
The University of Manchester 

School of Computer Science 

Project Work (2013/2014) 

Progress Report for 

Whitelisting software 

 Daniel Dresner 

 Xue Fu     

  

  



2 

Contents 
Abstract ..................................................................................................................................... 3 

1 Introduction ............................................................................................................................ 3 

1.1 Approaches of computer security ................................................................................... 3 

1.2 Explanation of the project ............................................................................................... 5 

1.3 Paper structure ................................................................................................................ 6 

2 General background research ................................................................................................ 6 

2.1 Bit9 Security Platform ...................................................................................................... 7 

2.2 Faronics Anti-Executable ................................................................................................. 8 

2.3 CoreTrace Bouncer .......................................................................................................... 9 

2.4 A behaviour-based prototype program......................................................................... 10 

3 Specific background research ............................................................................................... 11 

3.1 Cryptographic hash function ......................................................................................... 11 

3.2 Digital signature and certificate .................................................................................... 12 

3.3 Windows hooks ............................................................................................................. 13 

3.4 Sandbox ......................................................................................................................... 14 

4 Project progress .................................................................................................................... 15 

4.1 Interim product ............................................................................................................. 15 

4.1.1 Architecture of whitelisting software components ............................................... 16 

4.1.2 Whitelisting software prototype description ......................................................... 18 

4.2 Progress ......................................................................................................................... 20 

4.2.1 File System Filter Driver .......................................................................................... 20 

4.2.2 Hash calculation of executable files ....................................................................... 20 

4.2.3 Access digital certificate ......................................................................................... 21 

4.2.4 Verification of digital signature .............................................................................. 23 

4.2.5 Virtual environment (sandbox) .............................................................................. 23 

4.2.6 Behaviour analyser ................................................................................................. 23 

5 Project plan ........................................................................................................................... 24 

5.1 Research methodology .................................................................................................. 24 

5.2 Gantt chart of project plan ............................................................................................ 25 

Reference ................................................................................................................................ 27 



3 

Abstract 

The rapid growth of malicious code is a serious issue that threats enterprise 

endpoints and personal computers. However, traditional antivirus software 

cannot protect computers efficiently, threats such as zero-day attack are able 

to pass through antivirus and inject computers. Recently, whitelisting 

approach has gained momentum. In this paper, a whitelisting software is 

proposed and described in detail. It combines with behavioural and 

blacklisting approach in order to address shortcomings of each approach. 

1 Introduction 

The emergence and development of computer and communication 

technologies have radically changed the way that people communicate and 

exchange information with others. However, threats related to computer 

security also appear, such as worm, virus, Trojan House and spam. Methods 

and technologies for protecting endpoints from these threats have gained 

evolving attention. A widely applied method nowadays is blacklisting principle, 

which is implemented by a majority of antivirus software. Besides it, 

behaviour-based and whitelisting technologies are other common ways. 

1.1 Approaches of computer security 

Blacklisting is a traditional method to prevent known malicious code from 

executing, it is also the core technique applied for filtering spam. In terms of 

computer security, when a malicious code is identified, the digital signature of 

this code will be recorded on black lists. Applications whose signatures are on 

black lists will be detected and then quarantined or deleted. Although 

blacklisting approach predominates among present antivirus software, it has 

shortcomings and faces the following security threats: 

1) Zero-day threats. Antivirus vendors need to spend a period of time to

discover the latest malware and then update their black lists. During the blank 

time, the latest malware may attack or infect people’s computers successfully 

(Pareek, et al., 2012). 

2) Black list has to cover all signatures of identified malware, whose quantity

is extremely large. According to Kim, et al. (2010), when a new malicious 

code is identified, the signature has to be added to black lists. With the 

increasing number of new threats appearing, the maximum capacity of black 

list is nearly reached. 



4 

3) End users may not update their black list on time. Thus, their computers

are more likely to be infected. 

4) Rogue security software is also a security threat to end users. It reports

alarm of virus or spyware which actually do not exist on users’ computers, and 

recommend user to purchase the full version (which probably provide limited 

or none function or even contains malicious code) to clean their computers1. 

However, blacklisting prefers to focus on preventing malware not these 

scareware.  

Behaviour-based technology aims at identifying malicious code based on its 

characteristics and patterns. The methods of behaviour analysis include two 

ways. One is analysis of binary code to discover suspicious behaviours. 

Another is executing applications in a specific environment and monitoring 

their behaviours (Kim, et al., 2010). This approach can be an efficient way for 

recognising new threats. One problem is this approach is time consuming. 

Approach applied by whitelisting is opposite to that of blacklisting. As 

mentioned before, blacklisting aims at exhaustively searching for all existing 

malware and protecting computers from those attacks. While whitelisting 

focuses on identifying wanted applications and only permitting execution of 

these applications. In other words, whitelisting applies the concept of “default 

deny” instead of blacklisting’s “default allow” (Huh, et al., 2009). Whitelisting 

has many pros: 

1) Whitelisting can be an effective way to defend zero-day attacks since new

malware or spyware are not on the lists2. 

2) The number of applications’ digital signatures stored on white lists is

significantly lower than that on black lists. As Harry Sverdlove, the chief 

technology officer of Bit9, said: “What you want running on your system is a 

much smaller set than what you don’t want.”3 

3) Whitelisting applications do not need to update frequently. This is because

all files which are not on the list will be refused not matter when they are 

released. 

