Exercise Sheet 8 for examples class in Week 9

1. For each of the following specifications, give a program \(S \) that satisfies the specification, or if there is no such \(S \) explain why.
 (a) \(\{ \} S \{ x = y \} \)
 (b) \(\{ x = a \} S \{ z = 2 \times a \} \) where \(a \) is not in \(S \)
 (c) \(\{ x = a \land y = b \} S \{ a < z < b \} \) where \(a, b \) is not in \(S \)
 (d) \(\{ false \} S \{ true \} \)
 (e) \(\{ true \} S \{ false \} \)
 (f) \([true] S [false] \)
 (g) \(\{ x = a \land y = b \land x > y \} S \{ y > x \} \) but not \(\{ x = a \land y = b \land x > y \} S [y > x] \)

2. Give a proof for the following partial correctness problem
 \[\{ x = a \land y = b \land x \geq 0 \} \text{while} x > 0 \text{ do } (x := x - 1; y := y + 2) \{ y = b + (2 \times a) \} \]
 You will need to find a loop invariant for the loop first.

3. Give a proof for the following total correctness problem
 \[[x = a \land y = b \land x \geq 0 \land 2x < y] \text{while} x > 0 \text{ do } (x := x - 1; y := y - 2) [y > 0] \]
 You will need to find both a loop invariant and a loop variant for the loop first.

4. Extend the partial correctness proof of the GCD algorithm given in 2.3.3 to show total correctness e.g.
 \[[x > 0 \land y > 0] C [z = \text{gcd}(x, y)] \]
 You will need to find a loop variant for the loop.

5. Exercise 2.12 i.e. prove total correctness for the logarithm program you wrote in Exercise 1.11 with respect to a total version of the specification you wrote in Exercise 2.3