Computer Science with Business Management BSc (Hons) 2013-2014

Summary

<table>
<thead>
<tr>
<th>UCAS code</th>
<th>Award</th>
<th>Title</th>
<th>Duration</th>
<th>Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>G4N2</td>
<td>BSc</td>
<td>Computer Science with Business Management BSc (Hons)</td>
<td>3 years</td>
<td>FT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schools</th>
<th>Faculty</th>
<th>Awarding Institution</th>
<th>Programme Accreditation</th>
<th>Relevant QAA benchmark(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science</td>
<td>Engineering and Physical Sciences</td>
<td>University of Manchester</td>
<td>BCS</td>
<td>Computing and General Business and Management</td>
</tr>
</tbody>
</table>
Aims and intended learning outcomes

Graduates of the honours degree programme in Computer Science with Business and Management will have a good overall grasp of the disciplines of computer science and business management and the inter-relationships between the two subject areas. Being equipped with both business and computing skills will give them a broad problem solving ability in an organisational setting.

The programmes aim to:

1) enable graduates to exhibit a high level of practical and theoretical skills in computer science and business and management, together with a knowledge of currently available techniques and technologies.
2) explore the principles that support developments in a rapidly changing subject.
3) provide opportunities for students to understand the wide range of research challenges facing Computer Science, as well as the breadth and depth of research undertaken in this top-rated school, so they are prepared to embark on research here or elsewhere.
4) develop competent professionals able to play a leading part in many different commercial, industrial and academic activities and adapt rapidly to changing technology.
5) meet industry demand for high calibre graduates who will take a lead in continuing technological change.
6) prepare students for the social, organisational and professional context in which they will be working.
7) meet the educational requirements of the Engineering Council thus enabling graduates to progress to professional membership of the BCS and IEE and attain the highest professional status of Chartered Engineer.
8) In addition, the with Industrial Experience programme aims to: give extensive practical experience of an industrial or business environment where students are able to apply and develop their skills, both technical and personal.

Intended learning outcomes

Knowledge & understanding

A1 Know and understand the essential mathematics relevant to computer science.

A2 Understand and apply a wide range of principles and tools available to the software engineer, such as design methodologies, choice of algorithm, language, software libraries and user interface techniques.

A3 Demonstrate a grasp of the principles of computer systems, including architecture, networks and communication.

A4 Recognise and appreciate the professional and ethical responsibilities of the practising computer professional, including understanding the need for quality.

A5 Know and understand the principles and techniques of a number of application areas informed by the research directions of the subject, such as artificial intelligence, databases and computer graphics.

A6 Apply their knowledge of computing in a commercial or industrial context.

A7 Show a critical understanding of the broad context within which Computer Science resides, including issues such as quality, reliability, enterprise, employment law, accounting and health and safety.

A8 Have a comprehensive knowledge and critical awareness of selected specialist fields at the forefront of computer science, studied at masters level.

Intellectual (thinking) skills

B1 Solve a wide range of problems related to the analysis, design and construction of computer systems.

B2 Design and implement a software or hardware system of significant size.

B3 Identify a range of solutions and critically evaluate and justify proposed design solutions.

B4 Solve computer science problems with pressing commercial or industrial constraints.
B5 Generate an innovative design to solve a problem containing a range of commercial and industrial constraints

Practical skills

C1 Plan and undertake a major individual project
C2 Prepare and deliver coherent and structured verbal and written technical reports
C3 Give technical presentations suitable for the time, place and audience
C4 Use the scientific literature effectively and make discriminating use of Web resources
C5 Design, write and debug computer programs in appropriate languages
C6 Use appropriate computer-based design support tools
C7 Apply computer science skills in a commercial or industrial environment
C8 Demonstrate initiative taking, innovation and self-management in an industrially related group project
C9 Integrate previously acquired skills and apply them to new, demanding situations

