QUESTION 1

a) Clearly (warm-up): 1-b; 2-h; 3-f or g; 4-f or g; 5-c; 6-a; 7-i; 8-d; 9-e.
0.5 marks for each correct mark rounded up.
(5 marks)

b) i) this would require a modification of the lexical analyser; ii) this would require the modification of the lexical analyser, the parser, the semantic analysis component (and possibly the back-end if the target processor provides special instructions to deal with operations between complex numbers); iii) in principle, nothing needs to change (as there is backwards compatibility) but the code wouldn’t necessarily take advantage of the dual core: to take advantage, one would expect that code generation has to be enhanced; iv) this would require modifications of the lexical analyser, the parser and the semantic analyser (it is assumed that the construct would be mapped onto a standard loop structure in the intermediate representation); (v) this would require some modifications of the low-level code optimiser.
(10 marks, 2 each)

c) This transformation is a combination of loop skewing (add i to the innermost loop of the original code) and loop interchange (new loop bounds have to be calculated). This is a typical wavefront computation. In the original version, none of the loops is parallelizable because of the loop-carried dependences. In the transformed version, different iterations of the i loop can be executed in parallel, as the optimization groups the dependences for different iterations of the j loop. Students have seen a range of transformations and/or optimisations and their impact was discussed in the lectures (including the impact on code parallelization), but the specific example (parallelization of a wavefront computation) was not shown to them.
(5 marks)
QUESTION 2

a) Clearly, all such integers should end with one of 00, 25, 50, 75. Then, the regular expression needs to generate all 5-digit integers between 40000 (the lowest multiple of 25 which is greater than 39980) and 99999 that obey this rule. Hence:

RE \rightarrow (4|5|6|7|8|9) \text{ (digit) (digit) (00 | 25 | 50 | 75)}

(3 marks)

b) This language generates strings containing any number of a or b in any order, with the final symbol being always a. For example: a, aa, ba, aaa, aba, baa, bba, etc…

The DFA is shown below (it shouldn’t need a detailed construction, it can be drawn by studying carefully the regular expression)

(5 marks: 2 marks for the description and 3 marks for the DFA)

c)

Starting from \(\varepsilon \)-closure\((S_0) \) and applying \(\varepsilon \)-closure and move repeatedly according to the subset construction algorithm, we get:

\[
\begin{align*}
S_0 & \rightarrow S_1, S_2, S_3 \\
S_1, S_2 & \rightarrow S_1, S_2, S_3, S_3 \\
\text{(Final)} S_1, S_2, S_3 & \rightarrow S_1, S_2, S_3, S_3
\end{align*}
\]

So the DFA is:

(6 marks)

d) \text{comm} \rightarrow (/ x (other \mid \text{\"n} \mid \text{\"x} \mid / \mid \text{\"x/} \mid \text{\"})^* x /) (// (other \mid / \mid \text{\"} \mid x)^* \text{\"n})

(the regular expression requires some thought about how to handle the double quotes)

(6 marks)
QUESTION 3

a) i) Leftmost derivation:
\[
G \rightarrow L \rightarrow E \ ; \ L \rightarrow E + T \ ; \ L \rightarrow T + T \ ; \ L \rightarrow \text{id} + T \ ; \ L \rightarrow \text{id} + \text{id} \ ; \ L \rightarrow \text{id} + \text{id} \ ; \ E \rightarrow \text{id} + \text{id} \ ; \ T \rightarrow \text{id} + \text{id} \ ; \ \text{id}(L) \rightarrow \text{id} + \text{id} \ ; \ \text{id}(E) \rightarrow \text{id} + \text{id} \ ; \ \text{id}(T) \rightarrow \text{id} + \text{id} \ ; \ \text{id}(\text{id}(\))
\]

Parse tree:

![Parse tree diagram]

(5 marks)

ii) to transform this grammar so that it can be used to construct a top-down predictive parser with one symbol of lookahead we first need to eliminate left recursion as a result of the rules \(E \rightarrow E + T | T \), which become: \(E \rightarrow T \ E' \) and \(E' \rightarrow + T \ E' | \epsilon \)

Then, we have to eliminate common prefixes to make sure that the LL(1) property holds. We do this by factoring. Then, rules: \(L \rightarrow E \ ; \ L \rightarrow E \) become: \(L \rightarrow E \ L' \) and \(L' \rightarrow ;L | \epsilon \). Same for rules \(T \rightarrow \text{id} \), \(T \rightarrow \text{id} (\) \), \(T \rightarrow \text{id} (L) \), which become: \(T \rightarrow \text{id} \ T' \) and \(T' \rightarrow (T'' | \epsilon \) and \(T'' \rightarrow) | L \).

