt
to make use of every single core available on the GPUs. Therefore the comparison in
Table 4.9 is not representative of the true potential performance per cost of hardware.
As described in Section 2.1, [6] demonstrates that a parallel multi-processor imple-
mentation of the FDTD method can achieve greater than 80% efficiency. Assuming
an 80% figure for efficiency and assuming usage of all the cores on the CPUs in Table
4.8, it is possible to reason about the potential performance that may be achieved if
the SSE streaming implementation was extended to execute on multiple cores. These
updated calculations are given in Table 4.10.

Table 4.10: Potential throughput per cost if all cores were utilised

When the potential performance offered by multiple cores is taken into account,
the AMD Opteron processor now offers greater value than the Intel Xeon processor.
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The Fermi GPU still offers superior value to the two CPUs, but the difference is sig-
nificantly reduced. This is of course based on conjecture regarding the scalability of
the CPU based SSE streaming implementation of the FDTD method, but shows that a
GPU based system is likely to offer superior value than a CPU based system in terms
of performance per cost of hardware when all cores are fully utilised on each device.



Chapter 5

Conclusions and Further Work

The FDTD method contains inherent opportunities for parallelism due to the large
number of independent calculations required at each time-step. Using a simple sequen-
tial Fortran implementation as a starting point, this project has explored the application
of SIMD hardware in the form of SSE instructions on x86 architecture processors and
general purpose computing on GPU hardware using NVIDIA’s CUDA technology to
accelerate the execution time of the FDTD method.

The introduction of SIMD hardware to the x86 architecture in the form of SSE in-
structions means that processors based on this architecture can execute the same oper-
ation concurrently on multiple data items. In this project, SSE instructions were used
with the aim of doubling the throughput of the FDTD method when using double-
precision arithmetic. Each calculation for each matrix in the FDTD algorithm was
applied to two adjacent elements simultaneously, exploiting the ability of each 16 byte
SSE register to store and operate on two double-precision values at once. Two SSE im-
plementations were developed, one using hand written assembly language sequences
and one using intrinsic functions which give the programmer access to SSE stream-
ing at a higher level. It was found that the hand written assembly language imple-
mentation was not portable between different processors (even though each processor
supported the SSE2 instruction set), and that it offered no significant performance im-
provement over the intrinsic function implementation. It is concluded therefore that
intrinsic functions are the better approach for programming with SSE streaming, since
they offer portability, greater ease of implementation, and do not incur any significant
performance penalty.

When executed on 4 different processors supporting the SSE2 instruction set, the
performance improvement offered by the SSE implementation differed noticeably on

118



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 119

each processor. On a 32-bit Intel Core 2 Duo, the speedup offered by the SSE stream-
ing implementation for the critical portion of the algorithm was between 1.6 and 1.75
compared to the best sequential implementation. The 64-bit Intel Xeon machine and
64-bit AMD Opteron machine offered a speedup of 2 for the critical portion of the
algorithm, the ideal speedup expected when doubling the throughput. In contrast, a
64-bit AMD Athlon machine offered no significant speedup compared to the sequen-
tial implementation. The investigation into this difference in performance concluded
that the most likely cause was that the SSE implementation on the AMD Athlon pro-
cessor does not execute a packed SSE instruction on two sets of operands any faster
than it performs separate instructions for each set of operands. That is, while the AMD
Athlon processor is able to execute packed SSE instructions, it does not offer any ad-
ditional throughput when doing so. This conclusion could be investigated further by
executing other algorithms based on the SSE2 instruction set on the four architectures
used in this Section 4.1. If the same pattern of performance is observed for other al-
gorithms, this would support the conclusion that the AMD Athlon processor does not
provide improved throughput for SSE instructions. If however other SSE2 based al-
gorithms achieved improved performance on the AMD Athlon processor, this would
suggest that there is a problem with the way SSE has been used in the implementation
of this project, and the implementation could be revisited to see if it can be tuned to
provide additional performance on the AMD Athlon processor without impacting the
existing performance improvements observed on the other processors. The results ob-
served in this project suggest that any implementation using SSE instructions should
be executed on multiple architectures in order to determine whether the expected per-
formance improvements are limited to particular hardware.