1
 Rogue malware infections – what you need to know http://www.bullguard.com/bullguard-security-

center/pc-security/computer-threats/rogue-malware.aspx 
2
 The pros and cons of behavioural based, signature based and whitelist base security 

http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons-Behavioral-
Signature-Whitelist-Security.html  
3
 Whitelisting Vs Blacklisting http://kevtownsend.wordpress.com/2011/08/24/whitelisting-vs-

blacklisting/  

http://www.bullguard.com/bullguard-security-center/pc-security/computer-threats/rogue-malware.aspx
http://www.bullguard.com/bullguard-security-center/pc-security/computer-threats/rogue-malware.aspx
http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons-Behavioral-Signature-Whitelist-Security.html
http://www.windowsecurity.com/articles-tutorials/misc_network_security/Pros-Cons-Behavioral-Signature-Whitelist-Security.html
http://kevtownsend.wordpress.com/2011/08/24/whitelisting-vs-blacklisting/
http://kevtownsend.wordpress.com/2011/08/24/whitelisting-vs-blacklisting/


5 

4) For enterprises, governments and other workplaces, time wasting

applications, such as computer games, can be rejected to run by using 

whitelisting. 

In summary, the primary advantage of whitelisting approach is applications 

which are not on a white list cannot be executed. However, this characteristic 

can also be a drawback as legitimate software not on the list cannot run 

likewise.  Another shortcoming is the limitation of applying whitelisting. As the 

whitelisting approach only allows specific files to go through, the configuration 

of the list should be: (1) fully considered, in order to include all wanted 

applications; (2) conducted by computer security experts, in order to ensure 

applications on the list are not malware. However, current whitelisting 

software either uses one list for all customers or service for companies with 

security experts (Gates, et al., 2012).  

1.2 Explanation of the project 

In the first section, the characteristics of common security approaches are 

described, some advantages and disadvantages are discussed. In this section, 

I will briefly introduce my project, whitelisting software.  

Whitelisting approach gains momentum recently, but as mentioned before, it 

has weaknesses and maybe not practical to some extent. For the project of 

whitelisting software, I decided to combine the three approaches together, in 

order to address previously mentioned issues of each approach, and make 

the software multi-functional. Basic functions of the whitelisting software are 

introduced below, which followed by a description of how it solves the issues.  

The main function of the whitelisting software is the prevention of any 

executable files from running if they are excluded from the white list. Apart 

from that, it provides additional functions: unknown applications’ behavioural 

detection and blacklisting files’ refusal. To be specific, the software contains 

two lists, one is white list and the other is a black list. When an unknown 

application (which means it is on neither the white list nor the black list) 

attempts to run, it will optionally be checked in terms of their patterns and 

characteristics. Here, “Optionally” means users with the privilege (users have 

the right to manage the white list, such as administrators) have multiple 

choices:   

1) Running the unknown file directly. Thus, behavioural detection will not be

performed. The signature of the file will be recorded on the white list. 

2) Stopping running the file.



6 
 

3)  Implementing behavioural based detection. Then, the behaviours of the file 

will be presented, for example, what system files it accesses and modifies. 

If users chose the third option, they need a further judgement of executing it 

or not based on the presentation of its behaviours. If yes, the signature will be 

stored on the white list; otherwise it will be stored on the black list. The role of 

the black list is to record these judged files to avoid repeating behavioural 

detection.  

The main contribution of the project is it synthesizes the three common 

security techniques and addresses main issues of each one. It will be 

described in detail: 

1) In terms of the primary trouble of blacklisting, zero-day attacks and large-

size malware database, whitelisting is implemented to solve them. 

2) Regarding the limitation of whitelisting, the behaviour - based approach is 

applied. It provides a characteristic description of unknown files to assist 

users in identifying trustworthiness of files. Thus, business or governments 

may not need security experts to configure white list. 

3) For behavioural technique which is time consuming, the two lists can 

largely reduce the frequency of executing behavioural detection.  

Due to the features and drawbacks of the three approaches, I think it is a 

reasonable contribution.  

1.3 Paper structure 

The rest of the paper is organised as follows. In the second section, I describe 

the general background research which includes current whitelisting products 

and related papers. This is followed by specific techniques research which is 

closely related to my project, such as hash functions, hooks and signature. 

The fourth part presents the whitelisting software in detail and shows the 

progress of my project. In the last chapter a project plan is shown, which 

interprets what is going to be performed next.  

2 General background research 

In this section, general background research which refers to both whitelisting 

products produced by commercial companies and academic papers 

contributing to improving whitelisting and behavioural techniques is introduced. 

Specifically, commercial security software which implements the whitelisting 

approach to protect computers is illustrated in terms of their functions and 



7 
 

features. It is followed by a description of academic research in the field of 

whitelisting and behaviour-based detection. 

2.1 Bit9 Security Platform 

Bit9 is a computer security company which concentrates on the 

implementation of whitelisting. It broke the dilemma of the traditional security 

measures which cannot prevent present advanced threats, zero-day threats 

and targeted malware attacks. What’s more, Bit9 does not merely applies the 

whitelisting approach, but it improves this approach by additionally 

implementing some useful techniques such as “detonate-and-deny” approach, 

files’ trust rating mechanism and real-time recorder.  This specific application 

whitelisting created by Bit9 is named “Bit9 Security Platform”. 

Bit9 Security Platform applies three core technologies in order to provide five 

primary functions to protect enterprises’ endpoints against various malicious 

threats4. The core technologies are (1) real-time sensor and recorder, (2) real-

time enforcement engine, and (3) software reputation service. The five 

functions it provides are visibility, detection, response, prevention and network 

security integration.  