(6 marks)

b) i) The relevant steps taken are:

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action taken</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0</td>
<td>(())</td>
<td>Shift 3</td>
</tr>
<tr>
<td>$0 (3</td>
<td>())</td>
<td>Shift 6</td>
</tr>
<tr>
<td>$0 (3 (6</td>
<td>))</td>
<td>Shift 10</td>
</tr>
<tr>
<td>$0 (3 (6</td>
<td>10)</td>
<td>Reduce 5</td>
</tr>
<tr>
<td>$0 (3 P 5</td>
<td>))</td>
<td>Shift 8</td>
</tr>
<tr>
<td>$0 (3 P 5</td>
<td>8)</td>
<td>Reduce 4</td>
</tr>
<tr>
<td>$0 P 2</td>
<td>))</td>
<td>Reduce 3</td>
</tr>
<tr>
<td>$0 L 1</td>
<td>()</td>
<td>Shift 3</td>
</tr>
<tr>
<td>$0 L 1 (3</td>
<td>))</td>
<td>Shift 7</td>
</tr>
<tr>
<td>$0 L 1 (3</td>
<td>7)</td>
<td>eof</td>
</tr>
<tr>
<td>$0 L 1 P 4</td>
<td>eof</td>
<td>Reduce 2</td>
</tr>
<tr>
<td>$0 L 1</td>
<td>eof</td>
<td>accept</td>
</tr>
</tbody>
</table>

(5 marks)

(ii) In the case of the Goto table, there are as many columns as non-terminal symbols, so no changes are expected. In the case of the Action table, when we have 2 lookahead symbols, we need to consider all possible combinations: (), (()), (, (,)) (, (eof,) eof, eof, for a total of 7 columns. In the case of 3 lookahead symbols, we can easily calculate that we need a total of 15 combinations/columns. The key is to notice that some options are not possible, e.g., eof), etc.

(4 marks)
QUESTION 4

a) A possible solution (using only synthesized attributes) is the following:

\[
\begin{align*}
G & \rightarrow E \quad \text{G.val} = E.val \\
E & \rightarrow E_1 + T \quad E.val = E_1.val + T.val \\
E & \rightarrow T \quad E.val = T.val \\
T & \rightarrow T_1 * F \quad T.val = T_1.val \times F.val \\
T & \rightarrow F \quad T.val = F.val \\
F & \rightarrow (E) \quad F.val = E.val \\
F & \rightarrow \text{digit} \quad F.val = \text{digit.lexval}
\end{align*}
\]

The only assumptions are related to the lexical value of digit and the use of E_1 and T_1 (2nd and 4th rules) to specify the order of calculation of the attributes.

(5 marks)

b) As there are only 18278 different names, a possible approach is to compute a different value for each name and then perform a modulo 1024 operation. This would map about 18 different names to each symbol table entry, and assuming a good distribution for common names (e.g., single letter names) chances of collision would be minimized. Thus, a good hash function could be:

\[
[\text{ascii(LETTER1)} - \text{ascii('a')} + 1 + \text{ascii(LETTER2)} - \text{ascii('a')} + 1 \times 26 + \text{ascii(LETTER3)} - \text{ascii('a')} + 1 \times 26 \times 26] \mod 1024
\]

(assuming a three letter name, LETTER1 LETTER2 LETTER3 – for shorter names, the corresponding components are removed). Any sensible answers that guarantee a good/balanced distribution of names on the table will get full marks.

(5 marks)

c) For the call graph, see below:

When the execution reaches the printf statement for the first time, it has called the following functions: A(1) (from main), A(0) (from A), B(0) (from A), C(0) (from B). So, including main(), there will be five activation records in the stack, each activation record corresponding to a function call.

(5 marks)

d) Applying constant propagation first: the 2nd line becomes if (3>7)..., the 3rd line becomes ...my_function(z*0), the 4th line becomes for(i=10; i<=5; ... Applying dead-code elimination, the 2nd and 4th line disappear, applying constant folding the 3rd line becomes my_function(0). This results in:

\[
\begin{align*}
b & = 4; \ c = 1; \ d = 3; \ n = 5; \ \text{scanf(“%d”,&z)}; \\
q & = \text{my_function(0)}; \\
\text{printf(“final %d \
”,q)};
\end{align*}
\]

Assuming that the variables b, c, d, n, z are not needed anywhere else in the code, the first line can be eliminated too.

(5 marks)
QUESTION 5

a) i) live ranges:
(3 marks)

ii) interference graph

Top-down colouring starts with the nodes that have the largest number of edges. Then:
R3 – green; R5 – red; R1 – red; R2 – blue; R4 – blue; and R6,R7,R8:green
(5 marks)

b) We start from the leaves, hence:
Basic Block including line 7: LIVEOUT={}, LIVEIN={B,C,D}
Basic Block including lines 5,6: LIVEOUT={B, C, D}, LIVEIN={A, B}
Basic Block including lines 3,4: LIVEOUT = {B, C, D}, LIVEIN={A, D}
Basic Block including lines 1,2: LIVEOUT = {A,B,D}, LIVEIN={B}
(4 marks)

c) First build the precedence graph: (precedence graph not drawn here)
8 depends on 3 and 7; 7 depends on 5 and 2; 6 depends on 1 and 4; 5 depends on 4 and 1

Then assign weights; as latency is always 1 this is the longest path to exit:
1,4 have a weight of 4; 2,5 have a weight of 3; 3,7 have a weight of 2; 6,8 have a weight of 1

We schedule an instruction that is available, starting with those with highest weight:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Instruction</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle1</td>
<td>1</td>
<td>nop</td>
</tr>
<tr>
<td>Cycle2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Cycle3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Cycle4</td>
<td>nop</td>
<td>nop</td>
</tr>
</tbody>
</table>

Or, in the case of 2 functional units:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Instruction</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Cycle2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Cycle3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>Cycle4</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

Comparing the two schedules: (i) the length is the same; (ii) in the first case, we use cheaper functional units but utilisation is low.
(8 marks)