
MSc Introductory Laboratory

Academic Year 2021-22

Christoforos Moutafis, Ahmed Saeed, Stewart Blakeway, Graham Gough, Toby Howard,
John Latham, Chris Page, Steve Pettifer

1

Contents

1 Computing Infrastructure . 4

2 About these notes . 4

2.1 Breakout boxes . 4

2.2 Styles and conventions . 4

3 What is a Virtual Machine? . 5

4 Get your Virtual Machine installed . 5

4.1 Installing VirtualBox and CS Image . 6

5 VM Backup . 6

6 Reading your email . 7

7 Meet the Department’s Wiki pages . 7

8 Blackboard . 8

9 Meet SPOT . 8

10 Unix and Linux . 9

10.1 Operating Systems . 9

10.2 Unix Origins . 9

10.3 Modern Unix Variants . 11

11 Using the VM Image . 12

12 Processes and the Unix Shell . 16

12.1 The process ’family tree’ . 18

13 File systems and files . 18

13.1 The Unix filesystem . 20

13.2 Files in more detail . 23

14 The Colossal Cave . 24

14.1 Installing Frotz, a Z-Machine Interpreter 25

15 Extracting files . 27

16 RTFM . 28

16.1 Using VM and University’s lab machines 29

17 Shutting down your VM safely . 30

18 What have you learned? . 31

19 Logging in . 31

20 Listing files . 31

2

20.1 Autocomplete . 32

21 Browsing the Web . 33

21.1 Pipes and Redirects . 34

21.2 Searching patterns through files . 36

22 Text Editors . 36

23 Shell environment variables . 37

24 Acknowledgements . 39

3

1 Computing Infrastructure

Hello and welcome to the Department of Computer Science at the University of Manchester!
In this first, boot-up, lab we’re going to cover some of the basic things you’ll need to know
about the IT infrastructure in the Department of Computer Science, and how to install the
Virtual Machine and get it set up so that you can get going quickly in the next lab. You will
need this in all of your subsequent labs as well. Some of what we tell you may well seem very
obvious to you, and if that’s the case we ask you to be patient. Some other things might not be
so obvious.

These notes are a modified version of some that we use in our first year Undergraduate pro-
gramme. We have tailored them for PGT students and specifically for the academic year 2021-
22, but there may be some places where they betray their origins.

For this and every lab there will be scheduled online and on campus drop-in sessions where
staff, consisting of academic staff and postgraduate students, will be around to help you. If
you’re stuck or find something that you really can’t understand, then please ask for help; that’s
what the lab staff are here for, don’t just sit there getting frustrated. The postgraduate students
are known as Graduate Teaching Assistants, or GTAs for short.

2 About these notes

2.1 Breakout boxes

Scattered throughout the main text there are info boxes of various kinds:

Danger! The bomb icon explains problems and pitfalls, and how to
avoid them. It’s really important that you read these sections, or you
may regret it later.

We digress. . . Boxes marked with this icon contain digressions and
facts that are hopefully interesting but are probably tangential to the
main flow of the exercise.

Stop here. . . Boxes marked with this icon contain checkpoint activities
that you should complete before proceeding further.

2.2 Styles and conventions

We’ll be using various typographic styles to indicate different things. When we introduce new
concepts, or use terms that have a different meaning in computer science to their everyday
use, they will appear like this, and will be explained in the nearby text. Things that are either
the input or output to commands will appear in this font. And many words or phrases
will have a little ‘w’ after them, meaning that if you click on the term (if you’re reading the
notes online) or type the phrase into WikipediaW (if you’re reading this on paper), you should
be taken to a sensible definition in case you want to learn more about something that we’ve
touched on here.

Where you see text in square brackets [LIKE THIS] it will mean that when you’re typing things
you should replace the text with something that the text describes; for example [NAME OF
THIS CITY], would become Manchester.

4

http://en.wikipedia.org/wiki/wikipedia

3 What is a Virtual Machine?

In this section we will briefly introduce virtual machines (VMs). We will be providing you
with the Computer Science Virtual Machine that will enable you to have direct access to all the
tools you will need for all of your coursework and laboratories (details will follow in the next
section), so it’ll be very useful! But, what is a Virtual Machine? In simple terms, you can think
of a virtual machine (VM) as a computer within a computer!!! In practice, a virtual machine is
a virtual computer system that provides the functionality of a physical computer.

4 Get your Virtual Machine installed

Now that we introduced virtual machines, we will discuss how to perform the inital simple
set-up steps in order to subsequently install the Computer Science Virtual Machine that is
prepared and tailored for the needs of the Department’s undergraduates. In the following you
have simple and clear guidelines on how to install the VM on one of the major platforms you
may be using: Windows, Mac OS X and Linux.

All this information, can also be found at our wiki, in the relevant page CSImage VM/Getting
Started, which is always kept up-to-date:

https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started

By the end of this Boot-up lab 0, you should have succesfully installed the VM on
your personal computers.

System Requirements In order to use the CS Virtual Machine Image, your device must meet
the requirements to run VirtualBox. VirtualBox officially supports the following host operating
systems:

• 64-bit versions of Windows 8.1, Windows 10, and Windows Server 2012, 2016, and 2019.

• 64-bit versions of macOS X 10.13 (High Sierra), 10.14 (Mojave), 10.15 (Catalina), and 11.x
(Big Sur) on Intel hardware.

• 64-bit versions of Linux based on kernels >= 2.6. All modern 64-bit Linux distributions
will run VirtualBox.

Windows 7 and Windows 8.0 may run VirtualBox, but this is not officially supported. 32-bit
host operating systems are not supported by VirtualBox

Apple systems based on the new Apple M1 processor are not supported by either
VirtualBox or VMWare Fusion at this time. The CSImage VM WILL NOT WORK
on M1 based Macs.

Your computer must have virtualisation support enabled in its BIOS/EFI settings in order
to run VirtualBox properly. Most modern Intel and AMD processors provide the required
virtualisation hardware, but it may not be enabled by default.

5

https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started

4.1 Installing VirtualBox and CS Image

This part will be different for Windows users, Mac OS x users and Linux users, and we have
prepared dedicated pages for each case, to guide you through, that you can find below:

• Instructions for Windows users:
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/Windows

• Instructions for Mac OS X users:
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/OSX

• Instructions for Linux users:
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/Linux

If you need support with installing or using the CS Image please see the following link:
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Troubleshoot

If you still need help then please contact support team at:
support@cs.manchester.ac.uk

Note: IT Services will not be able to assist with the image as it is a CS-specific local system.

5 VM Backup

Backing up your work is important, and it is good to get into the habit of making regular
backups of your work in multiple locations. The VM contains a pair of programs to help
with backing up your data from the VM to your Department of CS filestore, but you should
probably take extra steps to keep your work secure in addition to the backup system.

Every time you log into the VM, a program will run to check whether a backup has been
made, and how long ago the backup happened. If no backup has been made, or the last one
was made over 5 days ago, you’ll be prompted to make a new backup as shown in Figure 1.

Figure 1
CSImage VM backup warning.

Note: Before you can backup your files to your Department of CS filestore, you must ensure
that you have connected to the GlobalProtect VPNW. If you are not connected, the backup
process will fail

For more information on how to connect to GlobalProtect VPN, visit the link:

https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/VPN_Install#Connecting_
to_the_VPN

6

https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/Windows
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/Windows
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/OSX
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/OSX
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/Linux
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Getting_Started/Linux
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Troubleshoot
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/VPN_Install#Connecting_to_the_VPN
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/VPN_Install#Connecting_to_the_VPN
https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/VPN_Install#Connecting_to_the_VPN

The first time you run the backup process, either by clicking on the "Run Backup" button in the
backup check program window, or by double-clicking on the "CS Backup" icon on the desktop,
you’ll be prompted to enter your University of Manchester username (e.g. c12345ab) as shown
in Figure 2.

Figure 2
CSImage VM backup request.

For more information on backup and restoring files, visit the link:

https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Backup

6 Reading your email

We use email extensively so it’s vitally important that you read your University mail regularly
– at least once a day (and probably much more often). Your standard University email address
is usually in the form firstname.lastname@student.manchester.ac.uk. This address
will be used for all communications to you from the department. You can read your mail using
the Email button in the lefthand sidebar on your MY Manchester page:

https://my.manchester.ac.uk.

7 Meet the Department’s Wiki pages

One of the main purposes of this boot-up lab 0 is to introduce the main sources of information
that you can use for getting help. Our department hosts the Computer Science Wiki. You can
access the homepage by following the link below:

https://wiki.cs.manchester.ac.uk/index.php/Main_Page

This wiki contains frequently asked questions (FAQs) that most probably you might find use-
ful. In addition, there is information on software, and other useful information for students
and stuff. The FAQs are split into sensible categories, feel free to try the search box in the top
right hand corner, if you are not sure where to look.

You may also find particularly useful the General IT FAQ:
https://wiki.cs.manchester.ac.uk/index.php/StudentFAQ

If you have any problems that are not academic-related and not answered on the wiki, please
report them here: https://support.cs.manchester.ac.uk

It is highly recommended that you familiarise yourselves with the Department’s Wiki pages.

7

https://wiki.cs.manchester.ac.uk/index.php/CSImage_VM/Backup
https://my.manchester.ac.uk
https://wiki.cs.manchester.ac.uk/index.php/Main_Page
https://wiki.cs.manchester.ac.uk/index.php/Main_Page
https://wiki.cs.manchester.ac.uk/index.php/StudentFAQ

8 Blackboard

Blackboard is a a learning management system the the Department and the University utilises
extensively in order to provide with easy and instant access to course and laboratory material.
All of your courses/laboratories will have a Blackboard page and you can use it to get infor-
mation about the course, coursework, learning material as well access to a discussion forum
where you can ask questions and see answers to some of the questions your colleagues may
have asked.

Think of it as your online portal for your courses!

Each of your course units you will have a Blackboard page where you will find all the resources
available to accompany it. These resources usually include course notes, quizzes and other
material and learning resources to support the course unit. In Figure 3 you can see an example
preview of a Blackboard page for the COMP12111 unit. For clarity content is split between
different folders, via the links on the left. For example, the "Laboratory" folder contains all
the information you need for the laboratory that accompanies the course unit and the "Lecture
Materials" folder contains all the materials used in the lectures. You may also have additional
"Weekly Activities" folder with detailed information for each week, including embedded links
to the podcasts for each lecture, as well as links to the various video podcasts per week.

In fact, in order to familiarise yourselves with Blackboard, each Boot-up lab will have an online
quiz (on Blackboard of course!) that you need to complete. There will be no marking, but you
are expected to complete it. Hopefully you will also find it fun!