Real-time sensor and recorder is deployed on every endpoint and server in a 

company, it monitors and records all behaviours of files on every facility, 

which can be used for (1) real-time visibility, security administrations can gain 

knowledge of what files is running on which machines, what the files did; (2) 

further analysis, for example, security staff can identify suspicious executable 

codes based on the records of files’ history behaviours.  

The real-time enforcement engine provides two ways for protecting servers 

and endpoints. The first one is “detonate-and-deny” approach5. For every new 

executable file which attempts to run, Bit9 will transfer it automatically to the 

third parties FireEye or Palo Alto Networks to check the legitimacy of the file. 

If it is recognised as malicious code, Bit9 will reject the running attempt. The 

other one is called “default-deny”. This means enterprises decided their trust 

policies, for instance, software from some specific trusted vendors can be 

executed on endpoints. Only files which meet the trust policies are permitted 

to run. 

Software reputation service is a cloud-based service. It searches existing 

applications, calculates hash values, collects applications information such as 

                                                           
4
 Bit9 Security Platform https://www.bit9.com/solutions/security-platform/#overview  

5
 Advanced Threat Prevention https://www.bit9.com/solutions/protection/  

https://www.bit9.com/solutions/security-platform/#overview
https://www.bit9.com/solutions/protection/


8 

vendors and popularities, and provides trust ratings of applications. The 

service “contains billions of records and is the world’s most reliable source of 

software trust”6. It can be used to configure trust policies to protect enterprises’ 

endpoints and servers. 

Bit9 Security Platform enables security administrators to have knowledge of 

actions, locations and behaviours of applications on their machines. Apart 

from that, enterprises can configure their own white lists by defining trust 

policies or by having new applications analysed by FireEye or Palo Alto 

Networks. 

2.2 Faronics Anti-Executable 

Faronics Anti-Executable is a threat protection product which applies the 

approach of whitelisting. In terms of enterprise level, it enables administrators 

to manage and configure endpoints easily from a single computer by utilising 

Faronics Core. Faronics Core is a central management tool for controlling 

endpoints, which also is implemented by Faronics other products, such as 

Deep Freeze. By providing the following features, Anti-Executable is probably 

an effective security software for enterprises.  

1) By scanning a hard drive, it can build a white list which contains all wanted

executable files, other files which are neither wanted nor authorised will be 

prevented from running.  Besides, it provides other methods to configure and 

update the list, such as defining trusted publishers, specific applications and 

applications in a specific folder. 

2) Anti-executable enables automatic updates of the list. When software from

a trusted publisher updates, the white list will update automatically. 

3) Like Bit9, Faronics provides an online database named IdentiFile

containing millions of software’s hash values 7 . Customers can scan the 

database to identify the trustworthiness of a new executable file. 

4) Another advantage is the central management of all endpoints within an

organization. As mentioned before, administrators can manage all endpoints 

through one computer by implementing Faronics Core. 

5) Anti-Executable presents a security dashboard to help IT staff monitor

exceptions and violations of endpoints. The dashboard includes information 

6
 Bit9 Cloud Services https://www.bit9.com/solutions/cloud-services/  

7
 Anti-Executable Enterprise http://www.faronics.com/en-uk/products/anti-executable/enterprise/ 

https://www.bit9.com/solutions/cloud-services/
http://www.faronics.com/en-uk/products/anti-executable/enterprise/


9 

like top blocked programs, daily and recent violations, top violated machines 

and violations counter7. The dashboard is shown in Fig. 2.2. 

Fig. 2.2 Faronics Anti-Executable Dashboard7 

The working mechanism is when an application attempts to run, Anti-

Executable will check the digital signature. Once it is verified, Anti-Executable 

will compare it to publishers stored on the white list. If the publisher of the 

application is involved, it will be permitted to execute. If the application is not 

signed, Anti-Executable will calculate its hash value, and then scan hash 

values on the white list. If same value is found, it will be allowed to run. 

Otherwise, this attempt will be blocked. 

2.3 CoreTrace Bouncer 

Same as Bit9, CoreTrace is a computer security company and solely focuses 

on investigating application whitelisting. Its product Bouncer protects 

enterprise endpoints by preventing unauthorised applications from executing. 

Bouncer is available to be used in various fields, from companies whose 

computers are used by professionals and experts, to other companies such 

as call centres and ATM machines. As one of the application whitelisting 

pioneers, Bouncer provides multiple functions to not only address the 

weaknesses of blacklisting but also overcome the shortcomings and 

limitations of whitelisting technique. The functions and features are described 

below: 

1) CoreTrace Service provides a database including all known good and

known bad executable code. It will combine this information with the 

behaviours of each endpoint and then present it to IT staff. Thus, IT staff can 



10 
 

have a clear knowledge of the trustworthiness of applications running on 

endpoints, besides, IT staff can also realise which applications are more 

popular among employees8. 

2) Bouncer takes security measures and encryption technique to protect itself 

from attacks, such as malicious modification of the white list8.  

3) Bouncer proposed Trusted Change policy to make whitelisting dynamic and 

changeable without much effort from IT staff. After IT staff defines their 

“trusted circle”, such as trusted publishers, trusted patches, trusted 

executable files and trusted file paths, all of these can be changed by 

employees without further approving from IT staff. “Trusted circle” can even 

include users, which will be interpreted next9. 

4) IT staff can assign employees to BlockQ and AllowQ to define trusted users. 