Both AMD processors exhibited significant dips in performance at particular prob-
lem sizes. This was investigated and ultimately attributed to a problem of the matrices
used in the algorithm aligning in memory in such a way that severe cache contention
occurs causing an increase in cache misses. It was shown that while programming
techniques can be used to detect when alignment will occur and work around it by
assigning redundant memory to force misalignment, these techniques are complex and
specific to particular processors. It was concluded that while an awareness of those
problem sizes causing cache contention is important to avoid drops in performance, it
is more practical to simply adjust the problem size slightly rather than pursue complex,
processor-specific workarounds.

Overall the results from the SSE implementation show that a Fortran based FDTD



CHAPTER 5. CONCLUSIONS AND FURTHER WORK 120

implementation can be extended with SSE streaming instructions by replacing the
performance critical sections with calls to optimised procedures written in C. This
approach can double performance for implementations using double-precision arith-
metic, but these improvements are processor-specific and the performance of SSE
streaming instructions varies greatly from processor to processor.

It is common to accelerate the FDTD method on hardware with multiple pro-
cessor cores using Single Program Multiple Data (SPMD) techniques to divide the
matrices into large sections and allocating each section to separate thread or process
running on a different core. This is a coarse-grained division of the problem space,
whereas the SIMD techniques presented in this project using SSE instructions take a
fine-grained approach of processing two adjacent elements in parallel. The techniques
in this project are considered to be compatible with the SPMD approach, in circum-
stances where each core of the multi-processor machine is capable of executing SIMD
instructions. Any of the processors used in this project and detailed in Table 4.1 fit the
criteria of being both multi-core and capable of executing SSE instructions. Indeed,
any modern x86 architecture processor is likely to support both multi-core and SSE. A
useful follow up to this project would be to apply the SIMD techniques presented to an
existing parallel FDTD implementation. It is expected that the coarse-grained division
of the matrices among multiple cores would not interfere with the fine-grained stream-
ing of multiple calculations at once using SIMD on each core, and that the performance
improvements observed should be similar to those seen here. That is, depending on the
SSE performance of the processor, applying SSE instructions to an existing SPMD,
parallel, double-precision FDTD implementation may double its performance.

The increasing programmability of GPU hardware has led to increased interest in
executing scientific computations on the GPU. This project has explored the suitability
of GPUs based on NVIDIA’s Tesla architecture for accelerating the FDTD method.
Using CUDA, the programming language created by NVIDIA for developing imple-
mentations on Tesla based GPUs, this project re-implemented the same FDTD algo-
rithm used in the SSE experiments. It was found that in order to exploit parallelism on
a GPU, sections of the program containing a large number of independent calculations
which can be executed in parallel need to be identified. These sections were imple-
mented as CUDA kernels, which are passed to the GPU for processing at run-time. In
order to achieve high performance when executing a kernel it was necessary to exploit
both block-level and thread-level parallelism within the implementation. The imple-
mentation which split kernels into parallel blocks but had each block executing only a
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single thread failed to match the performance of the CPU based implementations.
When executed on Tesla hardware with compute capability 1.3, the best double-

precision GPU implementation performed between 7 and 8.5 times faster than the best
CPU implementation at each problem size. The memory coalescing technique de-
scribed in the literature as a key performance improvement was found to improve per-
formance significantly when the number of threads per block was low, but that the dif-
ference between coalesced and uncoalesced memory reduced as the number of threads
per block was increased. When using single-precision arithmetic, it was found that the
GPU performed around 2.5 times faster than when using double-precision arithmetic.
This was less than the expected difference, with the literature stating that GPUs of this
architecture perform 8 times faster at single-precision rather than double precision.
This difference is most likely due to the implementation being memory bound rather
than compute bound. As stated in the literature, the performance of GPU implemen-
tations is highly dependent on the ratio of computing operations to memory request
operations. Tesla architecture GPUs have no cache between the processing units and
the global memory so are much more sensitive than CPUs to global memory band-
width. Although GPUs typically have higher memory bandwidth than CPUs, this does
not compensate for the lack of cache. The likely cause of the smaller than expected
differential in performance between double-precision and single-precision arithmetic
on the Tesla based GPU is that memory access time is the dominant factor in limiting
performance and therefore the high speed single-precision abilities are being throttled
waiting for memory requests to be satisfied. The FDTD method implemented here does
not have a high enough Compute to Global Memory Access (CGMA) ratio to allow for
maximum performance from the GPU. The CUDA implementations in this project do
not attempt to make use of shared memory or constant memory to improve the CGMA
ratio. As described in Section 4.3, it is not anticipated that these techniques would
significantly improve performance in this case. There may be some performance im-
provement to be gained from holding matrix elements in local register variables where
they are used more than once by the same thread. Extending the GPU implementation
by exploring these techniques to improve the performance of the FDTD method when
executed on a GPU would be useful further work.