9 Meet SPOT

In this section we will introduce SPOT, which is the portal the Department of Computer Sci-
ence uses to release of your assessments for all of your courses. You can access your SPOT
at:

https://studentnet.cs.manchester.ac.uk/me/spot/

It gives you direct access to all of your coursework, all of your deadlines for each semester. In
Figure 4 you can see an example student profile at SPOT.

As an example, in Figure 5 you see a list of the courses that you are signed up for. This can give
you a quick overview of your courses and from this menu you can directly select the course

Figure 3
Example Blackboard view of a course (COMP12111).

8

https://studentnet.cs.manchester.ac.uk/me/spot/

that you are interested in (for example, in order to check your latest assessment!)

You might also find SPOT very useful as a tool to help you keep track of all of your assignments
and deadlines, as you can see in Figure 6.

As soon as your assesments become available, they will appear in SPOT the next day. This
is one of the main tools you will be using in your first term (and, in fact, all of your years in
Manchester) and we think you will find it very useful!

Figure 4
Example SPOT profile.

10 Unix and Linux

Over the next couple of weeks you will be undertaking a number of introductory labs to fa-
miliarise yourself with the Department’s computing infrastructure. Much of this is based on
devices and machines running Linux, a variant of the Unix family of operating systems; here
we provide some background on Unix and explains why we think it is important. It would
very useful if you could read this before you the early labs, where the emphasis will be on
leading you through a series of tasks to explore our setup.

10.1 Operating Systems

An operating systemW (OS) is a suite of software that makes computer hardware usable; it
makes the ‘raw computing power’ of the hardware available to the user. You’re probably most
familiar with the Microsoft WindowsW and Apple macOSW operating systems for ‘desktop’
computers, and iOSW (Apple, again) and Google’s AndroidW for mobile devices; but many
other more specialist operating systems exist, and you’ll be studying some of these and the
principles that underpin OS design in COMP15212 in Semester 2 of your first year. In the
meantime, a potted history of OS development will tide us over. . .

10.2 Unix Origins

In the late 1950s, an American company called Bell LaboratoriesW decided that they needed
a system to improve the way they worked with their computer hardware (it’s probably quite

9

http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Microsoft_windows
http://en.wikipedia.org/wiki/macOS
http://en.wikipedia.org/wiki/Ios
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Bell_Labs

Figure 5
Example list of courses.

Figure 6
Example view of a SPOT profile, where you can track assignments and deadlines.

hard to imagine what interacting with a computer without an operating system might be; but
it wasn’t pretty and involved manually loading and running programs one by one). Together
with the General Electric CompanyW and the Massachusetts Institute of TechnologyW, they
set about the design of an operating system they called MulticsW: the ‘Multiplexed Information
and Computing Service’. Multics was hugely innovative, and introduced many concepts that
we now take for granted in modern operating systems such as the ability for more than one
program to run ‘at once’; but it did rather suffer from ‘design by committee’, and the final
system was seen at the time as being overly complex and rather bloated (‘bloated’ is all a
matter of perspective of course: it’s sobering to realise though that the entire Multics operating

10

http://en.wikipedia.org/wiki/General_Electric_Company
http://en.wikipedia.org/wiki/MIT
http://en.wikipedia.org/wiki/Multics

system was only around 135Kb. Today’s operating systems are something like 30,000 times this
size. . .). In the late 1960s, a group of programmers at Bell Labs created a cut-down, leaner and
cleaner version of Multics that would work on more modest hardware. Legend has it that this
was to allow them to play their favourite (only!) computer game, Space TravelW. In an early
example of the trend of giving things ‘punny’ names, to contrast with the more clumsy Multics,
they called this new system Unix. The so-called Jargon FileW is a good source of explanations
of various bits of computer slang and their obscure origins, and is well worth a read: in part
to give some background history, but mostly as an insight into the minds of the computing
pioneers of the past!

Even though Unix is now quite old, most Computer Scientists recognise that the designers of
Unix got most of the fundamental concepts and architecture right. Given how much comput-
ing has changed since the 1960s, this was an astonishing intellectual achievement. Although
Microsoft’s WindowsW is by far the most common operating system on desktop machines, the
majority of the Internet, much of the world’s corporate infrastructure, virtually all supercom-
puters, and some mobile devices are powered by Unix-like operating systems. So, while the
polished graphical user interfaces of Windows and macOSW appear to dominate the world
of computing, most of the real hard-core and leading-edge computation relies on an elegant
operating system designed nearly 50 years ago (by a team of scientists who wanted to play a
game).

10.3 Modern Unix Variants

The history of Unix is complex and convoluted, with the system being updated, re-implemented,
and mimicked repeatedly over the years, primarily by commercial companies who guarded
their versions jealously. Figure 7 shows a tiny fragment of the Unix’s ‘family tree’ (the full
diagram, which you can find at www.levenez.com/unix/unix.pdf, is many times the size
of the portion you can see here).

Although many of the branches represent interesting innovations of one kind or another, there
are perhaps two that deserve particular attention. The first of these was the decision by Apple
some time around the turn of the millennium to drop their own – highly popular, but ageing –
bespoke operating system (Mac OS 9W) in favour of a Unix-based system (now the more famil-
iar ‘macOS’. Although the majority of Mac users are blissfully unaware of the fact, behind the
slick front-end of macOS sits a variant of Unix). The second, and perhaps more profound of
these events was the creation in 1991 by Swedish programmer Linus TorvaldsW of a Unix-like
system, the source code to which he gave away for free (‘free’ here in the sense both of ‘free-
dom to reuse or adapt’, and also in the sense of ‘without charge’.); this became known as the
Linux KernelW. Combined with other free software created by the Free Software FoundationW,
a non-commercial version of Unix called GNU/LinuxW was born (GNU here is a recursive
acronym for “GNU’s not Unix”, a swipe at other commercial non-Free versions; much to the
annoyance of the Free Software Foundation, GNU/Linux is almost always called just ‘Linux’
(pronounced “Linn-ucks”, see https://www.youtube.com/watch?v=c39QPDTDdXU).

Linux has been, and continues to be, developed cooperatively by thousands of programmers
across the world contributing their effort largely free of charge (although many are now paid to
work on Linux as part of their job). It is amazing to think that such a project could ever happen
– and it is surely a testament to the better side of Human Nature. But what is interesting is
the observation that these programmers are not motivated by commercial concerns, but by
the desire to make good reliable software and have it used by lots of people. Thus, Linux
is a good choice of Unix: it’s Free, it’s efficient, and it’s reliable, and it is now used by large
corporations, governments, research labs and individuals around the world. Even Google’s

11

http://en.wikipedia.org/wiki/Space_Travel_(video_game)
http://en.wikipedia.org/wiki/Jargon_File
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/macOS
www.levenez.com/unix/unix.pdf
http://en.wikipedia.org/wiki/Mac_os_9
http://en.wikipedia.org/wiki/Linus_torvalds
http://en.wikipedia.org/wiki/Linux_kernel
http://en.wikipedia.org/wiki/Free_software_foundation
http://en.wikipedia.org/wiki/GNU/Linux
https://www.youtube.com/watch?v=c39QPDTDdXU

AndroidW platform is a Linux-based mobile OS, and the Amazon KindleW is also a Linux box
behind the electronic ink of its user interface (Figure 8).

One of the results of the fact that Linux is Free is that several organisations and companies
have created their own distributions of it; these vary a bit (in fact, anybody is free to make any
change they like to Linux, and pass it on to whoever wants it).

So, if you are to become an expert computer professional, it is important that you understand
the theory and practice of Unix-based systems. Learning Unix is not only a crucial skill for
any serious computer scientist, it is a very rewarding experience; the labs over the next couple
of weeks are designed to help you become familiar with what will be your daily working
environment.

11 Using the VM Image

If all went well in the last lab session, your VM image should be ready for use, but if you did
not complete the VM image installation in Section 4 please go back to the Boot-up Lab 0 notes
and finish all the lab tasks now. Otherwise you will not be able to complete this lab.

In this session we are going to explore some of its capabilities. Please bootup your VM as you
did in the previous lab. Open a Terminal Emulator by clicking on a small black screen icon
at the bottom left as shown in Figure 9 or simpling pressing Clt+Alt+T on your keyboard.

The first line of the text (which is shown in bold here but will be green and blue on your
screen) is the command promptW. It might look innocent enough, but in the right hands, the
command prompt is one of the most powerful ways of controlling a computer. Your previous
interaction with a computer was probably via a graphical user interfaceW, or GUI, such as that

UNICS
september 1969

UNIX Time-Sharing System
First Edition (V1)
november 3, 1971

UNIX Time-Sharing System
Second Edition (V2)

june 12, 1972

Open Systems
july 29, 2012

© Éric Lévénez 1998-2012
<http://www.levenez.com/unix/>

UNIX Time-Sharing System
Third Edition (V3)

february 1973

19721969 19711970 1973

UNIX Time-Sharing System
Fourth Edition (V4)

november 1973

UNIX Time-Sharing System
Fifth Edition (V5)

june 1974

MERT
1974

PWB/UNIX
1974

UNIX Time-Sharing System
Sixth Edition (V6)

may 1975

LSX

Mini Unix
may 1977

SRI Eunice

PWB 1.0
july 1, 1977

RT 1.0
1977

TS 1.0
1977

USG 1.0

UNSW

197619751974 1977

1BSD
march 9, 1978

CB UNIX 1

UNIX Time-Sharing System
Seventh Edition (V7)

january 1979

TS 2.0
1978

PWB 2.0
1978

USG 2.0

PWB 1.2

2BSD
may 10, 1979

UNIX 32V
may 1979

Interactive
IS/1

USG 3.0

CB
UNIX 2

TS 3.0
1979

3BSD
march 1980

2.79BSD
april 1980

TS 3.0.1
1980

CB UNIX 3

4.0BSD
october 1980

XENIX OS
august 25, 1980

UCLA Secure Unix
1979

UCLA Locally Cooperating
Unix Systems

1980

UNIX Time-Sharing System
Seventh Edition Modified

(V7M)
december 1980

V7appenda
february 12, 1980

UNSW 01
january 1978 UNSW 04

november 1979
BRL Unix V4.1

july 1979

19801978 1979

The Wollongong Group
Eunice (Edition 7)

1980

Note 1 : an arrow indicates an inheritance like a compatibility, it is not only a matter of source code.

Note 2 : this diagram shows complete systems and [micro]kernels like Mach, Linux, the Hurd... This is because
sometimes kernel versions are more appropriate to see the evolution of the system.