For people who are categorised in BlockQ, they do not have the right to run 

applications which are not on the white list. Instead, they need to fill in a 

popup to explain the reason for using this application and wait for response 

from IT staff. For employees who are assigned to AllowQ, even though they 

have to submit reason likewise, they can temporarily run the application 

before receiving response of permission or refusal10. 

CoreTrace concentrates on designing and implementing Bouncer in order to 

make it have attributes of “high-security and easy-change”9. Its application 

whitelisting technique ensures only authorised application can be executed. 

These whitelisted applications include those who are authorised when 

Bouncer initially installed and those who obtain permissions later when they 

satisfy the Trusted Change policy. 

2.4 A behaviour-based prototype program 

Apart from researching existing application whitelisting and whitelisting 

products which are published by computer security companies, I also studied 

many papers which are related to whitelisting approach and behaviour-based 

technique. In this part, a behaviour-based prototype program named Tracer 

will be discussed (Kim, et al., 2010). This program makes contribution to the 

                                                           
8
 Solution Overview: CoreTrace Bouncer 

http://www.smartinfosec.com/phocadownloadpap/coretrace_brochure_bouncer_overview.pdf  
9
 BOUNCER by CoreTrace, Lower TCO with more secure, more available endpoints 

http://www.maple5.com/coretrace.pdf  
10

 CoreTrace Bouncer Improves Application Whitelisting http://www.darkreading.com/risk-
management/coretrace-bouncer-improves-application-whitelisting/d/d-id/1091190  

http://www.smartinfosec.com/phocadownloadpap/coretrace_brochure_bouncer_overview.pdf
http://www.maple5.com/coretrace.pdf
http://www.darkreading.com/risk-management/coretrace-bouncer-improves-application-whitelisting/d/d-id/1091190
http://www.darkreading.com/risk-management/coretrace-bouncer-improves-application-whitelisting/d/d-id/1091190


11 
 

methods of monitoring processes of an unknown executable file and 

analysing the malignancy of the file based on its processes. 

Unknown executable files are executed on a virtual machine. The virtual 

machine is isolated from the Internet, but connected to a specific network, 

which is solely for the experimentation. This is because some malware do not 

implement malicious actions if it is disconnected to network.  

When an unknown application runs, process will be created. Tracer will collect 

these process names and process IDs and monitor abnormal behaviours 

based on these process IDs. Only behaviours which are caused by these 

specific processes will be recorded, behaviours which are related to other 

applications will be ignored. Here, if a process generates another process, the 

new process ID will be collected and traced likewise. 

In summary, for identifying whether an unknown executable file is malware or 

not, Tracer will run it on a virtual machine. Tracer will collect all IDs of 

processes related to this application and monitor abnormal behaviours of 

these collected processes, Tracer records this information. When execution is 

terminated, Tracer will show the test result, which contains abnormal 

behaviours and their happening time. 

3 Specific background research 

In the previous chapter, some whitelisting products published by computer 

security companies are searched and described, in addition with an academic 

research of behavioural detection program. Some techniques they applied, 

such as virtual environment for malicious behaviour detection, hash value for 

application confirming, are critical and essential to some extent. In this 

chapter, critical techniques and knowledge which will be implemented in my 

project whitelisting software are introduced. These include hash function, 

digital signature and certificate, hooks and sandbox.  

3.1 Cryptographic hash function 

Cryptographic hash function is an algorithm which can produce a fixed length 

hash value by entering a message with arbitrary length. The key features of 

hash function are that it is computationally infeasible (1) to have two 

messages producing the same hash value, and (2) to calculate a message 

which maps to a specific hash value (Stallings, 2011). When the content of a 

message is altered, the hash value will inevitably change. Thus, cryptographic 

hash function is a prevalent method for checking the integrity of files, data and 



12 

codes. Currently, MD5 and SHA-1 are popular and commonly used hash 

algorithms. 

Message authentication code (MAC) is an application of cryptographic hash 

function. It extends hash functions by adding a technique of symmetric 

encryption. MAC is usually used for exchanging messages between two 

entities, both of whom possess the shared key for message encryption and 

decryption (Stallings, 2011). MAC is sent with its corresponding message and 

provides the verification of message integrity.  

For the project of whitelisting software, I chose hash functions instead of MAC. 

The reason is: MAC is used to check the integrity of transmitted messages. 

As hash functions are public, without encryption, attackers can change the 

message and calculate the new hash value. But if the hash value is encrypted 

(which is MAC), attackers cannot generate the MAC as they do not have the 

secret key for encryption. However, for whitelisting, applications and their 

hash values are isolated from each other. When an application is infected, it 

does not affect its corresponding hash value stored on the white list. When 

this infected software attempts to run, a new hash value will be produced and 

compared to the value on the white list. Such, there is no need to use keyed 

hash function, i.e. MAC.  

3.2 Digital signature and certificate 

Digital signature is another authentication mechanism that applies 

cryptographic hash functions. However, unlike MAC, which uses symmetric 

encryption for hashed message, digital signature is produced by firstly 

calculating the hash value of a message and then asymmetrically encrypting 

the hash value using the creator’s private key (Stallings, 2011). A digital 

signature has two main characteristics: (1) it provides the authentication of 

message integrity. Same as MAC, without the knowledge of the key, it is 

computationally impossible to modify a message and produce its 

corresponding digital signature. (2) It helps people to verify that the message 

is exactly from the claimed creator. This is because only the creator 

possesses the private key, thus if the message is properly signed with the 

correct private key, it is signed by its creator (assuming the private key is 

safely kept and is not stolen). 