Transferable skills

D1 Display an integrated approach to the deployment of communication skills
D2 Use IT skills and display mature computer literacy
D3 Work effectively with and for others
D4 Strike the balance between self-reliance and seeking help when necessary in new situations
D5 Display personal responsibility by working to multiple deadlines in complex activities
D6 Employ discrete and continuous mathematical skills as appropriate
D7 Demonstrate significantly enhanced group working abilities
D8 Further develop career plans and personal objectives
D9 Communicate effectively with non-specialist as well as computer scientist professionals at a range of levels
D10 Undertake a range of technical roles within a team and be able to display leadership
Teaching, learning and assessment methods

Learning and Teaching on all our programmes aims to combine an understanding of fundamental CS principles, development of strong practical skills and the group-working, learning and communication skills that are essential for any computing professional.

Course units which involve practical elements all have associated laboratory exercises, usually in timetabled sessions with staff and demonstrator support. Most labs operate a system of face-to-face marking in the lab so that students receive immediate feedback on their work. Units without labs all have regular coursework exercises to support skills development and feedback.

Most units are lecture based, with lab or coursework exercises used to reinforce and enhance knowledge and skills first encountered in lectures. The first year team project deviates significantly from this model and takes an Enquiry Based Learning approach. This unit aims to encourage students to be more actively engaged with, and responsible for, their own learning, to develop skills in problem solving, communication, independent learning, and group work, and to signal the importance we attach to independent learning. This approach is followed up in the second year with the workshop based approach used in the compulsory Software Engineering unit, which also contains a major group working component.

The choice of units offered to students on our programmes is very broad, but they also require depth in particular subject areas. This is achieved using the notion of Themes. A theme is a group of related second and third year course units which form a coherent whole; usually one second year and two third year units. All Computer Science with Business Management students are required to complete at least one Computer Science theme. The Programme Structure section below indicates the Themes for this group of programmes and the tables in that section show the Theme for each course unit.

All students undertake an individual 3rd year project, supervised by a member of academic task, which usually involves the development of significant software or hardware product. Assessment of this unit involves presentations of plans and results and a major written report.

Assessment in almost all units is a combination of lab/coursework and examination.

Learning, Teaching and Assessment of intended learning outcomes

Knowledge and Understanding

<table>
<thead>
<tr>
<th>Learning and Teaching Processes</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures (A1, A2, A3, A4, A5, A6, A7)</td>
<td>Unseen written examinations (A1, A2, A3, A4)</td>
</tr>
<tr>
<td>Laboratory sessions (A2, A3)</td>
<td>Marked tutorial exercises (A1, A2, A3, A4)</td>
</tr>
<tr>
<td>Personal tutorials (A1, A2, A3, A4, A7)</td>
<td>Laboratory reports (A2, A3)</td>
</tr>
<tr>
<td>Problem solving classes (A1, A2, A3, A4)</td>
<td>Project reports (individual and group) (A3, A4, A5, A6, A7)</td>
</tr>
<tr>
<td>Problem-based learning (A2, A3, A4, A5, A6, A7)</td>
<td>Oral presentations (individual and group) (A3, A4, A5, A6, A7)</td>
</tr>
<tr>
<td>Projects (A3, A4, A5, A6, A7)</td>
<td></td>
</tr>
<tr>
<td>Industrial seminars (A4, A5, A6, A7)</td>
<td></td>
</tr>
</tbody>
</table>

Intellectual Skills

<table>
<thead>
<tr>
<th>Learning and Teaching Processes</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures (B1, B2, B4, B5)</td>
<td>Unseen written examinations (B1, B2, B4)</td>
</tr>
<tr>
<td>Laboratory sessions (B1, B2)</td>
<td>Marked tutorial exercises (B1, B2)</td>
</tr>
<tr>
<td>Personal tutorials (B1, B2, B4)</td>
<td>Laboratory reports (B1, B2)</td>
</tr>
<tr>
<td>Problem solving classes (B1, B2, B4)</td>
<td>Project reports (individual and group) (B1, B2, B3, B4, B5)</td>
</tr>
<tr>
<td>Problem-based learning (B1, B2, B4)</td>
<td>Oral presentations (individual and group) (B1, B2, B3, B4, B5)</td>
</tr>
<tr>
<td>Projects (B1, B2, B3, B4, B5)</td>
<td></td>
</tr>
</tbody>
</table>