4.1BSD
june 1981

TS 5.0
1982

UNIX System III
november 1981

4.1aBSD
april 1982

2.8.1BSD
january 1982

4.1bBSD
august 1982

SunOS 1.0
february 1982

2.8BSD
july 1981

Ultrix-11

UNIX System IV
1982

TS 4.0.1
1981

2.8.2BSD
september 8, 1982

2.9BSD
july 1983

2.9.1BSD
november 1983

4.1cBSD
december 1982

4.2BSD
september 1983

XENIX 3.0
april 1983

UNIX System V
january 1983

TS 5.2
1983

IS/3

HP-UX 1.0 (S500)
H1 1983

PC/IX

QUNIX
1981

QNX beta
1983

XENIX 2.3

Locus
1983

UCLA Locus
1981

Venix

UNSW 81
april 1981

V7M 2.1
october 1981

Coherent
june 1983

Sinix

mt Xinu
july 19, 1983

19831981 1982

SPIX
1982

Eunice 2
1982

Tunis
1981

Plurix
1982

UniSoft
UniPlus

System V
1983

UniSoft
UniPlus V7

1981

IRIS
GL2 1.0

1983

HP-UX 2.0 (S200)
august 1983

UNIX System V
Release 2
april 1984

UNIX Time-Sharing System
Eighth Edition (V8)

february 1985

SunOS 1.1
april 1984

Interactive 386/ix
1985

Minix

A/UX

Mach
1985

Xinu
1984

SunOS 1.2
january 1985 SunOS 2.0

may 15, 1985

2.9BSD-Seismo
august 1985

Ultrix 32M 1.0
1984

IS/5

4.3BSD
june 1986

SunOS 3.0
february 17,

1986

UNIX System V
Release 3.0

1986

Chorus
1986

HP-UX 1.0 (S800)
november 20, 1986

Mach 2.0

SunOS 3.2
september 1986

UNIX Time-Sharing System
Ninth Edition (V9)

september 1986

Plan 9

MIPS OS
RISC/os

Dynix
1984

Unicos 2.0
december 19, 1986

Unicos 1.0
april 3, 1986

CXOs 0.9
sept. 1985

QNX 1.0
1984

SCO XENIX
System V/286

1985
SCO XENIX 3.0

february 1984

IBM IX/370
1985

Locus
1985

AIX/RT 2
1986

Venix/286

Ultrix 32M 1.2
1985

Venix 1.0
1985

Venix 2.0
1986

Ultrix-11 v3.0
1986

Ultrix-11 v3.1
1986

BRL Unix
(4.3BSD)

1986

BRL Unix
(4.2BSD)

1985

mt Xinu
(4.2BSD)

mt Xinu
(4.3BSD)

UNIX System
V/286
1985

UNIX System
V/386 rel 3.0

1984 1985 1986

GNU (Trix)
1986

SPIX 32

Eunice 4.2
1985

Microport
Unix SV/AT
january 1986

CXOs
1984

IRIS GL2 5.0
dec. 1986

IRIS GL2 4.0
march 1986IRIS GL2 1.5

mid-1984

IRIX
1986

HP-UX 2.0 (S500)
H1 1984

HP-UX 2.1 (S500)
september 1984

HP-UX 2.1 (S200)
H1 1985

HP-UX 5.0
(S200/S300)

H1 1986
HP-UX 5.1 (S200/S300)

H1 1986

2.10BSD
april 1987

UNIX System V
Release 3.2

1987

Mach 2.5
1988

4.3BSD Tahoe
june 1988

HP-UX 1.1
(S800)

august 17, 1987

UNIX System V
Release 4

1988

UNIX Interactive 4.1
1988

NeXTSTEP 0.8
october 12, 1988

Xinu 7
march 1988

AIX/RT 2.1.2

Chorus/MiX V3.2
1988

BSD Net/1
november 1988

IBM AOS
1988

MIPS OS
RISC/os 4

2.10.1BSD
january 1989

SunOS 4.0
1989

NeXTSTEP 1.0
september 18, 1989

UNIX Time-Sharing System
Tenth Edition (V10)

october 1989

SCO UNIX System V/386
release 3, 1989

AIX/6000 v3
1989

HP-UX 7.0
(S300/S800)

H2 1989

SunOS 4.0.3
may 1989

SunOS 3.5
1988

HP-UX 2.0
(S800)

march 1988
HP-UX 3.1
feb. 1989

A/UX 1.0
february 1988

AIX/RT 2.2.1
1987

SCO XENIX System V/386
october 1987

Unicos 3.0
september 25, 1987

Unicos 4.0
july 15, 1988

Unicos 5.0
may 15, 1989

Minix 1.0
1987

QNX 2.0 QNX 2.21

SCO XENIX System
V/386 release 2.3.4

june 1989

AIX PS/2 1.1
march 31, 1989

Venix 3.2.3Venix 3.2

Ultrix 4.2

Sinix 2.0
1987

Sinix 2.1
1988

more/BSD
december 1988

mt Xinu
mach386

HPBSD
1987 HPBSD 1.0

april 1988

UNIX System V/386
Release 3.2 UNIX System V/386

Release 4

CTIX/386 CTIX 3.0 CTIX 3.2 CTIX 4.0

198919881987

Acorn RISC iX
1989

Atari Unix
1989

Ultrix 32M 2.0
1987

BOS
1989

NonStop-UX
april 10, 1987

NonStop-UX B00
august 22, 1989

Eunice 4.3
1987

Acorn RISC Unix
1988

Microport Unix V/386
september 1987

IRIX 3.0
june 10, 1988

IRIX 2.0
november 18, 1987

IRIS GL2 6.0
1987

Dell Unix SVR1.1
november 1, 1989

HP-UX 5.2
(S300)

H2 1987

HP-UX 6.0
(S300)

H2 1987

HP-UX 6.2
(S300)

june 1988

HP-UX 6.5
(S300)

H1 1989

HP-UX 1.2
(S800)

nov. 16, 1987

HP-UX 2.1
(S800)

july 1988

HP-UX 3.0
(S800)

nov. 11, 1988

HP-UX 7.02
(S800)

H2 1989

2.11BSD
february 1992

Chorus/MiX SVR4
1991

AIX 3.1
1990

Plan 9
1990

4.3BSD Reno
june 1990

BSD Net/2
(4.3BSD Lite)

june 1991

386 BSD 0.0
february 1992

4.4BSD alpha
june 1992

SunOS 4.1.1
(Solaris 1)

november 1990

Linux 0.01
august 1, 1991

A/UX 3.0
april 16, 1992

UnixWare 1
Unix System V

Release 4.2
november 2, 1992

OSF/1
1990

SunSoft UNIX
Interactive 4.1

1992

NeXTSTEP 2.0
sept. 18, 1990

OSF/1
1992

NeXTSTEP 3.0
september 1992

Xinu

NeXTSTEP 2.1
march 25, 1991

Linux 0.02
october 5, 1991

Minix 1.5
december 1992

HP-UX 9.0 (S800)
october 7, 1992

SunOS 4.1
march 1990

386 BSD 0.1
july 14, 1992

AOS Reno
1992

SunOS 4.1.3
(Solaris 1.1a)
august 1992

Solaris 2.0
(sparc)

(SunOS 5.0)
july 1992

BSD/386 0.3.2
(BSDI)

february 28, 1992

Solaris 2.1
(SunOS 5.1)

december 1992

BSD/OS 1.0
(BSDI)

SunOS 4.1.2
(Solaris 1.0.1)
december 1991

HP-UX 8.0 (S300/S800)
march 27, 1991

HP-UX 8.02 (S800)
august 5, 1991

AIX 3.2
1990

IRIX 4.0
september 1991

A/UX 2.0
june 1990

Mach 3

GNU
(GNU/Hurd)
may 7, 1991

Linux 0.12
january 16, 1992

Mach 2.6

Linux 0.95
march 8, 1992

Unicos 6.0
february 14, 1991

Unicos 7.0
october 29, 1992

QNX 4.0
1990

Trusted XENIX 2.0
january 9, 1991

Trusted XENIX 3.0
april 8, 1992

Unix System V
Release 4.1ES
december 1992

Solaris 2.0 (x86)
end 1992

AIX PS/2 & AIX/370
1.2.1

february 22, 1991

AIX PS/2 1.3
october 2, 1992

AIX/ESA 2.1
1992

AIX PS/2 & AIX/370
1.2

march 30, 1990

AIX/ESA 1
1991

Venix 3.2.4

Ultrix 4.2A Ultrix 4.3

Coherent 3.0 Coherent 4.0
may 1992

Sinix 5.20
1990

Sinix 5.40
1992

mt Xinu
mach 2.6

1990 1991 1992

RISC iX 1.21
1991

AMiX 1.1 (Amiga Unix SVR4)
1990

AMiX 2.2

ASV (dev release)
1991

ASV (final release)
august 1992

Microport Unix SVR3.2 Microport Unix SVR4.0 Microport Unix SVR4.1

MIPS OS
RISC/os 5

IRIX 4.0.4
march 1992

Dell Unix SVR4.0
1990

Dell Unix SVR4 Issue 2.2
1992

HP-UX 7.06
(S800)

H2 1990

HP-UX 7.08
(S800)

H1 1991

HP-UX 8.01 (S700)
february 1991

HP-UX 8.05 (S300/700)
july 1991

HP-UX 8.07
(S300/S700)

november 21, 1991

HP-UX 9,01
(S300/S700)

november 2, 1992

HP-UX 8.06 (S800)
H2 1991

HP-UX BLS 8.04 (S800)
H2 1991

NetBSD 0.8
april 20, 1993

FreeBSD 1.1
may 1994FreeBSD 1.0

december 1993

NetBSD 0.9
august 23, 1993

BSD/OS 1.1
(BSDI)

february 14, 1994

4.4BSD
june 1, 1993

NetBSD 1.0
october 26, 1994

386 BSD 1.0
12 november 1994

4.4BSD Lite 1
march 1, 1994

4.4BSD Encumbered
june 1993

2.11BSD
patch 100

january 1993
2.11BSD
patch 200

december 1994

OSF/1.3
june 1994

NeXTSTEP 3.1
may 25, 1993

NeXTSTEP 3.2
october 1993

SunOS 4.1.4
(Solaris 1.1.2)

september 1994

UnixWare 1.1.1
Unix System V Release 4.2

1994

SCO UNIX 3.2.4
(Open Desktop)