Typically, a certificate involves the owner’s information and its public key. As 

mentioned before, digital signature is performed by applying asymmetric 

encryption algorithms with a private key. For asymmetric encryption, there is a 

pair of keys which are a private key and public key. A message encrypted by 



13 
 

either of the keys only can be decrypted by another key. Owners keep one 

key confidentially and release another key publicly. The former is called 

private key and the latter is public key.  

Digital certificate is the corresponding part of digital signature. Certificates are 

issued and signed by certificate authorities, which are third parties trusted by 

public. People can verify the validity of certificates by checking the signature 

signed by certificate authorities. Then, people are able to abstract the public 

key and use it to authenticate the integrity and source of messages. 

In terms of application's digital signature, or code signing, the same 

mechanism is applied. After obtaining certificates, publishers sign their 

software by using the private key and create a signature file containing the 

certificate11. In my project, some trusted publishers will be predefined; all 

applications which are signed by these publishers can be automatically 

trusted. It is achieved by authenticating their signatures against the trusted 

publishers’ certificates.  

3.3 Windows hooks 

Windows operating system applies event-driven mechanism. Usually, 

applications can only handle events which are related to it. For example, an 

application will give a response when it receives messages from other 

applications or when it is double clicked by users, but it shows no actions 

when other unrelated application runs. However, by implementing hooks, 

applications are able to intercept events generated by other entities and 

conduct further operations.  

In Windows, there are various kinds of hooks; each kind of hook handles a 

specific aspect of event, for instance, WH_KEYBOARD hook enable 

applications to monitor keyboard input13. An application with a hook has the 

ability of intercepting a message which is sent to a designated destination or a 

specific event which is handled by the applied hook. After intercepting this 

trend, the application can act on the message. What action can be taken is 

based on hook type. For some types of hooks, applications applying them can 

alter the message or even terminate this process. While for other types of 

hooks, applications can only monitor the message without any further 

actions13.  

                                                           
11

 Introduction to Code Signing http://msdn.microsoft.com/en-us/library/ie/ms537361(v=vs.85).aspx  
13

 Hooks Overview (Windows) http://msdn.microsoft.com/en-
us/library/windows/desktop/ms644959(v=vs.85).aspx  

http://msdn.microsoft.com/en-us/library/ie/ms537361(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644959(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms644959(v=vs.85).aspx


14 
 

For the project of whitelisting software, the implementation of hooks into the 

software is a fundamental procedure. When an application attempts to run, 

the whitelisting software needs to firstly stop this behaviour. Then, the 

application will be inspected against the white list to identify whether it is 

authorised or not. Here, in terms of stopping the execution of the application, 

an intercepting function needs to be applied. This intercepting function should 

be able to monitor the appearance of a new process and temporarily stopping 

it. Hooks can be an efficient method to achieve this function.  

3.4 Sandbox 

A sandbox is a mechanism which provides a kind of virtual machine enabling 

programs to run separately from the real system. Sandbox applies a series of 

security policies, thus, applications running on it can only affect the sandbox 

instead of the real system and other simultaneously running applications 

(Dalcher & Teddy, 2013). To be specific, sandbox provides a tightly restricted 

environment by implementing a variety of security policies. These policies can 

either control the behaviours of applications running on it, such as blocking a 

behaviour which may cause system crash (Wen, et al., 2012); or hook the API 

and partially duplicate critical system components and files, such as system 

registry and directory14. For the latter, when applications try to alter these 

critical files, they merely access and modify these copies not the real files. 

Thus, the real files are still kept safely and the real operating system is not 

compromised. 

Emulation is another kind of virtual technique. Unlike sandbox, which utilises 

the real system resources, emulator creates an entire virtual environment13. 

This means emulators copy the entire computer environment, such as 

memory management system, operating system and API calls. Then, when 

executing an application in this virtual environment, the behaviours of the 

application can be observed, the malicious actions can be identified while the 

real system is unaffected.  

Regarding the project of whitelisting software, as introduced in the first section, 

it includes a technique of behaviour-based detection. In order to monitor the 

characteristics and patterns of an unknown application, and simultaneously 

prevent possible malicious behaviours from injecting the system, the 

previously mentioned techniques can be imitated to build a virtual 

environment.  

                                                           
14

 The evolution of technologies used to detect malicious code 
http://www.securelist.com/en/analysis/204791972/The_evolution_of_technologies_used_to_detect
_malicious_code#plusminus  

http://www.securelist.com/en/analysis/204791972/The_evolution_of_technologies_used_to_detect_malicious_code#plusminus
http://www.securelist.com/en/analysis/204791972/The_evolution_of_technologies_used_to_detect_malicious_code#plusminus


15 
 

4 Project progress 

This chapter mainly focuses on the project of whitelisting software. The 

interim product will be described firstly. The architecture and flow chart of the 

project are shown in order to clearly illustrate the components and functions of 

whitelisting. This is followed by a report of the project progress, in which the 

progress is demonstrated in terms of components and techniques.     

4.1 Interim product 

The whitelisting software is designed to achieve some fundamental functions. 

As mentioned in the part of introduction, the main function is that it only allows 

the execution of authorised applications; applications which are unknown to 

the software will be rejected or blocked at first. Apart from that, the software is 

designed with some other functions which enable it more practical. These 

additional functions are: (1) behaviour-based detection, which aims at 

inspecting an unknown executable file and then providing the behavioural 

description of it; (2) blacklisting prevention, which means applications on the 

black list will be blocked even they are on the white list. In this section, the 

architecture of the software and the components in the architecture will be 

interpreted, followed by a prototype description with a flow chart which 

demonstrates the process of the whitelisting software.  



