Learning Objectives

• “3 x C’s” model of cache performance

• Time penalties for starting with empty cache

• Systems interconnect issues with caching and solutions!

• Caching and Virtual Memory
Describing Cache Misses

- **Compulsory Misses**
 - Cold start

- **Capacity Misses**
 - Even with full associativity, cache cannot contain all the blocks of the program

- **Conflict Misses**
 - Multiple blocks compete for the same set. This would not happen in fully associative cache

Cache Performance

Today’s caches, how long does it take

- To fill L3 cache? (8MB)
- To fill L2 cache? (256KB)
- To fill L1 D cache? (32KB)

- Number of lines = (cache size) / (line size)
- Number of lines = 32K/64 = 512
- 512 x memory access times at 20nS = 10 uS
- 20,000 clock cycles at 2GHz
Caches in Systems

- Typical I/O bandwidth?
- What could go wrong?

Cache Consistency Problem (1)

- Problem
 - I/O writes to memory
 - Cache data is no longer up-to-date
Cache Consistency Problem (2)

- Problem
 - I/O reads from memory
 - But the cache has a new, updated value

Cache Consistency Software Solutions

- O/S knows where I/O takes place in memory
 - Mark I/O areas as non-cacheable (how?)

- O/S knows when I/O starts and finishes
 - Clear caches before & after I/O?
Hardware Solution 1

- Disadvantage
 - Slows down the cache
 - “Pollutes” the cache (replaces potentially useful data)

Hardware Solution 2 (Snooping)

- Snoop logic in the cache
 - Observes every memory cycle
 - Scalability issues
Caches and Virtual Addresses

- CPU addresses – virtual
- Memory addresses – physical

Recap...
- Use Translation-Lookaside Buffer (TLB) to translate V-to-P

What addresses in cache?

Option 1 : Cache by Physical Addresses

- Slow
 - Address translation is in series with cache
Option 2: Cache by Virtual Addresses

- More functional difficulties
 - Snooping
 - Aliasing

Option 3: Translate in Parallel with Cache Lookup

- Translation only affects high-order bits of address
- Address within page remains unchanged
- Low-order bits of Physical Address = low-order bits of Virtual Address
- Select “index” field of cache address from within low-order bits
- Only “Tag” bits changed by translation
Option 3 in operation

Summary

- “3 x C’s” model of cache performance

- Systems interconnect issues with caching and solutions!
 - Non-cacheable areas
 - Cache flushing
 - Snooping

- Caching and Virtual Memory
 - Physical to virtual conversion (TLB)
 - Cache architectures to support P-to-V conversion