1994

Chorus/MiX SVR4

Solaris 2.2 (sparc)
(SunOS 5.2)

may 1993

Solaris 2.3 (sparc)
(SunOS 5.3)

november 1993

Solaris 2.4
(SunOS 5.4)

december 1994

Xinu

UNIX Interactive 4.1a
june 1994

Linux 1.0
march 14, 1994

Linux 1.1.0
april 6, 1994

AIX 4.1
august 12, 1994

Linux 1.0.9
april 17, 1994

Linux 1.1.52
october 6, 1994

AIX 3.2.5
october 15, 1993

HP-UX 9.02
august 1993

FreeBSD 1.1.5.1
july 1994

HP-UX 9.03
december 16, 1993

HP-UX 9.04 (S800)
november 17, 1993

HP-UX 9.05
april 19, 1994

AIX 3.2.4
july 1993

Linux 0.99.11
july 18, 1993

IRIX 6.0
december 1994

Linux 1.0.6
april 3, 1994Linux 0.99.15j

march 2, 1994

Dynix/ptx 2.0.4
1993

Unicos 8.0
march 11, 1994

Unicos-max 1.0
november 15, 1993

Unicos-max 1.1
june 10, 1994

Unicos-max 1.2
november 30, 1994

QNX 4.1
1994

UnixWare 1.1
Unix SVR4.2
may 18, 1993

Trusted XENIX 4.0
september 17, 1993

HP-UX BLS 9.09+
december 1, 1994

SunOS 4.1.3_U1
(Solaris 1.1.1)
december 1993

Lites

Mach 4
UK02

july 20, 1994

Solaris 2.1 (x86)

AIX/ESA 2.2
1994

Venix 4.2

A/UX 3.0.1 A/UX 3.0.2 A/UX 3.1

ArchBSD
november 1994

Ultrix 4.4Ultrix 4.3A

SunOS 4.1.3_U1b
(Solaris 1.1.1B)
february 1994

Coherent 4.2
may 1993

Sinix 5.42Sinix 5.41
1993

HPBSD 2.0
april 1993

HPBSD

19941993

MVS/ESA OpenEdition SP4.3.0
march 26, 1993

MVS/ESA OpenEdition SP5.1.0
june 24, 1994

MVS/ESA OE SP5.2.0
september 13, 1994

IRIX 5.0
march 1993

NonStop-UX B22
november 22, 1993

NonStop-UX B31
november 1, 1994

AIX 4.1.1
october 28, 1994

IRIX 5.1
september 1993

IRIX 5.2
march 1994

IRIX 5.3
december 1994

Dell Unix SVR4 Issue 2.2.1
1993

OpenServer 5.0
may 9, 1995

FreeBSD 2.0
november 22, 1994

UnixWare 2.0
Unix System V Release 4.2MP

january 1995

FreeBSD
2.0.5

june 10, 1995

A/UX 3.1.1
1995

HP-UX 10.0 (S700/S800)
february 1995

4.4BSD Lite 2
june 1995

OpenBSD
october 1995

Lites 1.0
february 28, 1995

Mk Linux DR1
1996

Plan 9 r2
july 1995

Digital Unix
(DEC OSF/1 AXP)

march 1995

FreeBSD
2.1

november 19, 1995

NetBSD 1.1
november 26, 1995

AOS Lite
1995

Solaris 2.5
(SunOS 5.5)

november 1995

BSD/OS 2.0.1
(BSDI)

august 1995

OPENSTEP 4.0
july 22, 1996

FreeBSD 2.1.5
july 14, 1996

GNU 0.1 (GNU/Hurd)
september 6, 1996

NetBSD 1.2
october 4, 1996

OpenBSD 2.0
october 1996

BSD/OS 2.1
(BSDI)

february 13, 1996

2.11BSD
patch 300

february 1996

Digital Unix
4.0A

september 1996

Linux 2.0
june 9, 1996

Linux 2.1
september
30, 1996

HP-UX 10.20
june 1996

Minix 1.7.2
march 1996

Mk Linux DR2
december 1996

Mach 4
UK02p21

november 3, 1995

FreeBSD 2.1.6
november 16, 1996

HP-UX 10.10
december 1995

IRIX 6.3
september 1996

IRIX 6.2
march 1996

UnixWare 2.1.2
october 1996

UnixWare 2.1
february 13, 1996

Mach 4
UK22

march 29, 1996

NeXTSTEP 3.3
february 1995

Linux 1.2
march 7, 1995

Linux 1.1.95
march 2, 1995

Linux 1.3
june 12, 1995

Linux 1.2.13
august 2, 1995

Linux 1.3.100
may 10, 1996

Linux 2.0.21
september
20, 1996

Dynix/ptx 4.4
1996

Unicos 9.0
september 21, 1995

Unicos 9.1
march 15, 1996

Unicos-max 1.3
november 15, 1995

Unicos/mk 1.2.5
november 11, 1996

Unicos/mk 1.3
december 9, 1996

Solaris 2.5.1
(SunOS 5.5.1)

may 1996

QNX 4.2 QNX 4.22 QNX 4.24

QNX/Neutrino 1.0
1996

HP-UX 10.01
may 1995

OpenServer 5.0.2
june 1996

Trusted IRIX/B 4.0.5 EPL
february 6, 1995

Trusted Unicos 8.0
march 9, 1995

Lites 1.1
march 24, 1995

Lites 1.1u3
march 30, 1996

Ultrix 4.5
november 1995

OPENSTEP 4.1
december 1996

Coherent 4.2.10
1995

Sinix ReliantUnix 5.43
1995

1995 1996

Digital Unix 4.0
(DEC OSF/1 V4)

may 1996

Digital Unix
4.0B

december 1996

MVS/ESA OpenEdition SP5.2.1
june 20, 1995

MVS/ESA OpenEdition SP5.2.2
september 29, 1995

OS/390 OpenEdition V1R1
march 29, 1996

OS/390 OpenEdition V1R2
september 27, 1996

NonStop-UX Cxx
february 1996

NonStop-UX B32
june 12, 1995

BSD/OS 2.0
(BSDI)

january 1995

AIX 4.2
may 17, 1996

AIX 4.1.5
november 8, 1996AIX 4.1.4

october 20, 1995
AIX 4.1.3

july 7, 1995

IRIX 6.4
november 1996

IRIX 6.1
july 1995

UnixWare 7
Unix System V Release 5

march 3, 1998

Rhapsody DR2
may, 1998

NetBSD
1.3.2

may 29,
1998

AIX 4.3.2
october 23, 1998

FreeBSD 3.0
october 16, 1998

FreeBSD 2.2.1
march 25, 1997

Solaris 2.6
(SunOS 5.6)
august 1997

Mach 4
1998

Linux 2.0.36
november 15, 1998

UnixWare 7.0.1
september 8, 1998

OpenServer 5.0.5
august 12, 1998

OpenBSD 2.1
june 1, 1997

OpenBSD 2.3
may 19, 1998

Minix 2.0.2
december 1998

Xinu 8
1998

Mk Linux DR3
july 31, 1998

GNU 0.2 (GNU/Hurd)
june 12, 1997

Linux 2.1.132
december 22, 1998

Minix 2.0.0
january 1997

Solaris 7
(SunOS 5.7)

october 27, 1998

4.4BSD Lite 2

Digital Unix 4.0D
december 1997

Chorus/MiX SVR4

FreeBSD 2.2
march 16, 1997

FreeBSD 2.1.7
february 20, 1997 FreeBSD 2.2.8

november 29, 1998

NetBSD 1.2.1
may 20, 1997

NetBSD 1.3
january 4,

1998

OpenBSD 2.2
december 1, 1997

OpenBSD 2.4
december 1, 1998

BSD/OS 3.0
(BSDI)

february 26, 1997

FreeBSD 2.2.5
october 22, 1997 2.11BSD

patch 400
january 1998

FreeBSD 2.2.7
july 22, 1998

AIX 4.3
october 31, 1997

BSD/OS 4.0
(BSDI)

august 17, 1998

NetBSD 1.3.3
december 23, 1998

HP-UX 10.30
july 1997

HP-UX 11.0
november 1997

IRIX 6.5.2
november 17, 1998

IRIX 6.5
june 15, 1998

Rhapsody DR1
september, 1997

UNIX Interactive 4.1.1
july 21, 1998

Linux 2.0.28
january 14, 1997

Linux 2.1.32
april 5, 1997

Monterey
(announced)
october 1998

Dynix/ptx 4.4.4
1998

Unicos 9.2
january 13, 1997

Unicos 10.0
november 19, 1997

Unicos/mk 1.4.1
march 3, 1997

Unicos/mk 1.6
july 21, 1997

Unicos/mk 2.0
october 13, 1997

Trusted Solaris 2.5.1
september 1998

QNX 4.25

QNX/Neutrino 2.0
1998

NetBSD
1.3.1

march 9,
1998

OpenServer 5.0.4
may 1997

IRIX 6.5.1M
august 14, 1998

BSD/OS 3.1
(BSDI)

december 10, 1997

xMach

Lites

Unicos 10.0.0.2
may 1998

Unicos 10.0.0.3
october 1998

Unicos/mk 2.0.3
may 1998

Unicos 9.3
august 1997

2.11BSD
patch 366

february 1997

OPENSTEP 4.2
january 1997

ReliantUnix 5.44
1997

1997 1998

OS/390 OpenEdition V1R3
march 28, 1997

OS/390 Unix V2R4
september 26, 1997 OS/390 Unix V2R5

march 27, 1998
OS/390 Unix V2R6
september 25, 1998

NonStop-UX C41
november 14, 1997

4.3BSD-Quasijarus0
december 27, 1998

NonStop-UX C40
august 20, 1997

NonStop-UX C50
june 3, 1998

NonStop-UX C51
december 8, 1998

AIX 4.3.1
april 24, 1998

AIX 4.2.1
april 25, 1997

Mk Linux DR2.1

Linux 2.2.0
january 26, 1999

Linux 2.2.13
october 19, 1999

Tru64 Unix V4.0F
february 1, 1999

FreeBSD 3.1
february 15, 1999

OpenServer 5.0.5a
february 1999

UnixWare 7.1
february 23, 1999

Mac OS X Server 1.0
march 16, 1999

NetBSD 1.4
may 12, 1999

BSD/OS 4.0.1
(BSDI)

march 1, 1999

Linux 2.3.0
may 11, 1999

Mac OS X (DP1)
may 10, 1999

FreeBSD 3.2
may 18, 1999

OpenBSD 2.5
may 19, 1999

IRIX 6.5.3
february 9, 1999

Linux 2.0.37
june 14, 1999

Linux 2.0.38
august 25, 1999

Mac OS X Server 1.0.2
july 22, 1999

Darwin 0.1
march 16, 1999

Darwin 0.3
august 16, 1999

Tru64 Unix V5.0
august 12, 1999

NetBSD 1.4.1
august 26, 1999

AIX 4.3.3
september 17, 1999

FreeBSD 3.3
september 17, 1999

IRIX 6.5.5
august 6, 1999

IRIX 6.5.6
november 10, 1999

Mac OS X (DP2)
november 10, 1999

Linux 2.2.8
may 11, 1999

OpenBSD 2.6
december 1, 1999

FreeBSD 3.4
december 20, 1999

BSD/OS 4.1
(BSDI)

december 20, 1999

Linux 2.3.14
august 19, 1999

Solaris 8
(beta)

nov 2, 1999

UnixWare 7.1.1
december 30, 1999

Darwin 0.2
may 13, 1999

Dynix/ptx 4.5
1999

Monterey beta

Unicos/mk 2.0.4
january 25, 1999

Unicos/mk 2.0.5
october 18, 1999

Trusted Solaris 7
november 2, 1999

QNX/Neutrino 2.10
(QRTP)