16 
 

4.1.1 Architecture of whitelisting software components  

Fig. 4.1.1 Architecture of whitelisting software components 

Fig. 4.1.1 depicts the architecture of the whitelisting software. From it, 

components the software includes and the relationship among these 

components can be seen.  

The whitelisting software is performed under Windows operating system, its 

component parts are File System Filter Driver, hash calculator and signature 

capture, virtual sandbox, behaviour analyser, white list and black list. In order 

to achieve its functions, i.e. detecting the execution attempt of applications 

and either permitting or blocking the attempt, the whitelisting software needs 

to communicate with some components which are outside the software, these 

components includes file execution attempt and executable files. 

File execution attempt is a component part which is on the Windows platform. 

When an application is going to run, the file execution attempt appears. It is a 

request sent by the application to a targeted file system.  

File System Filter Driver is a kernel-mode component part which is able to 

modify the behaviour of a file system15. It makes use of hooks to intercept 

requests or messages, then, modification, prevention and other manipulations 

                                                           
15

 What is a File System Driver? (Windows Drivers) http://msdn.microsoft.com/en-
us/library/windows/hardware/ff557282(v=vs.85).aspx  

http://msdn.microsoft.com/en-us/library/windows/hardware/ff557282(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff557282(v=vs.85).aspx


17 
 

can be performed16. For the whitelisting software, the File System Filter Driver 

will intercept the File execution attempt, i.e. the request targeting at a file 

system in order to run the application.  

The component of hash calculator and signature capturer can communicate 

with File System Filter Driver, executable file, black list and white list 

components. After being informed the interception of file execution attempt 

from File System Filter Driver, this component part will communicate with the 

executable file, calculate its hash value or abstract the file’s signature. 

Black list stores the hash values of executable files which are either 

previously detected malicious code by behavioural detection or unwanted 

legitimate software, such as games. Black list has the priority over the white 

list, if an application is on the black list, it will be blocked even if its hash value 

or publisher’s certificate is on the white list. 

The white list component includes pre-stored trusted vendors’ certificates and 

hash values of wanted applications. Here, the hash values are calculated by 

the whitelisting software when applications are authorised. They are different 

from the digests encrypted in signatures. The white list component can 

communicate with the component of sandbox and inform it applications 

needed to be inspected.  

Virtual sandbox provides a virtual environment. The introduction of sandbox 

can be viewed in Section 3.4. 

The component of behaviour analyser is involved in the sandbox component. 

Its function is monitoring behaviours of applications which are running in the 

sandbox. It will detect and record these malicious behaviours. 

                                                           
16

 Introduction (Windows Drivers) http://msdn.microsoft.com/en-
us/library/windows/hardware/dn641617(v=vs.85).aspx  

http://msdn.microsoft.com/en-us/library/windows/hardware/dn641617(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/dn641617(v=vs.85).aspx


18 
 

4.1.2 Whitelisting software prototype description 

Detect process running 

attempt

Intercept the attempt

Capture signature/calculate 

hash value

Find 

certificate/compare 

hash value

Allow 

execution
yes

no

Allow execution 

and update 

whitelist

Unconditional 

execution?

no

Function testing?

Stop execution 

and update 

blacklist

Test 

Finished ,Execution?

yes

noyes

yes

no

Start whitelisting software

End 

 

Fig. 4.1.2 Whitelisting software flow chart 

As the flow chart Fig.4.1.2 shown, first of all, the whitelisting software needs to 

be installed and executed. After that, the software can perform its functions 

and protect its host computer.  

When an executable file attempts to run, the whitelisting software will detect 

this process and intercept this attempt by using the technique of File System 

Filter Driver.  



19 
 

After that, the hash value of the application will be calculated. Then the black 

list will be firstly check to see whether this application is on the black list as it 

has the priority over the white list. If the hash value does exist on the black list, 

the execution of the file will be refused; otherwise, the white list will be 

checked. 

In terms of the white list, two cases need to be considered in terms of judging 

the privilege of the file. One case is checking the previously calculated hash 

value against the white list to identify whether the file is on the list and 

whether the file is modified. If the same hash value is found on the white list, 

the executable file will be permitted to run. If not, another case appears. In 

order to identify the privilege of the file in this case, the signature of the file 

needs to be captured and the corresponding digital certificate will be searched 

through the white list. Afterwards, if the corresponding certificate can be found 

on the white list, it will be used to check the integrity of the application. Then 

the application will be allowed to execute or stopped depends on the 

inspecting result.  

If the file is rejected to run, the user will be asked to choose one operation 

from three options: (1) unconditional execution, (2) function testing and (3) 

stopping the execution of the file. The whitelisting will respond differently 

depending on the chosen option which will be described in the following 

paragraph. 

When the user decides to run the application, i.e. chooses the first option, 

authentication will be performed. Only administrator has the right to run 

applications which are not on the white list. If authentication succeeds, the 

hash value will be added to the white list automatically. When the user 

chooses the second option, function testing, behavioural technology will be 

implemented to monitor the behaviours and patterns of the file. To be specific, 

behaviours like which API the file called and which registry keys it modified 

can be monitored and recorded without harming the host device. After testing, 

a directory containing all the testing information will be demonstrated to the 

user. Based on it, the user can identify the trustworthiness of the file.  