More recent NVIDIA GPUs implement the Fermi architecture, also known as com-
pute capability 2.0. This compute capability features improved double precision sup-
port and two levels of cache between the processing units and the global memory.
The GPU experiments were repeated using a Fermi GPU on a machine rented from
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Amazon’s cloud computing infrastructure. It was found that the double-precision im-
plementations executed significantly quicker on the Fermi GPU. The performance im-
provement increased as the problem size grew, with a performance improvement of 2.5
times at a problem size of 256 relative to the Tesla GPU. In addition, the performance
on the Fermi GPU at this problem size was around 20 times faster than the performance
of the best CPU implementation.

The performance improvement using single-precision arithmetic was not as signif-
icant using the Fermi hardware. At a problem size of 256, the Fermi GPU executed
around 1.75 times faster than the Tesla GPU, and around 10 times faster than the best
CPU implementation. These results indicated that the performance increase observed
with double-precision arithmetic was a combination of improved double-precision per-
formance, and improved memory performance due to increased global memory band-
width and the presence of two levels of cache. The single-precision improvement was
less since only the memory performance improvements apply in that case.

A major limitation of the GPU implementations is that the size of the global mem-
ory on the GPU hardware places an upper limit on the maximum problem size that
can be executed. With the implementations presented here, the matrices used in the
algorithm need to fit completely into the global memory of the GPU in order to exe-
cute correctly. Working around this by moving the matrices in and out of memory in
segments would be likely to introduce significant overhead, reducing the performance.

Although the implementation of the FDTD method on the two generations of
CUDA capable GPU hardware failed to achieve the theoretical maximum performance
that the hardware was capable of, most likely due to problems of memory bandwidth,
the GPU implementations still offered significant speedup compared to the CPU im-
plementations. However, if the SSE streaming techniques were successfully combined
with SPMD techniques as described above to spread the workload over multiple CPU
cores, it is likely that, given enough processing cores, the resulting parallel CPU based
implementation would exceed the performance on the GPU implementation. The GPU
implementation could also be parallelised across multiple devices as an extension to
this work. Both the University of Kyushu machine containing the Tesla architecture
GPU and the rented Amazon cloud computing machine containing the Fermi architec-
ture GPU contain 2 GPU devices. The matrices that are used in the algorithm of this
project could be divided between 2 or more GPU devices, and a kernel could execute
on each GPU simultaneously. Since each calculation for a particular element relies on
elements from other matrices displaced in all three dimensions, it would be necessary
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to copy data from the boundaries of the division of the matrices in between each kernel
invocation. Provided that the time to copy the boundary data did not exceed the time
saved by using multiple GPUs to share the workload of the algorithm, the performance
of GPU implementation could be increased in this way. In addition, spreading the
execution across multiple GPUs would help with the problem of the global memory
capacity of a single GPU limiting the maximum problem size. For example, if two
GPUs were responsible for half the problem space each, the maximum problem size
would be based on the combined memory capacity of both GPUs. Exploring a mul-
tiple GPU implementation of the FDTD method would be a natural next step to the
implementation presented in this project.

The algorithm used in this project was intentionally selected as a simple case of
the FDTD method in order to manage the scope of the project. Using a simple FDTD
algorithm allowed the focus to be on the use of SSE and GPU hardware to accelerate
the performance critical sections of the algorithm. The results from this project could
be taken further by applying the techniques presented to more complex cases of the
FDTD method. It would be useful to demonstrate whether the performance improve-
ments observed when applying SSE streaming and GPGPU techniques to a simple
implementation of the FDTD method are maintained when implementations of greater
complexity are used.
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Appendix A

Material provided in electronic form

Included with this dissertation is a compact disc containing various electronic material
as detailed below.

• An electronic copy of this document in PDF format.

• The full code, compilation scripts and batch execution scripts used to implement
and execute the solutions presented in this project.

• The raw data and charts from the performance experiments performed during
this project in Microsoft Excel format.

This material may be of interest to the reader of this document either to enhance
the understanding or to allow for further work to be performed.
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