IRIX 6.5.4
may 11, 1999

Linux 2.2.12
august 26, 1999

2.11BSD
patch 430

december 13, 1999

Unicos 10.0.0.5
may 1999

Unicos 10.0.0.6
june 1999

Unicos 10.0.0.4
february 1999

Solaris 7, 3/99
march 1999

Solaris 7, 5/99
may 1999

Solaris 7, 8/99
august 1999

Solaris 7, 11/99
november 1999

1999

OS/390 Unix V2R7
march 26, 1999

OS/390 Unix V2R8
september 24, 1999

4.3BSD-Quasijarus0a
october 10, 1999

MkLinux Pre-R1
1999 MkLinux R1

december 11, 1999

HP-UX 11.0 9905
may 1999

NetBSD 1.4.2
march 19, 2000

FreeBSD 4.0
march 14, 2000

FreeBSD 4.1
july 27, 2000

OpenBSD 2.7
june 15, 2000

Mac OS X (DP3)
february 14, 2000

Darwin 1.0
april 5, 2000

Mac OS X (DP4)
may 15, 2000

Solaris 8
january 26, 2000
Mac OS X Server 1.2

january 14, 2000

IRIX 6.5.8
may 22, 2000

IRIX 6.5.9
august 9, 2000

Plan 9 r3
june 7, 2000

UnixWare NSC 7.1.1+IP
june 26, 2000

HP-UX 11.11 aka 11iv1
december 2000

Linux 2.2.16
june 7, 2000

Linux 2.3.51
march 10, 2000

Darwin 1.1
may 15, 2000

Linux 2.4.0 test8
september 8, 2000

IRIX 6.5.7
february 10, 2000

Tru64 Unix V5.1
august 2000

AIX 5L 5.0
october 24, 2000

OpenServer 5.0.6
august 21, 2000

Linux 2.2.17
september 4, 2000

Linux 2.4.0 test 1
may 25, 2000

Mac OS X (beta)
september 13, 2000

FreeBSD 4.1.1
september 27, 2000

Mac OS X Server 1.2v3
october 27, 2000

Darwin 1.2.1
november 15, 2000

FreeBSD 4.2
november 21, 2000

NetBSD 1.4.3
november 25, 2000

Solaris 8
6/00 (su1)
june 2000

Solaris 8 10/00 (su2)
october 2000

OpenBSD 2.8
december 1, 2000

UnixWare 7.1.1 DCFS
november 27, 2000

Trusted Solaris 8
november 20, 2000

BSD/OS 4.2
(BSDI)

november 29, 2000

Linux 2.2.18
december 11, 2000

Linux 2.4.0 test12
december 12, 2000

IRIX 6.5.10
november 8, 2000

Security-Enhanced Linux 1.0
december 22, 2000

FreeBSD 5.0 beta
march 2000

TrustedBSD (announced)
april 9, 2000 TrustedBSD beta

UnixWare 7.1.1+LKP
august 21, 2000

xMach DR 01
august 6, 2000

NetBSD 1.5
december 6, 2000

FreeBSD 3.5
june 24, 2000

Minix-VMD 1.7.0
november 9, 2000

Unicos 10.0.0.7
january 2000

Unicos 10.0.0.8
november 22, 2000

ReliantUnix 5.45
2000

Debian GNU/Hurd A1
august 2000

2000

Tru64 Unix V4.0G
may 2000

OS/390 Unix V2R9
march 31, 2000

OS/390 Unix V2R10
september 29, 2000

2.11BSD patch 433
november 5, 2000

NonStop-UX C52
april 20, 2000

HP-UX 11.10
march 2000

Linux 2.4.0
january 4, 2001

Linux 2.0.39
january 9, 2001

Linux 2.4.3
march 30, 2001

IRIX 6.5.11
february 2, 2001

QNX RTOS 6
january 18, 2001

Solaris 8 1/01 (su3)
february 20, 2001

xMach current
march 16, 2001

Mac OS X 10.0
(Cheetah)

march 24, 2001

Linux 2.2.19
march 25, 2001

Darwin 1.3.1
april 13, 2001

FreeBSD 4.3
april 22, 2001

Linux 2.4.5
may 25, 2001

Mac OS X 10.0.4
june 22, 2001

AIX 5L v5.1
may 4, 2001

Mac OS X Server
10.0.3

may 21, 2001

OpenBSD 2.9
june 1, 2001

Solaris 8 4/01
may 2001

Mac OS X Server
10.0.4

july 3, 2001

Linux 2.4.7
july 20, 2001

Open UNIX 8
Release 8.0

june 11, 2001

Solaris 9 alpha

NetBSD 1.5.1
july 11, 2001

Solaris 8 7/01
july 2001

IRIX 6.5.12
may 9, 2001

IRIX 6.5.13
august 8, 2001

Tru64 Unix V5.1A
september 2001

NetBSD 1.5.2
september
14, 2001

FreeBSD 4.4
september 19, 2001

Linux 2.4.15
november 23, 2001

Mac OS X
Server 10.1

september 29, 2001

Mac OS X 10.1
(Puma)

sept. 29, 2001

Darwin 1.4.1
october 1, 2001

S-E Linux 2.0
september 26, 2001

Minix 2.0.3
may 22, 2001

Solaris 9 EA
october 2, 2001

QNX RTOS
6.1.0

QNX RTOS 6.1.0
patch A

september 28, 2001

Dynix/ptx 4.5.3
october 2001

Linux 2.2.20
november 2, 2001

Unicos 10.0.1.0
june 2001

OpenServer 5.0.6a
june 8, 2001

Mac OS X
10.1.1

nov 13, 2001

Mac OS X
Server 10.1.1

november
21, 2001

Linux 2.5.0
november 23, 2001

Linux 2.4.17
december
21, 2001

OpenBSD 3.0
november
27, 2001

Mac OS X
10.1.2

dec 20, 2001

IRIX 6.5.14
november 7, 2001

Open UNIX 8 MP1
Release 8.0

august 8, 2001

Open UNIX 8 MP2
Release 8.0

november 6, 2001

Solaris 8 10/01
october 2001

HP-UX 11.20 aka 11iv1.5 (IA)
june 2001

Debian GNU/Hurd G1
october 10, 2001

Debian GNU/Hurd H2
december 4, 2001

GNU-Darwin
january 17, 2001

2001

z/OS Unix System Services V1R1
march 30, 2001

z/OS Unix V1R2
october 26, 2001

Darwin 5.1

NonStop-UX C53
october 19, 2001

HP-UX 11.11/11iv1/0112
december 2001

HP-UX 11.11/11iv1/0109
september 2001

HP-UX 11.11/11iv1/0106
june 2001

Linux 2.5.3
january 30, 2002

Mac OS X Server
10.1.2

january 17, 2002

FreeBSD 4.5
january 29, 2002

Linux 2.5.5
february 19, 2002

IRIX 6.5.15
february 6, 2002

Mac OS X 10.1.3
february 19, 2002

Open UNIX 8 MP3
Release 8.0

february 12, 2002

Linux 2.4.18
february 25, 2002

Mac OS X Server
10.1.3

february 20, 2002

BSD/OS 4.3
february 14, 2002

Solaris 8 2/02
february 2002

BSD/OS 5.0
beta

FreeBSD 5.0
Developer Preview 1

april 8, 2002

Mac OS X Server
10.1.4

april 15, 2002

Mac OS X 10.1.4
april 17, 2002

Linux 2.5.10
april 24, 2002

Linux 2.5.44
october 19, 2002

Plan 9 r4
april 28, 2002

FreeBSD 4.6
june 15, 2002

OpenBSD 3.1
may 19, 2002

Solaris 9 OE
may 22, 2002

Linux 2.2.21
may 20, 2002

IRIX 6.5.16
may 8, 2002

NetBSD 1.6 beta
may 28, 2002

GNU (GNU/Hurd,
GNU Mach 1.3)

may 27, 2002

Mac OS X
10.1.5

june 4, 2002

QNX 6.2
(Momentics)
june 4, 2002

HP-UX 11.22 aka 11iv1.6 (IA)
august 2002

Yamit (alpha)
may 5, 2002

NetBSD 1.5.3
july 22, 2002

Mac OS X Server
10.1.5

july 1, 2002

Linux 2.4.19
august 3, 2002

Mac OS X 10.2
(Jaguar)

august 13, 2002

Linux 2.5.18
may 25, 2002

FreeBSD 4.6.2
august 15, 2002

MicroBSD 0.1
july 14, 2002

MicroBSD 0.5
august 14, 2002

Open UNIX 8 MP4
Release 8.0
july 3, 2002

Mac OS X
Server 10.2

august 13, 2002

IRIX 6.5.17
august 7, 2002

Mac OS X
10.2.1

sept. 18, 2002

Mac OS X
Server 10.2.1
sept. 18, 2002

Linux 2.5.30
august 1, 2002

Linux 2.2.22
sept. 16, 2002

NetBSD 1.6
sept. 14, 2002

Darwin 6.0.1
sept. 23, 2002

Debian GNU/Hurd H3
february 26, 2002 Debian GNU/Hurd J1

august 5, 2002

AIX 5L v5.2
october 18, 2002

Solaris 9 OE 9/02
sept. 2002

FreeBSD 4.7
october 10, 2002

QNX 6.2 (patch A)
october 18, 2002

MicroBSD 0.6
october 12, 2002

SCO UnixWare 7.1.3
(announced)