Next, the whitelisting software will ask a user’s decision. If the user 

determines to run it, same as before, authentication needs to be performed. If 

not, the response is same as option 3, the application will be rejected to 

execute by the whitelisting software. 



20 
 

4.2 Progress 

The previous section presents the components of whitelisting software and its 

flow chart. In this section, I will demonstrate the progress of my project. The 

progress is described separately based on critical components and 

techniques, such as File System Filter Driver, hash calculation and signature 

verification.   

4.2.1 File System Filter Driver 

As mentioned before, File System Filter Driver can modify the behaviour of a 

file system. Thus, it can be used to intercept the execution attempt of an 

application. First of all, the driver needs to be created. Then, the function of 

intercept is able to be achieved. For this part, the driver is under being built, 

and I will describe the steps of creating this driver as it does not present an 

interface. 

After downloading the Windows Driver Kit and set the environment 

variable %WINDDK%, I wrote the main function which sets the entry point of 

the driver, IRP (Initial Receiving Point) and Fast-IO dispatch tables. Besides, 

call-back registration is done, which aims at tracking changes of a file system. 

Then, individual function is programmed. In terms of IRP dispatch function, it 

includes two IRP handlers; one is for passing requests to other drivers and 

the other is for capture file names. Fast-IO dispatch function is similar to IRP 

dispatch function; a difference is it isolates this driver from the file system. For 

the call-back function, it achieves attaching and detaching to a file system 

based on the system’s status (active or not). Thus, the driver can be created.  

After the creation of the driver, interception of requests from user-mode to a 

file system in kernel mode needs to be achieved. Then, the execution attempt 

of application can be intercepted successfully. This function is undertaken and 

needs to be further developed.  

4.2.2 Hash calculation of executable files 

As mentioned before, comparison of hash values on white list or black list with 

new calculated hash values of applications is a major method to identify 

whether applications are authorised or not. Therefore, a function to calculate 

hash values of application and to compare two values is necessary. By using 

System. Security. Cryptography, it is achieved.  

I used two executable files to test the hash algorithm function. One file is 

Chrome; the other is QQ, which is a popular online chat. As can be seen from 

the following figures Fig. 4.2.1 and Fig. 4.2.2, for different executable files, the 



21 
 

hash values are different. Apart from that, each file is tested for several times, 

the calculated hash values are same. Thus, it can be verified that the hash 

function is programmed successfully. 

 

Fig. 4.2.1 Hash value of Chrome.exe 

 

Fig.4.2.2 Hash value of QQ.exe 

4.2.3 Access digital certificate 

In order to verify the validity of an application, certificate is needed. To be 

specific, public key needs to be extracted from the signed digital certificate 

firstly. The whole process of verification is described in the next section 4.2.4. 

The function of accessing digital certificate is achieved by using System.  



22 
 

Security. Cryptography. X509Certificates. Fig. 4.2.3 and Fig. 4.2.4 show the 

test results of Chrome and QQ respectively. 

 

Fig. 4.2.3 Digital certificate of Chrome 

 

Fig. 4.2.4 Digital certificate of QQ 



23 
 

4.2.4 Verification of digital signature 

When an application is executed for the first time, in order to determine the 

privilege of it, the signature needs to be verified against pre-stored certificates 

on white list. The mechanism of the verification is described below.   

After capture the digital signature of an application, the vendor’s certificate will 

be searched through the white list. If the corresponding certificate is found, 

then the verification of the origin and integrity of the application will be 

performed.  

Firstly, the whitelisting software will decrypt the certificate by using the public 

key of the certificate authority. This is because digital certificates are 

encrypted by certificate authorities. After which, the application publisher’s 

public key can be obtained. This public key will be used to decrypt the digital 

signature and the digest (the hash value of the application) can be achieved.  

Apart from it, the hash value of the binary code of the application will be 

calculated. This new calculated hash value will be compared with the previous 

hash value, i.e. the digest. If these two values are equal, this means the 

application is published by the trusted publisher and is not modified. Thus, it 

can be identified as authorised application.  

For the verification of digital signature, I searched related papers and 

documents, and understand how it can be achieved in theory. Next, my job is 

to apply this knowledge into programming. 

4.2.5 Virtual environment (sandbox) 

In whitelisting software, the virtual environment which is going to be built is not 

the real sandbox. Since constructing a real sandbox is a big job and it needs a 

long time to achieve, for my project, a method which utilises File System Filter 

Driver can work similarly to a sandbox.  

A File System Filter Driver is able to monitor messages and requests which 

are produced by function calls. Before these messages and requests reach 

their targeted file system, they will be intercepted by the Driver. Thus, these 

messages cannot  touch system kernel and system critical component can be 

protected.  

4.2.6 Behaviour analyser 

The function of behaviour analyser is to monitor the characteristics and 

patterns of an unknown application and then identify malicious or suspicious 

behaviours. This function can be achieved by observing the appearance of 



24 
 

unexpected or abnormal behaviours of the system. Thus, critical components 

of the system need to be monitored and logged. These Components include 

CPU, memory, interface, process, file, registry and network. There are many 

existing techniques and methods which can be used for tracing files in terms 

of different components. For example, the behaviours of the first four 

components can be captured by calling Window API. Techniques which can 

be implemented for monitoring each component will be described in the 

following paragraph. 

