Storage Technologies Outline

Lecture 1 Disks & Filesystems (20 April)
- Revisions
- Performance
- Limitations and solutions

Lecture 2 RAID (22 April)
- build server filestore from (inexpensive) PC parts

Lecture 3 Storage Systems and Virtualization (27 April)
- Logical Volume Management
- Storage Area Networks
- Solid State Disks
Learning Objectives - Storage 1

- Review disk and file system characteristics
- Understand the operational limitations of conventional disk usage
- Introduce simple solutions using multiple disks

Characterisation

- Write Once, Read Many (times) – \textit{WORM}
 - CD-ROM, DVD, Blu-ray Disc
 - Irreversible writes
- Write Many, Read Many
 - Hard disk drive, tape drive
 - Fully reversible writes (almost)
- Write (not too) Many, Read Many
 - CD/DVD±RW (100s to 1000s)
 - Flash Memory (1000s to ...)
 - Mostly reversible writes – “\textit{wear}”
HDD Internals – tinyurl.com/disk-video

Hard Disk Drive Storage Structure

- Capacity
 - 2TB platter (2012/13)
 - 8TB HDD (Seagate 2014)
 - 10TB (WD HGST 2015?)

- Power consumption
 - Spinning platters
 - Moving the heads (seek)
 - Reading/Writing
 - Controllers
 - Data transfer (I/O)

- Rotation speed
 - 5400/7200/10000/15000

Hard Disk Attributes – Performance

Seek time Time for the **head** to reach the target **track**.

Search time Time for the target **sector** to arrive under the **head**.
Also called **rotational latency**.

Transfer rate Amount of data that can be read / written per unit of time. Dependent on access patterns.
Aka. “sustained transfer rate” in contrast to “interface transfer rate”

\[
\text{Disk access time} = \text{seek time} + \text{search time} + \text{transfer time}
\]

Note: all values are average as they depend on many factors.

Disk access example

- Host initiates read
 sends a list of blocks to read

- Block schedule requested...
 … may not be optimal
 and leads to extra revolutions

- HDD internal processor optimizes the schedule

- No direct mapping from block numbers to the sector/track/cylinder position
 (high-level interfaces like ATA / SCSI)
Example HDD specs

HGST Western Digital He6 HUS726060ALA640
- Capacity 6TB
- Power consumption: 7.3/5.3/3.7 W
- Rotational speed: 7200 RPM
- Seek time: 8.5 ms
- Sustained transfer rate: 177 MB/sec
- Interface transfer rate: 600 MB/sec (SATA)
- Data buffer: 64 MB
- MTBF: 2,500,000 hours
- Price: £250 to £400 (Q1 2015)

Example: disk access time (1)

How long would it take on average to read / write a 512 byte sector on this disk?

\[
\text{Disk access time} = \text{seek time} + \text{search time} + \text{transfer time}
\]

seek time: 8.5 ms

search time: the disk must, on average, complete a half rotation

\[
7200 \text{ RPM} \rightarrow \frac{0.5 \text{ rotations} \cdot 60 \text{ sec min}}{7200 \text{ RPM}} = 4.16 \text{ ms}
\]

transfer time:

\[
\frac{512 \text{ B}}{177 \cdot 10^6 \text{ B/sec}} = 2.89 \mu\text{s}
\]

access time

\[
8.5 + 4.16 + 2.89 \cdot 10^{-3} = 12.66 \text{ ms}
\]
Example: disk access time (2)

How long would it take on average to read / write 512 MB on this disk? (assuming sectors are "contiguous")

\[
\text{Disk access time} = \text{seek time} + \text{search time} + \text{transfer time}
\]

seek time: 8.5 ms

search time: the disk must, on average, complete a half rotation

\[
7200 \text{ RPM} \implies \frac{0.5 \text{ rotations} \cdot 60 \text{ sec}}{7200 \text{ RPM}} = 4.16 \text{ ms}
\]

transfer time: \[
\frac{512 \cdot 10^6 \text{ B}}{177 \cdot 10^6 \text{ B/sec}} = 2.89 \text{ s}
\]

access time = \(8.5 \cdot 10^{-3} + 4.16 \cdot 10^{-3} + 2.89 = 2.9\) s

File System Review

- **Naming service**
 - files
 - directories
 - links
- **Storage service**
 - "vector of bytes"
 - owners, permissions...
- **Data and metadata**
- **Space allocation**
 - contiguous
 - linked
 - indexed
- **Recovery**
 - chkdsk, fsck

File System is Layered

-Naming Service
-Storage Service
-Disk Driver

O.S.

..."vector of bytes"
Problems with disks

Small Slow Unreliable

Disks are (were?) too small

1956 first HDD IBM 350: \(\sim 3.5 \text{ MB} \) (enough to store one selfie!)
2015 first 10 TB disk: 1000s of times smaller, \(3 \cdot 10^6 \times \) capacity

\(10^{10}\) higher storage density in 60 years: is this enough?

Source: https://www-03.ibm.com/ibm/history/exhibits/storage/storage_350.html
If one disk is not enough ...

Use multiple disks

- Independent disks
- Can we have a single volume with the combined capacity?
- Storage virtualization

Redundant Array of Independent Disks

Disks are too slow

Slow because of:

- High seek time
 - Reduce the number of times the head must move
 - Multiple platters \implies more tracks sectors per cylinder
- High search time (aka. rotational latency)
 - Increase the rotation speed (e.g., server disks up to 15000 RPM)
- Low sustained transfer rate
 - Increase rotation speed (physical limitations)
 - Increase the recording density (physical limitations)
 - Apply cache and prefetch principles
 - “Stripe” file system across multiple disks
Solution: Disk Striping (RAID 0)

- Split data evenly across multiple disks
- Distribute fixed-size “stripes” of a virtual volume
- Illusion of faster and larger disk

RAID 0

- Disk 0
 - A0
 - A4
 - A8
- Disk 1
 - A1
 - A5
 - A9
- Disk 2
 - A2
 - A6
- Disk 3
 - A3
 - A7

BUT lower reliability!

Disks are unreliable

- Mechanical components subject to wear
- Partial failure: sectors go bad
- Total failure: no data recoverable

- If reliability cannot be improved: tolerate failures
 - Fault-tolerance through redundancy
 - Disk “mirror”
Solution: Disk Mirroring (RAID 1)

- Use two (or more) redundant disks
- Write to each (same, replicated data)
- Read from either (possibly choose “nearest” for performance)
- If one fails: use the other and re-create a new copy (slowly)

Nested RAID: RAID 1+0 (aka. RAID 10)

- Operation continues in case of disk failure
- Can tolerate failures as long as no mirror loses all drives
Summary: Problems and (simple) Solutions

- Disks are too small
 - Fixed: use multiple disks (possibly striped)

- Disks are too slow
 - Fixed: disk striping (RAID 0)

- Disks are unreliable
 - Fixed: disk mirroring (RAID 1)

- Disks may be in the wrong place!
 - What happens when we migrate a Virtual Machine?

Better solutions on Friday