Skip to navigation | Skip to main content | Skip to footer
Menu
Menu

COMP37111 Advanced Computer Graphics syllabus 2018-2019

COMP37111 materials

COMP37111 Advanced Computer Graphics

Level 3
Credits: 10
Enrolled students: 129

Course leader: Toby Howard


Additional staff: view all staff

Requisites

  • Pre-Requisite (Compulsory): COMP27112

Additional requirements

  • Students who are not from the School of Computer Science must have permission from both Computer Science and their home School to enrol.

Assessment methods

  • 75% Written exam
  • 25% Practical skills assessment
Timetable
SemesterEventLocationDayTimeGroup
Sem 1 Lab 1.8 Mon 12:00 - 13:00 -
Sem 1 Lecture 1.1 Thu 16:00 - 17:00 -
Themes to which this unit belongs
  • Visual Computing

Overview

This course follows on from COMP27112, the 2nd year course "Computer Graphics, and Image Processing", and looks at more advanced topics in Computer Graphics, such as large-scale polygonal modelling techniques, capturing geometry from scanners and cameras, procedural modelling, and sophisticated global and real-time rendering techniques. The course is supported by a 10-week laboratory project in OpenGL.

Aims

This Course Unit covers the principles of modern techniques for Computer Graphics modelling and image synthesis, on the assumption that students have already completed the introductory Computer Graphics course (COMP20072). Its principal aim is to introduce students to the ever-expanding repertoire of techniques for defining and rendering images of 3D model data. Particular attention is focussed on the increasing requirements for complex rendering and interaction to occur in real-time.

Syllabus

Introduction and overview (1)

Applications of advanced image synthesis: visualization, animation, games, CAD systems, simulation. The classical graphics pipeline rendering: geometry, tessellation, modelling and viewing transformations, clipping, screen mapping, rasterizing. Global illumination: starting with the image plane, ray tracing. Local versus global illumination.

Model acquisition (2)

Laser scanning; surface fitting; occlusions and hole-filling; acquisition of geometry from photographs and video.

Non-polygonal modelling techniques (2)

Procedural modelling: fractal geometry, modelling with fractals, particle systems, L-systems.

Non-photorealistic rendering (1)

Approaches to rendering that, instead of striving for traditional photorealism, emphasise information content, visualization and understanding. Early work by Gooch & Gooch, and an overview of more recent techniques.

Introduction to global illumination: Ray Tracing (1)

What is GI, why is it important, when and how is it used? Basic ray tracing, primary and secondary rays, shadow feeler rays, reflection and transparency. Recursive algorithm. RT signature. Real-time ray tracing. Monte Carlo ray tracing. Importance sampling, variance reduction methods. Path tracing, bidirectional ray tracing.

Global illumination: Radiosity (1)

Principles: energy exchange between surfaces, implementation approaches, rendering techniques.

Volume rendering (2)

Programmable rendering (1)

The GPU and its architecture. Vertex and pixel shaders.

Real-time rendering (1)

Examples of model complexity, the need for interaction. Culling techniques: back-face, view frustum, portals, occlusion culling. Spatial enumeration, grids, AABBs, HBBs. Level of detail.

Teaching methods

Lectures

11 in total, 1 per week

Laboratories

There will be one lab exercise programming project.

Feedback methods

Face to face feedback and marking in programming laboratories.

Study hours

  • Lectures (11 hours)

Employability skills

  • Analytical skills
  • Innovation/creativity
  • Project management
  • Problem solving
  • Research

Learning outcomes

Programme outcomeUnit learning outcomesAssessment
A1 A2 A5be able to analyse requirements of 3D modelling problems and select appropriate combinations of modelling techniques
  • Examination
  • Individual coursework
A1 A2 A5be able to describe and compare CAD, Generative and Captured approaches to creating 3D models with respect to their fidelity and time/space constraints
  • Examination
  • Individual coursework
A1 A2 A5be able to describe how the rendering equation acts as a mathematical representation of illumination in the real world
  • Individual coursework
  • Examination
A1 A2 A5 B1be able to compare different computational approximations to the rendering equation with respect to their visual fidelity and computational complexity
  • Examination
  • Individual coursework
A1 A2 A5be able to analyse rendering problems to create novel solutions by combining or modifying existing computational approximations
  • Individual coursework
  • Examination

Reading list

TitleAuthorISBNPublisherYearCore
Real-time rendering (4th edition)Akenine-Moller, Tomas et al9781138627000A K Peters/CRC Press2018

Additional notes

Course unit materials

Links to course unit teaching materials can be found on the School of Computer Science website for current students.