august 26, 2002

OpenServer 5.0.7 (announced)
august 26, 2002

Debian GNU/Hurd J2
october 10, 2002

GNU-Darwin (beta 2.5)
march 12, 2002

2002

MirBSD #0
october 11, 2002

MirBSD
august 29, 2002

z/OS, z/OS.e Unix V1R3
march 29, 2002

z/OS, z/OS.e Unix V1R4
september 27, 2002

Darwin
5.2 Darwin 5.3 Darwin 5.4 Darwin 5.5

NonStop-UX C60
may 3, 2002

NonStop-UX C61
october 2, 2002

MkLinux Pre-R2
august 5, 2002

Unicos/mp 1.0
august 23, 2002

Unicos 10.0.1.1
may 2002

Unicos/mk 2.0.6
january 2002

HP-UX 11.11/11iv1/0209
september 2002

HP-UX 11.11/11iv1/0206
june 2002HP-UX 11.11/11iv1/0203

march 2002

OpenBSD 3.2
november 1, 2002

Darwin 6.0.2
oct. 28, 2002

Linux 2.5.52
december 15, 2002

Mac OS X 10.2.2
november 11, 2002

Mac OS X Server
10.2.2

november 11, 2002

FreeBSD 5.0 DP 2
november 18, 2002

IRIX 6.5.18
november 8, 2002

Linux 2.4.20
november 28, 2002

Linux 2.2.23
november 29, 2002

SCO UnixWare 7.1.3
december 4, 2002

Mac OS X 10.2.3
december 19, 2002

Mac OS X Server
10.2.3

december 19, 2002

FreeBSD 5.0
january 19, 2003

Linux 2.5.48
november 18, 2002

Solaris 9 OE 12/02
december 2002

GNU-Darwin 1.0
january 10, 2003

Solaris 9 x86 PE
february 6, 2003

Mac OS X 10.2.4
february 13, 2003

Linux 2.5.62
february 17, 2003

2003

OpenDarwin-20030212
february 17, 2003

Tru64 Unix V5.1B
january 20, 2003

Mac OS X Server
10.2.4

february 24, 2003

QNX 6.2.1 (Momentics)
february 18, 2003

Linux 2.2.24
march 5, 2003

OpenServer 5.0.7
february 24, 2003

Linux 2.2.25
march 17, 2003

Linux 2.5.70
may 26, 2003

FreeBSD 4.8
april 3, 2003

IRIX 6.5.19
february 5, 2003

Mac OS X
10.2.5

april 10, 2003

Debian GNU/Hurd
K1-Unstable

december 12, 2002
Debian GNU/Hurd K2

march 3, 2003

Mac OS X Server
10.2.5

april 14, 2003

Darwin 6.5
april 15, 2003

NetBSD 1.6.1
april 14, 2003

OpenBSD 3.3
may 1, 2003

Solaris 9 OE 4/03
april 2003

Debian GNU/Hurd K3
april 30, 2003

Mac OS X
10.2.6

may 6, 2003

Mac OS X Server
10.2.6

may 8, 2003

Solaris 8 12/02
december 2002

IRIX 6.5.20
may 7, 2003

Darwin 6.6
may 14, 2003

SCO UnixWare 7.1.3
Update Pack 1
may 8, 2003

Linux 2.5.65
march 17, 2003

OpenDarwin
6.6.1

may 27, 2003

Linux 2.5.68
april 19, 2003

BSD/OS 4.3.1
december 21, 2002

BSD/OS 5.0
may 2, 2003

MirBSD #2
january 28, 2003

MirBSD #3
march 2, 2003

MirBSD #4
april 16, 2003

MirBSD #1
november 31, 2002

Darwin
6.1 Darwin 6.2 Darwin 6.3 Darwin 6.4

2.11BSD patch 444
february 10, 2003

NonStop-UX C62
january 17, 2003

Unicos/mp 2.0
december 20, 2002

Unicos/mp 2.1
march 17, 2003

GNU/Hurd-L4
(announced)

november 18, 2002

Unicos 10.0.1.2
may 2003

HP-UX 11.11/11iv1/0303
march 2003

HP-UX 11.11/11iv1/0212
december 2002

AIX 5L v5.2
Maintenance Level 1

may 2003
AIX 4.3.3 Maintenance Level 11

february 2003

FreeBSD 5.1
june 9, 2003

Linux 2.4.21
june 13, 2003

Linux 2.5.75
july 10, 2003

Darwin 7.0 Preview
june 25, 2003

Mac OS X 10.3 beta (Panther)
june 23, 2003

Mac OS X Server 10.3 beta (Panther)
june 23, 2003

Linux 2.6.0-test1
july 13, 2003

DragonFly BSD
july 16, 2003

Solaris 9 OE 8/03
july 29, 2003

Solaris 10 Preview
july 29, 2003

SCO UnixWare 7.1.3 /OKP
july 31, 2003

Mac OS X
10.2.7

august 18, 2003

OpenBSD 3.4 beta
august 11, 2003

IRIX 6.5.21
august 6, 2003

Linux 2.4.22
august 25, 2003

Linux 2.6.0-test11
november 26, 2003

Mac OS X
10.2.8

september 22, 2003

Mac OS X Server
10.2.8

september 22, 2003

FreeBSD 4.9
october 28, 2003

Darwin 6.7
sept. 22, 2003

Darwin 6.8
sept. 22, 2003

MirBSD #5
june 11, 2003

MirBSD #6
july 8, 2003

MirBSD #7semel
september 28, 2003

OpenBSD 3.4
november 1, 2003

Tru64 Unix V5.1B-1
october 20, 2003

Mac OS X 10.3.1
november 10, 2003

Mac OS X 10.3
Server

october 24, 2003

Darwin 7.0
october 24, 2003

Debian GNU/Hurd K4
july 29, 2003

GNU-Darwin 1.1
october 8, 2003

Mac OS X 10.3
october 24, 2003

Mac OS X 10.3.1
Server

november 10, 2003

Darwin 7.0.1
november 14, 2003

MirBSD #7bis
october 4, 2003

IRIX 6.5.22
november 5, 2003

ekkoBSD
august 6, 2003

ekkoBSD 1.0 BETA1B
november 25, 2003

FreeBSD 5.2-BETA
november 26, 2003

MirBSD #7ter
november 22, 2003

Linux 2.4.23
november 28, 2003

Darwin
7.1

Minix 2.0.4
november 23, 2003

Debian GNU/Hurd K5
november 24, 2003

OpenServer 5.0.7 Update Pack 1
july 31, 2003

MicroBSD 0.7 beta
october 27, 2003

Unicos/mp 2.2
july 2003

Unicos/mp 2.3
october 2003

HP-UX 11.23 aka 11iv2 (IA)
september 2003

HP-UX 11.11/11iv1/0309
septembre 2003

HP-UX 11.11/11iv1
0306

june 2003

AIX 5L v5.2 ML 2
october 2003

Mac OS X 10.3.2
december 17, 2003

Linux 2.6.0
december 17, 2003

Solaris 9 OE 12/03
december 2003

FreeBSD 5.2-RC1
december 10, 2003

Mac OS X 10.3.2 Server
december 19, 2003

Darwin 7.2
december 19, 2003

FreeBSD 5.2
january 12, 2004

Linux 2.6.1
january 8, 2004

Linux 2.4.24
january 5, 2004

2004

Linux 2.6.4
march 10, 2004

IRIX 6.5.23
february 4, 2004

Linux 2.0.40
february 8, 2004

Linux 2.4.25
february 18, 2004

OpenServer 5.0.7 Update Pack 2
february 18, 2004

ekkoBSD BETA 2
february 18, 2004

Linux 2.2.26
february 24, 2004

FreeBSD 5.2.1
february 25, 2004

NetBSD 1.6.2
february 29, 2004

DragonFly BSD (beta)
march 5, 2004

Mac OS X 10.3.3
march 15, 2004

Mac OS X 10.3.3 Server
march 15, 2004

Darwin 7.3
march 15, 2004

4.3BSD-Quasijarus0b
december 7, 2003

4.3BSD-Quasijarus0c
february 15, 2004

Solaris 9 OE 4/04
april 1, 2004

Linux 2.6.6
may 9, 2004

z/OS, z/OS.e Unix V1R5
march 26, 2004

NonStop-UX C63
february 6, 2004

Linux 2.4.26
april 14, 2004

OpenBSD 3.5
may 1, 2004

Mac OS X 10.3.4
may 26, 2004

Mac OS X 10.3.4
Server

may 26, 2004

Darwin 7.4
may 26, 2004

FreeBSD 4.10
may 27, 2004

IRIX 6.5.24
may 5, 2004

Debian GNU/Hurd K6
may 9, 2004

SCO UnixWare 7.1.4
june 15, 2004

Linux 2.6.7
june 15, 2004

DragonFly BSD 1.0-RC1
june 28, 2004

QNX 6.3
june 3, 2004

Mac OS X 10.4 (Tiger beta)
june 28, 2004

Mac OS X 10.4 Server
(Tiger beta)

june 28, 2004

DragonFly
BSD 1.0

july 12, 2004

ekkoBSD 1.0 BETA 2
july 7, 2004

AIX 5L v5.3
(announced)
july 13, 2004

OpenDarwin 7.2.1
july 16, 2004

DragonFly
BSD 1.0A

july 15, 2004

OpenServer 5.0.7 Update Pack 3
july 9, 2004

Linux 2.4.27
august 7, 2004

Mac OS X 10.3.5
august 9, 2004

Mac OS X 10.3.5
Server

august 9, 2004

Linux 2.6.8
august 13, 2004

Diamond SVR6 (announced)
august 3, 2004

Silver OS
july 10, 2004

MirBSD #7quater
june 14, 2004

IRIX 6.5.25
august 4, 2004

Unicos/mp 2.4
march 2004

Tru64 Unix V5.1B-2
may 2004

HP-UX 11.23/11iv2/0403
march 2004

HP-UX 11.11/11iv1/0312
december 2003

HP-UX 11.11/11iv1/0406
june 2004

SCO UnixWare 7.1.4
Maintenance Pack 1

july 2004

AIX 5L v5.2 ML 3
may 2004

Linux 2.6.8.1
august 14, 2004

Darwin 7.5
august 10, 2004

GNU-Darwin
1.1 rc1

august 17, 2004

Solaris 9 OE 9/04
august 16, 2004

FreeBSD 5.3-BETA1
august 22, 2004

FreeBSD 5.3
november 6, 2004

OpenBSD 3.6
october 29, 2004

Triance OS
1.0-BETA

august 23, 2004

Darwin 8.0b1
september 2004

FireFly BSD 1.0
september 2004

Debian GNU/Hurd K7
september 22, 2004

NetBSD 2.0 RC1
september 27, 2004

z/OS Unix V1R6
september 24, 2004

Linux 2.6.9
october 18, 2004

MirBSD #8-beta
october 16, 2004

Mac OS X 10.4 (Tiger beta 2)
october 30, 2004

Mac OS X 10.3.6
november 5, 2004
Mac OS X 10.3.6 Server

november 5, 2004

Darwin 7.6
november 6, 2004

Linux 2.4.28
november 17, 2004

Solaris 10
(announced)