Practical Skills

<table>
<thead>
<tr>
<th>Learning and Teaching Processes</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures (C4, C6)</td>
<td>Laboratory reports (C1, C2, C3, C4, C5, C6, C7)</td>
</tr>
<tr>
<td>Laboratory sessions (C1, C2, C3, C4, C5, C6, C7)</td>
<td>Project reports (individual and group) (C3, C4, C5, C6)</td>
</tr>
<tr>
<td>Projects (C3, C4, C5, C6, C9)</td>
<td>Oral presentations (individual and group) (C6, C8, C9)</td>
</tr>
<tr>
<td>Industrial placement (C8, C9)</td>
<td>Industrial placement reports (C8, C9)</td>
</tr>
</tbody>
</table>
Transferable skills

<table>
<thead>
<tr>
<th>Learning and Teaching Processes</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures (D3, D4, D5, D7)</td>
<td>Laboratory reports (D1, D3, D5, D6)</td>
</tr>
<tr>
<td>Laboratory sessions (D1, D3, D5, D6)</td>
<td>Essays (D2, D3)</td>
</tr>
<tr>
<td>Personal tutorials (D1, D2, D3, D4, D7)</td>
<td>Project reports (individual and group) (D1, D2, D3, D4, D5, D6, D7)</td>
</tr>
<tr>
<td>Problem solving classes (D4)</td>
<td>Oral presentations (individual and group) (D1, D3, D6, D7, D8)</td>
</tr>
<tr>
<td>Problem-based learning (D1, D2, D3, D4, D5, D6)</td>
<td></td>
</tr>
<tr>
<td>Projects (D1, D2, D3, D4, D5, D6, D7)</td>
<td>Industrial placement reports (D8)</td>
</tr>
<tr>
<td>Industrial placement (D8)</td>
<td></td>
</tr>
</tbody>
</table>
Programme structure

MANDATORY UNITS - 100 CREDITS

OPTIONAL UNITS - 20 CREDITS

Level 1 - compulsory units

All of the units in this pool are mandatory.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP10120</td>
<td>First Year Team Project</td>
<td>20</td>
</tr>
<tr>
<td>COMP11120</td>
<td>Mathematical Techniques for Computer Science</td>
<td>20</td>
</tr>
<tr>
<td>COMP16121</td>
<td>Object Oriented Programming with Java 1</td>
<td>20</td>
</tr>
<tr>
<td>COMP16212</td>
<td>Object Oriented Programming with Java 2</td>
<td>10</td>
</tr>
<tr>
<td>BMAN10011</td>
<td>Fundamentals of Management</td>
<td>10</td>
</tr>
<tr>
<td>BMAN10552</td>
<td>Fundamentals of Finance</td>
<td>10</td>
</tr>
<tr>
<td>BMAN10721</td>
<td>Transferable Management and Study Skills</td>
<td>10</td>
</tr>
</tbody>
</table>

Level 1 - option pool 1

From this option pool choose 20 credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP11212</td>
<td>Fundamentals of Computation</td>
<td>10</td>
</tr>
<tr>
<td>COMP14112</td>
<td>Fundamentals of Artificial Intelligence</td>
<td>10</td>
</tr>
<tr>
<td>COMP18112</td>
<td>Fundamentals of Distributed Systems</td>
<td>10</td>
</tr>
</tbody>
</table>