For CPU, pdhGetFormattedCounterValue() can be applied to monitor files’ 

behaviours. GetProcessMemoryInfo() can be used for memory, CALLBACK 

DebugProc() for interface and CreateToolhelp32Snapshot() for process. In 

terms of file system, kernel-mode file filter decive driver like Filemon is 

probably a useful tool for behaviour tracing. With regard to registry, kernel-

mode registry filter device driver such as Regmon can be applied. The 

component of network can be monitored by kernel-mode packet capture 

device driver like Winpcap.  

Same as verification of digital signature, I have the knowledge of how to trace 

the behaviour of an application and monitor suspicious behaviours. The 

programming part will be conducted after the achievement of the basic 

functions, such as verifying signature and implementing sandbox.  

5 Project plan 

5.1 Research methodology 

For the whitelisting software, a main research methodology is case study. In 

order to achieve the basic functions of whitelisting software, relative research 

is needed. For example, case study is used for creating a File System Filter 

Driver. An example of how to create the Driver is searched and studied. Then, 

a File System Filter Driver can be built based on this research. The 

implementation of other functions such as signature verification and behaviour 

analyser  can also utilise the research methodology of case study. 

Apart from case studies, research methodologies of experimental study and 

grounded theory can also be applied. Using hash function test as an instance, 

in theory, the function works correctly if (1) the calculated hash values of 

different files are different and (2) the hash value of a file is always same 

when the file is hashed many times. Then, I used Grome.exe and QQ.exe to 

test the hash function, their hash values are different and kept same for every 

time of calculation. Thus, it can be verified the hash function is programmed 

correctly.  



25 

5.2 Gantt chart of project plan 

The Gantt chart Fig. 5.1 shows the development and plan of the whitelisting 

software project. Periods which are purple means the work is finished, periods 

which are orange means this job is under development or are going to be 

conducted. 

Fig. 5.1 Gantt chart of the project plan 

From 24 January to 06 March, I did the preparation and planning of my project. 

During this period, I searched existing whitelisting products, such as Bit9 and 

Anti-Executable, which are described in section 2. After that, software design 

and test are implemented.  

After specifying detailed requirements in March, basic functions and tests of 

whitelisting software are being implemented. These functions include hash 

function calculation, collection of trusted publishers’ certificates, signature 

verification, accessing certificate function, File System Filter Driver and 

behaviour analyser. The plan of implementing these functions is described 

below.  

From 01 April to 07 April, hash function was programmed and achieved. This 

is followed by hash function testing. 

From 09 April to 17 April, certificates of trusted publisher are collected, such 

as Google, Microsoft. 

From 09 April to 15 May, the function of authorising an unknown application 

by verifying its signature is going to be implemented. It was partially done.  



26 
 

The part which has been finished is accessing certificates and obtaining 

public keys. It was tested on 18 April. The signature verification function will 

be tested on 15 May. 

From 23 April to 21 May, File System Filter Driver is under creation. Then, 

The Driver will be tested. 

From 06 May to 04 June, virtual environment sandbox is going to be created 

by using Windows hooks, which followed by its function testing. 

From 04 June to 17 June, behaviour analyser will be built and function testing 

will be performed.  

From 18 June to 30 June, all of these basic functions will be combined 

together, new functions such as comparation of hash values will be added. 

Thus, whitelisting software beta version will be finished.  

From 30 June to 04 July, the beta version is going to be debugged.  

From 07 July to 17 July, whitelisting software will be tested by volunteers. 

After using , they will provide feedback.   

From 17 July to 24 July, the whitelisting software will be reworked and 

improved based on the feedback from the volunteers. 

From 25 July to 31 July, the whitelisting software will be corrected and 

improved in order to achieve the final version. 

In August, I will focus on writing my dissertation.  

  



27 

Reference 

Dalcher, G. W. & Teddy, J. D., 2013. Systems and methods for behavioral sandboxing. s.l. 

Patent No. US 8,479,286 B2. 

Gates, C., Li, N., Chen, J. & Proctor, R., 2012. CodeShield: towards personalized application 

whitelisting. Proceedings of the 28th Annual Computer Security Applications Conference, pp. 

279-288. 

Gates, C., Li, N., Proctor, R. & Chen, J., 2012. CodeShield: Towards Personalized Application 

Whitelisting. Priceedings of the 28th Annual Computr Security Applications Conference, Issue 

ACM, pp. 279-288. 

Huh, J. H., Lyle, J., Namiluko, C. & Martin, A., 2009. Application whitelists in virtual 

organisations. Future Generation Computer Systems. 

Huh, J. H., Lyle, J., Namiluko, C. & Martin, A., 2009. Application Whitelists In Virtual 

Organisations. Future Generation Computer Systems. 

Kim, D., Kim, I., Oh, J. & Jang, J., 2010. Behavior-Based Tracer to Monitor Malicious Features 

of Unknown Executable File. Computing in the Global Information Technology (ICCGI), 2010 

Fifth International Multi-Conference on, pp. 152-156. 

Pareek, H., Romana, S. & Eswari, P., 2013. APPLICATION WHITELISTING: APPROACHES AND 

CHALLENGES. International Journal of Computer Science, Engineering & Information 

Technology, 2(5). 

Pareek, H., Romana, S. & Eswari, P. R. L., 2012. APPLICATION WHITELISTING: APPROACHES 

AND CHALLENGES. International Journal of Computer Science, Engineering & Information 

Technology, 2(5), pp. 13-18. 

Stallings, W., 2011. Cryptography and network security principles and practice. 5th edition ed. 

s.l.:Prentice Hall.

Wen, Y. et al., 2012. A Survey of Virtualization Technologies Focusing on Untrusted Code 

Execution. Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 378-

383. 