november 15, 2004

IRIX 6.5.26
november 3, 2004

NetBSD 2.0
december 9, 2004

NetBSD 2.0 RC5
november 12, 2004

Darwin 7.7
december 15, 2004

Mac OS X 10.3.7
december 15, 2004
Mac OS X 10.3.7

Server
december 15, 2004

FreeBSD 4.11
january 25, 2005

Linux 2.6.10
december 24, 2004

Linux 2.4.29
january 19, 2005

GNU-Darwin 1.1 rc2
september 29, 2004

Solaris 10
january 31, 2005

AIX 5L v5.3.0
august 30, 2004

Mac OS X 10.3.8
february 9, 2005

Mac OS X 10.3.8
Server

february 9, 2005

Debian GNU/Hurd K8
december 30, 2004

Unicos/mp 2.5
november 2004

HP-UX 11.23/11iv2/0409 (IA/PA)
september 2004

HP-UX 11.11/11iv1/0412
december 2004

SCO UnixWare 7.1.4
Maintenance Pack 2

february 2005

AIX 5L v5.2 ML 4
december 2004

AIX 5L v5.2 ML 5
january 2005

AIX 5L v5.3
Maintenance Level 1

january 2005

Darwin 7.8
february 9, 2005

2005

Linux 2.6.11
march 2, 2005

OpenServer 6
(Legend beta)

 february 23, 2005

FreeBSD 5.4
may 9, 2005

Linux 2.4.30
april 3, 2005

DragonFly BSD 1.2.0
march 8, 2005

Darwin 7.9
april 15, 2005

Mac OS X 10.3.9
april 15, 2005

Mac OS X 10.3.9 Server
april 15, 2005

NetBSD 2.0.2
april 15, 2005

Mac OS X 10.4
april 29, 2005

Mac OS X 10.4 Server
april 29, 2005

Unicos/mp 3.0
march 2005

Gnuppix GNU/Hurd-L4
0503

march 1, 2005

Darwin 8.0.1
april 29, 2005

Mac OS X 10.4.1
may 16, 2005

Darwin 8.1
may 16, 2005

Mac OS X 10.4.1 Server
may 19, 2005

OpenBSD 3.7
may 19, 2005

Debian GNU/Hurd K9
may 13, 2005

Linux 2.4.31
may 31, 2005

Linux 2.6.12
june 17, 2005

OpenSolaris
(announced)
june 14, 2005

OpenServer 6
june 22, 2005

IRIX 6.5.27
february 2, 2005

Mac OS X 10.4.2
Server

july 12, 2005

Mac OS X
10.4.2

july 12, 2005

Darwin 8.2
july 12, 2005

FreeBSD 6
(announced)
july 2, 2005

FreeBSD 6
BETA 3

august 29, 2005

Linux 2.6.13
august 28, 2005

PC-BSD 0.7
may 18, 2005

PC-BSD 0.7.8
july 18, 2005

IRIX 6.5.28
august 3, 2005

DesktopBSD 1.0-RC1
july 25, 2005

Tru64 Unix
 V5.1B-3

june 2, 2005

OpenSolaris
(build 21)

july 26, 2005

OpenServer 6
Maintenance Pack 1

august 4, 2005

HP-UX 11.23/11iv2/0505
may 2005

AIX 5L v5.2 ML 6
may 2005

AIX 5L v5.3 ML 2
may 2005

z/OS Unix V1R7
september 30, 2005

NetBSD 2.1
november 2, 2005

Solaris 9 OE 9/05
september 3, 2005

Solaris 11 beta Nevada build 23
october 18, 2005

PC-BSD 0.8.3
october 23, 2005

Linux 2.6.14
october 27, 2005

FreeBSD 6.0
november 4, 2005

NetBSD 2.0.3
october 31, 2005

OpenBSD 3.8
november 1, 2005

Mac OS X
10.4.3

october 31, 2005

Darwin 8.3
october 31, 2005

Mac OS X 10.4.3
Server

october 31, 2005

Linux 2.4.32
november 16, 2005

Minix 3
V3.0, V3.1, V3.1.1
october 24, 2005

NetBSD 3.0
december 23, 2005

MirBSD #8
december 23, 2005

PC-BSD 1.0rc1
november 10, 2005

Linux 2.6.15
january 2, 2006

DragonFly BSD 1.4
january 8, 2006

Mac OS X
10.4.4

january 10, 2006

Mac OS X 10.4.4
Server

january 10, 2006

Darwin 8.4
jan. 10, 2006

FreeBSD 6.1
may 8, 2006

FreeBSD 5.5
may 25, 2006

Mac OS X 10.4.5
Server

february 15, 2006

Mac OS X
10.4.5

february 15, 2006

Darwin 8.5
february 15, 2006

PC-BSD 1.0rc2
january 20, 2006

Linux 2.6.16
march 20, 2006

Debian GNU/Hurd K10
october 26, 2005

Minix 3 V3.1.2a
may 29, 2006

Mac OS X
10.4.6

april 3, 2006

Mac OS X 10.4.6
Server

april 3, 2006

Darwin 8.6
april 10, 2006

Solaris 10 1/06
january 25, 2006

PC-BSD 1.0
april 28, 2006

OpenBSD 3.9
may 1, 2006

HP-UX 11.11/11iv1/0509
september 2005

PC-BSD1.1
may 28,

2006
DragonFly BSD 1.4.4

april 23, 2006

Plan 9
20060522

may 21, 2006

GNU-Darwin 1.1 Opteron
may 26, 2006

FreeDarwin PR1
march 16, 2006

DesktopBSD 1.0-RC2
october 8, 2005

DesktopBSD 1.0-RC3
november 26, 2005

DesktopBSD 1.0
march 28, 2006

IRIX 6.5.29
february 8, 2006

2006

HP-UX 11.23/11iv2/0512
december 2005

HP-UX 11.23/11iv2/0603
march 2006

OpenSolaris (build 38)
march 28, 2006

Debian GNU/Hurd K11
april 26, 2006

Unicos/mp 3.1
april 2006

OpenServer 6
Maintenance Pack 2

march 7, 2006

SCO UnixWare 7.1.4
Maintenance Pack 3

january 2006

AIX 5L v5.2 ML 7
september 2005

AIX 5L v5.2
Technology Level 8

february 2006

AIX 5L v5.3 ML 3
september 2005

AIX 5L v5.3
Technology Level 4

february 2006

AIX 5L v5.1 ML 9
september 2005

PC-BSD 1.11
june 19, 2006

Solaris 10 6/06
june 26, 2006

Linux 2.6.17
june 18, 2006

NetBSD 3.0.1
july 24, 2006

PC-BSD 1.2
july 12, 2006

DragonFly BSD 1.6.0
july 24, 2006

Mac OS X 10.4.7
june 27, 2006

Mac OS X 10.4.7
Server

june 27, 2006

Plan 9
20060628

june 28, 2006

Linux 2.4.33
august 11, 2006

Mac OS X 10.5
(Leopard, beta)
august 7, 2006

Darwin 8.7
august 16, 2006

NetBSD 3.1
november 4, 2006

IRIX 6.5.30
august 16, 2006

Linux 2.6.18
september 20, 2006

AIX 5L v5.3 TL5
august 2006

Mac OS X 10.4.8
september 30, 2006

Mac OS X 10.4.8
Server

september 30, 2006

FreeBSD 6.2
january 15, 2007

Darwin 8.8
november 8, 2006

OpenBSD 4.0
november 1, 2006

PC-BSD 1.3
december 31, 2006

NetBSD 3.0.2
november 4, 2006

Linux 2.6.19
november 29, 2006

Solaris 10 11/06
december 12, 2006

PC-BSD 1.3.01
january 6, 2007

Linux 2.6.20
february 4, 2007

Linux 2.4.34
december 23, 2006

DragonFly BSD 1.8.0
january 30, 2007

z/OS Unix V1R8
september 29, 2006

Mac OS X 10.4.9
march 13, 2007

Mac OS X 10.4.9
Server

march 13, 2007

DragonFly BSD
1.8.1

march 27, 2007

HP-UX 11.11/11iv1/0606
june2006

HP-UX 11.23/11iv2/0606
june 2006

HP-UX 11.23/11iv2/0609
september 2006

HP-UX 11.31 aka 11iv3
february 2007

AppleTV 1.0
march 21, 2007

OpenSolaris (build 52)
october 19, 2006

Debian GNU/Hurd K14
november 27, 2006

MirBSD #9
june 25, 2006

Tru64 Unix V5.1B-4
december 2006

HP-UX 11.11/11iv1/0612
december 2006

AIX 5L v5.2 TL9
august 2006

2.11BSD patch 445
december 26, 2006

DesktopBSD 1.6-RC3
july 25, 2007

Darwin 8.9
april 17, 2007

Linux 2.6.22
july 8, 2007

Minix 3 V3.1.3
april 13, 2007

2007

OpenBSD 4.1
may 1, 2007

Linux 2.4.35
july 26, 2007

Linux 2.6.21
april 26, 2007

HP-UX 11.23/11iv2/0706
june 2007

Minix 3 V3.1.3a
june 8, 2007

Mac OS X 10.4.10
Server

june 20, 2007

Mac OS X 10.4.10
june 20, 2007

PC-BSD 1.4
september 24, 2007

Linux 2.6.23
october 9, 2007

AIX 6 open beta
july 11, 2007

DragonFly BSD
1.10.0

august 6, 2007

AppleTV 1.1
june 20, 2007

iPhone OS 1.0
june 29, 2007

iPhone OS 1.0.2
august 21, 2007

Linux 2.4.35.2
september 8, 2007

DragonFly BSD
1.10.1

august 21, 2007

iPhone OS 1.1.1
sept. 27, 2007

iPod OS 1.1
sept. 13, 2007

NetBSD 4.0 RC3
october 19, 2007

Solaris 10 update 4 8/07
september 4, 2007

Solaris 11 beta
Nevada build 74
october 9, 2007

Mac OS X 10.5
(Leopard)

october 26, 2007

Mac OS X 10.5
Server

october 26, 2007

Darwin 8.10
october 30, 2007

Darwin 9.0
october 30, 2007

OpenSolaris
(build 78)

october 29, 2007

HP-UX 11.31/11iv3 Update 1 (0709)
september 2007

Linux 2.4.35.3
september 23, 2007

AIX 5L v5.3 TL6
june 2007

z/OS Unix V1R9
august 7, 2007

PureDarwin
2007

AIX 5L v5.2 TL10
june 2007

MidnightBSD 0.1
august 5, 2007

OpenBSD 4.2
november 1, 2007
iPhone OS 1.1.2

november 1, 2007

Mac OS X 10.4.11
Server

november 14, 2007

Mac OS X 10.4.11
november 14, 2007

Mac OS X 10.5.1
november 15, 2007

Mac OS X 10.5.1
Server

november 15, 2007

Linux 2.6.24
january 24, 2008

PC-BSD 1.4.1
november 16, 2007

FreeBSD 7.0
february 27, 2008

OpenSolaris
(build 86)