Level 2 options

MANDATORY UNITS - 50 CREDITS

OPTIONAL UNITS - 70 CREDITS

Level 2 - compulsory units

All of the units in this pool are mandatory.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP23420</td>
<td>Software Engineering</td>
<td>20</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>COMP26120</td>
<td>Algorithms and Imperative Programming</td>
<td>20</td>
<td>Programming and Algorithms</td>
</tr>
<tr>
<td>BMAN10621</td>
<td>Fundamentals of Financial Reporting</td>
<td>10</td>
<td>None</td>
</tr>
<tr>
<td>BMAN10652</td>
<td>Fundamentals of Accounting</td>
<td>10</td>
<td>None</td>
</tr>
<tr>
<td>BMAN21012</td>
<td>Global Contexts of Business and Management</td>
<td>10</td>
<td>None</td>
</tr>
</tbody>
</table>

Level 2 - option pool 1

From this option pool choose 30 credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP21111</td>
<td>Logic and Modelling</td>
<td>10</td>
<td>Rigorous Development</td>
</tr>
<tr>
<td>COMP23111</td>
<td>Fundamentals of Databases</td>
<td>10</td>
<td>Web and Distributed Systems</td>
</tr>
<tr>
<td>COMP24111</td>
<td>Machine Learning and Optimisation</td>
<td>10</td>
<td>Learning and Search in Artificial Intelligence</td>
</tr>
<tr>
<td>COMP25111</td>
<td>Operating Systems</td>
<td>10</td>
<td>Computer Architecture</td>
</tr>
</tbody>
</table>

Level 2 - option pool 2

From this option pool choose 20 credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP24412</td>
<td>Symbolic AI</td>
<td>10</td>
<td>Natural Language, Representation and Reasoning</td>
</tr>
<tr>
<td>COMP25212</td>
<td>System Architecture</td>
<td>10</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>COMP27112</td>
<td>Computer Graphics and Image Processing</td>
<td>10</td>
<td>Visual Computing</td>
</tr>
<tr>
<td>COMP28112</td>
<td>Distributed Computing</td>
<td>10</td>
<td>Web and Distributed Systems</td>
</tr>
</tbody>
</table>

Level 3 options

MANDATORY UNITS - 70 CREDITS

OPTIONAL UNITS - 50 CREDITS. YOU MUST CHOOSE 50 CREDITS IN TOTAL FROM THE OPTION POOLS

Level 3 - compulsory units

All of the units in this pool are mandatory.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP30030</td>
<td>3rd Year Project (Joint Hons 30 Credits)</td>
<td>30</td>
<td>None</td>
</tr>
<tr>
<td>BMAN30010</td>
<td>Management and Technology</td>
<td>20</td>
<td>None</td>
</tr>
<tr>
<td>BMAN30021</td>
<td>Marketing</td>
<td>10</td>
<td>None</td>
</tr>
</tbody>
</table>
Level 3 - option pool 1
From this option pool choose a maximum of 30 credits and a minimum of 0 credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP31111</td>
<td>Verified Development</td>
<td>10</td>
<td>Rigorous Development</td>
</tr>
<tr>
<td>COMP33411</td>
<td>Software Design using Patterns</td>
<td>10</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>COMP33711</td>
<td>Agile Software Engineering</td>
<td>10</td>
<td>Agile Methods</td>
</tr>
<tr>
<td>COMP34411</td>
<td>Natural Language Systems</td>
<td>10</td>
<td>Natural Language, Representation and Reasoning</td>
</tr>
<tr>
<td>COMP36111</td>
<td>Advanced Algorithms 1</td>
<td>10</td>
<td>Programming and Algorithms</td>
</tr>
<tr>
<td>COMP36411</td>
<td>Understanding Programming Languages</td>
<td>10</td>
<td>None</td>
</tr>
<tr>
<td>COMP37111</td>
<td>Advanced Computer Graphics</td>
<td>10</td>
<td>Visual Computing</td>
</tr>
<tr>
<td>COMP38411</td>
<td>Cryptography and Network Security</td>
<td>10</td>
<td>Mobile Computing and Networks</td>
</tr>
</tbody>
</table>

