We described the simple programming language **While** that is to be used as a basis for the discussion in the rest of the module.
The meaning of an expression depends on the values bound to the variables that occur in it.

Example

If \(x \) is bound to 3 then the arithmetic expression \(x + 1 \) evaluates to 4.
We need to introduce the concept of *state*: to each variable the state associates its current value.

We shall represent a state as a function from variables to values, *i.e.* it is an element of the set

\[
\text{State} = \text{Var} \rightarrow \mathbb{Z}
\]

Each state specifies a value, written \(s \, x \), for each variable \(x \) of \(\text{Var} \).

Therefore, if \(s \, x = 3 \) then the value of \(x + 1 \) in the state \(s \) is 4.
There are several alternative ways to think about the state. One is as a table

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>z</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

or as a “list” of the form

\[[x \mapsto 5, \ y \mapsto 7, \ z \mapsto 0] \]

In all cases we must ensure that there is only one value associated with each variable. By requiring the state to be a function this requirement is trivially fulfilled, whereas for the alternatives extra conditions have to be enforced.
Given an arithmetic expression a and a state s we can determine the value of the expression.

The meaning of an arithmetic expression is given by the semantic function:

$$ \mathcal{A} : \text{Aexp} \rightarrow (\text{State} \rightarrow \mathbb{Z}) $$

This means that \mathcal{A} takes its arguments one at a time. We can therefore supply \mathcal{A} with its first parameter, say $x + 1$, and study the function $\mathcal{A}[x + 1]$. It has functionality $\text{State} \rightarrow \mathbb{Z}$ and only when we supply it with a state do we obtain the value of the expression $x + 1$.
The definition of A is given in Table 1.

\[
\begin{align*}
A[n] s &= N[n] \\
A[x] s &= s \times \\
A[a_1 + a_2] s &= A[a_1] s + A[a_2] s \\
A[a_1 \times a_2] s &= A[a_1] s \times A[a_2] s \\
A[a_1 - a_2] s &= A[a_1] s - A[a_2] s
\end{align*}
\]

Table: The Semantics of Arithmetic Expressions
Semantic Functions

Semantic Function \mathcal{B}

We can define

$$\mathcal{B} : \text{Bexp} \rightarrow (\text{State} \rightarrow \mathcal{T})$$

[where \mathcal{T} consists of the two truth values tt (for true) and ff (for false)] by
the semantic clauses of Table 2.

$$\begin{align*}
\mathcal{B}[\text{true}] s &= \text{tt} \\
\mathcal{B}[\text{false}] s &= \text{ff} \\
\mathcal{B}[a_1 = a_2] s &= \begin{cases}
\text{tt} & \text{if } A[a_1] s = A[a_2] s \\
\text{ff} & \text{if } A[a_1] s \neq A[a_2] s \end{cases} \\
\mathcal{B}[a_1 \leq a_2] s &= \begin{cases}
\text{tt} & \text{if } A[a_1] s \leq A[a_2] s \\
\text{ff} & \text{if } A[a_1] s > A[a_2] s \end{cases} \\
\mathcal{B}[- b] s &= \begin{cases}
\text{tt} & \text{if } \mathcal{B}[b] s = \text{ff} \\
\text{ff} & \text{if } \mathcal{B}[b] s = \text{tt} \end{cases} \\
\mathcal{B}[b_1 \land b_2] s &= \begin{cases}
\text{tt} & \text{if } \mathcal{B}[b_1] s \text{ and } \mathcal{B}[b_2] s \\
\text{ff} & \text{if } \text{not} (\mathcal{B}[b_1] s \text{ and } \mathcal{B}[b_2] s) \end{cases}
\end{align*}$$
The lecture was based on Sections 1.3 and 1.4 of the module textbook [NN92].
In this lecture we describe the meaning of arithmetic and boolean expressions.
Natural semantics are concerned with the relationship between the *initial* state and the *final* state of an execution. The lecture will be based on Section 2.1 of the module textbook [NN92].
Bibliography

H.R. Nielson and F. Nielson.
Semantics with Applications: A Formal Introduction.