Level 3 - option pool 2
From this option pool choose a maximum of 30 credits and a minimum of 0 credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP31212</td>
<td>Concurrency and Process Algebra</td>
<td>10</td>
<td>Rigorous Development</td>
</tr>
<tr>
<td>COMP33512</td>
<td>User Experience</td>
<td>10</td>
<td>Software Engineering</td>
</tr>
<tr>
<td>COMP33812</td>
<td>Software Evolution</td>
<td>10</td>
<td>Agile Methods</td>
</tr>
<tr>
<td>COMP34512</td>
<td>Knowledge Representation and Reasoning</td>
<td>10</td>
<td>Natural Language, Representation and Reasoning</td>
</tr>
<tr>
<td>COMP35112</td>
<td>Chap Multiprocessors</td>
<td>10</td>
<td>Computer Architecture</td>
</tr>
<tr>
<td>COMP36212</td>
<td>Advanced Algorithms II</td>
<td>10</td>
<td>Programming and Algorithms</td>
</tr>
<tr>
<td>COMP36512</td>
<td>Compilers</td>
<td>10</td>
<td>Computer Languages</td>
</tr>
<tr>
<td>COMP37212</td>
<td>Computer Vision</td>
<td>10</td>
<td>Visual Computing</td>
</tr>
</tbody>
</table>

Level 3 - option pool 3
From this option pool choose 10 credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMAN30042</td>
<td>Human Resource Management</td>
<td>10</td>
<td>None</td>
</tr>
<tr>
<td>BMAN31031</td>
<td>Organisational Analysis</td>
<td>10</td>
<td>None</td>
</tr>
</tbody>
</table>

Level 3 - option pool 4
From this option pool choose a maximum of 40 credits and a minimum of 0 credits.

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP34120</td>
<td>AI and Games</td>
<td>20</td>
<td>Learning and Search in Artificial Intelligence</td>
</tr>
<tr>
<td>COMP38120</td>
<td>Documents, Services and Data on the Web</td>
<td>20</td>
<td>Web and Distributed Systems</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Year</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>COMP23420</td>
<td>Software Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP24111</td>
<td>Machine Learning and Optimisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP24412</td>
<td>Symbolic AI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP25111</td>
<td>Operating Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP25212</td>
<td>System Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP26220</td>
<td>Algorithms and Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP27220</td>
<td>Computer Graphics and Image Processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP28010</td>
<td>Distributed Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP28030</td>
<td>1st Year Project (Joint Honors: 0 Credits)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP31111</td>
<td>Verified Development</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP31212</td>
<td>Concurrent and Process Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP31411</td>
<td>Software Design using Patterns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP31512</td>
<td>User Experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP31711</td>
<td>Agile Software Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP31812</td>
<td>Software Evolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP31920</td>
<td>AI and Games</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32011</td>
<td>Natural Language Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32112</td>
<td>Chip Multiprocessors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32212</td>
<td>Knowledge Representation and Reasoning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32411</td>
<td>Advanced Algorithms I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32512</td>
<td>Advanced Algorithms II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32611</td>
<td>Understanding Programming Languages</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32712</td>
<td>Compilers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32811</td>
<td>Advanced Computer Graphics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP32920</td>
<td>Computer Vision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP33120</td>
<td>Documents, Services and Data on the Web</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP33211</td>
<td>Cryptography and Network Security</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mechanisms for programme revision

Course units are reviewed annually by the Undergraduate Committee, as part of the Annual Review process, taking into account the results and comments from Course Unit Evaluation Questionnaires. Input is also received from the Teaching Assessment Panel, which has a responsibility for monitoring teaching quality in the School.

Programmes have been reviewed regularly by groups created specifically for this purpose; the last major review resulted in a new programme portfolio design which started in the first year in 2008-9. The responsibility for leadership of programme review is now in the hands of the Director of Teaching Strategy (currently Dr Steve Pettifer) who chairs a School Teaching Strategy Committee.