march 4, 2008

Linux 2.4.36
january 1, 2008

NetBSD 4.0
december 19, 2007

FreeBSD 6.3
january 18, 2008

OpenServer 6
Maintenance Pack 3
november 2, 2007

DesktopBSD 1.6
january 9, 2008

iPhone OS 1.1.3
january 15, 2008

Mac OS X 10.5.2
february 11, 2008

Mac OS X 10.5.2
Server

february 11, 2008

Darwin 9.2
february 13, 2008

AppleTV 2.0
feb. 12, 2008

Linux 2.6.25
april 17, 2008

Darwin 8.11
november 14, 2008

Darwin 9.1
november 15, 2007

PC-BSD 1.5
march 12, 2008

DragonFly BSD 1.12
february 26, 2008

iPhone OS 1.1.4
february 26, 2008

MirBSD #10
march 16, 2008

AppleTV 2.0.1
march 28, 2008

AppleTV 2.0.2
april 14, 2008

Linux 2.6.26
july 13, 2008

OpenBSD 4.3
may 1, 2008

OpenSolaris 2008.05
(Indiana)

may 5, 2008

Mac OS X 10.5.3
may 28, 2008

Mac OS X 10.5.3
Server

may 29, 2008

Darwin 9.3
june 19, 2008

AIX 6.1
november 9, 2007

AIX 6.1 TL1
may 30, 2008

PC-BSD 1.5.1
april 23, 2008

DragonFly BSD 1.12.2
april 20, 2008

AppleTV 2.1
july 10, 2008

iPhone OS 2.0
july 11, 2008

Mac OS X 10.5.4
june 30, 2008

Mac OS X 10.5.4
Server

june 30, 2008

HP-UX 11.31/11iv3 Update 2 (0803)
march 2008

HP-UX 11.23/11iv2/0712
december 2007

HP-UX 11.23/11iv2/0806
june 2008

Solaris 10 update 5 05/08
april 17, 2008

SCO UnixWare 7.1.4
Maintenance Pack 4

june 11,2008

AIX 5L v5.3 TL7
november 2007

AIX 5L v5.3 TL8
april 2008

Debian GNU/Hurd K15
november 19, 2007

Debian GNU/Hurd K16
december 21, 2007

Android beta
november 5, 2007

MidnightBSD 0.1.1
november 4, 2007

2008

DragonFly BSD 2.0
july 20, 2008

iPhone OS 2.0.1
august 4, 2008

Darwin 9.4
july 18, 2008

Linux 2.6.27
october 9, 2008

Linux 2.4.37
december 2, 2008

iPhone OS 2.1
september 12, 2008

Mac OS X 10.5.5
september 15, 2008

Mac OS X 10.5.5
Server

september 15, 2008

Darwin 9.5
september 17, 2008

PC-BSD 7
september 16, 2008

HP-UX 11.31/11iv3 Update 3 (0809)
september 2008

AppleTV 2.2
october 2, 2008

Linux 2.6.28
december 24, 2008

OpenBSD 4.4
october 31, 2008

Solaris 10 update 6 10/08
october 31, 2008

QNX Neutrino RTOS 6.4.0
october 30, 2008

iPhone OS 2.2
november 21, 2008

AppleTV 2.3
november 20, 2008

FreeBSD 6.4
november 28, 2008

OpenSolaris 2008.11
december 1, 2008

Mac OS X 10.5.6
december 15, 2008

Mac OS X 10.5.6
Server

december 15, 2008

Darwin 9.6
december 18, 2008

PureDarwin Xmas
december 25, 2008

FreeBSD 7.1
january 5, 2009

iPhone OS 2.2.1
january 27, 2009

DragonFly BSD 2.2
february 17, 2009

OpenServer 6
Maintenance Pack 4

february 9, 2009

AppleTV 2.3.1
february 25, 2009

NetBSD 4.0.1
october 14, 2008

AIX 5L v5.3 TL9
november 2008

AIX 6.1 TL2
november 2008

z/OS Unix V1R10
september 26, 2008

Android 1.0
september 23, 2008

Android 1.1
february 9, 2009

MidnightBSD 0.2.1
august 30, 2008

2.11BSD patch 446
december 27, 2008

2.11BSD patch 447
december 31, 2008

Linux 2.6.29
march 23, 2009

FreeBSD 7.2
may 4, 2009

Linux 2.6.30
june 9, 2009

PC-BSD 7.1
april 11, 2009

HP-UX 11.31/11iv3
Update 4 (0903)

april 9, 2009

2009
NetBSD 5.0

april 29, 2009

DragonFly BSD 2.2.1
april 26, 2009

OpenBSD 4.5
may 1, 2009

Solaris 10 update 7 05/09
april 30, 2009

Mac OS X 10.5.7
may 12, 2009

Mac OS X 10.5.7
Server

may 12, 2009

Darwin 9.7
may 14, 2009

AIX 5L v5.3 TL10
may 2009

AIX 6.1 TL3
may 2009

OpenSolaris 2009.06
june 1, 2009

Tru64 Unix V5.1B-5
march 2009

iPhone OS 3.0
june 17, 2009

AppleTV 2.4
june 24, 2009

Linux 2.6.31
september 9, 2009

PC-BSD 7.1.1
july 6, 2009

FreeBSD 8.0 beta 1
july 7, 2009

iPhone OS 3.0.1
july 31, 2009

Mac OS X 10.5.8
august 5, 2009

Mac OS X 10.5.8
Server

august 5, 2009

Darwin 9.8
august 10, 2009

Mac OS X 10.6
(Snow Leopard)
august 28, 2009

Mac OS X 10.6
Server

august 28, 2009

Darwin 10.0
august 28, 2009

iPhone OS 3.1
september 9, 2009

Mac OS X 10.6.1
september 10, 2009

Mac OS X 10.6.1
Server

september 10, 2009

DragonFly BSD 2.4
september 16, 2009

Darwin 10.1
september 15, 2009

HP-UX 11.31/11iv3
Update 5 (0909)
september 2009

FreeBSD 8.0 RC1
september 21, 2009

NetBSD 5.0.1
august 2, 2009

iPhone OS 3.1.2
october 8, 2009

Solaris 10
update 8 10/09
october 8, 2009

OpenBSD 4.6
october 18, 2009

AppleTV 3.0
october 29, 2009

DesktopBSD 1.7
september 7, 2009

Debian GNU/Hurd L1
october 19, 2009

Minix 3 V3.1.4 (4203)
march 26, 2009

QNX Neutrino RTOS 6.4.1
may 2009

z/OS Unix V1R11
september 25, 2009

Android 1.5
Cupcake

april 30, 2009

Android 1.6
Donut

september 15, 2009

Android 2.0
Eclair

october 26, 2009

AIX 5L v5.3 TL11
october 2009

AIX 5L v5.2 TL10 SP8
july 1, 2009

AppleTV 3.0.1
november 7, 2009

Mac OS X 10.6.2
november 9, 2009

Mac OS X 10.6.2
Server

november 9, 2009

Linux 2.6.32
december 2, 2009

FreeBSD 8.0
november 26, 2009

Darwin 10.2
november 13, 2009

Linux 2.6.33
february 24, 2010

PC-BSD 8.0
february 22, 2010

iPhone OS 3.1.3
february 2, 2010

AppleTV 3.0.2
february 10, 2010

FreeBSD 7.3
march 23, 2010

Mac OS X 10.6.3
march 29, 2010

Mac OS X 10.6.3
Server

march 29, 2010

DragonFly BSD 2.6.1
april 6, 2010

Darwin 10.3
april 1, 2010

Linux 2.6.34
may 16, 2010

HP-UX 11.31/11iv3
Update 6 (1003)

march 2010

NetBSD 5.0.2
february 12, 2010

OpenBSD 4.7
may 19, 2010

FreeBSD 8.1 beta 1
may 29, 2010

iPhone OS 3.2
april 3, 2010

OpenSolaris 2010.03
march 2010

Mac OS X 10.6.4
june 15, 2010

Mac OS X 10.6.4
Server

june 15, 2010

Darwin 10.4
june 17, 2010

2010

PC-BSD 8.1
july 20, 2010

iOS 4.0
june 21, 2010

iOS 3.2.1
july 15, 2010

iOS 4.0.1
july 15, 2010

Mac OS X 10.6.4
Server Update 1.1

july 22, 2010

Linux 2.6.35
august 1, 2010

AIX 7 open beta
july 14, 2010

FreeBSD 8.1
july 23, 2010

iOS 4.0.2
august 11, 2010

iOS 3.2.2
august 11, 2010

Linux 2.6.36
october 20, 2010

Solaris 10 update 9 09/10
september 8, 2010

iOS 4.1
sept. 8, 2010

OpenIndiana
build 147

september 14, 2010

OpenBSD 4.8
november 1, 2010

Mac OS X 10.6.5
november 10, 2010

Mac OS X 10.6.5
Server

november 10, 2010

HP-UX 11.31/11iv3
Update 7 (1009)
september 2010

Tru64 Unix V5.1B-6
october 2010

AIX 7.1
september 10, 2010

Minix 3 V3.1.5
november 5, 2009

Minix 3 V3.1.6
february 8, 2010

Minix 3 V3.1.7
june 16, 2010

Minix 3 V3.1.8
october 4, 2010

QNX Neutrino RTOS 6.5.0
july 2010

z/OS Unix V1R12
september 24, 2010

Android 2.1
january 12, 2010

Android 2.2
Froyo

may 20, 2010

AIX 5L v5.3 TL12
april 2010

AIX 6.1 TL4
november 2009

AIX 6.1 TL5
april 2010

AIX 6.1 TL6
september 2010

Mac OS X 10.6.5
Server Update 1.1

november 15, 2010

Darwin 10.5
november 17, 2010

NetBSD 5.1
november 19, 2010

Solaris 11
Express 2010.11

november 15, 2010

iOS 4.2.1
november 22, 2010

Linux 2.4.37.11
december 18, 2010

Linux 2.6.37
january 4, 2011

2011

Darwin 10.6
january 9, 2011

Mac OS X 10.6.6
january 6, 2011

Mac OS X 10.6.6
Server

january 6, 2011

Linux 2.6.38
march 15, 2011

Mac OS X 10.7 beta (Lion)
february 24, 2011

FreeBSD 8.2
february 24, 2011

PC-BSD 8.2
february 24, 2011

FreeBSD 7.4
february 24, 2011

iOS 4.3
march 9,

2011

Mac OS X 10.6.7
march 21, 2011

Mac OS X 10.6.7
Server

march 21, 2011

Darwin 10.7
march 28, 2011

Linux 2.6.39
may 18, 2011

iOS 4.3.1
march 25,

2011

iOS 4.3.2
april 14,

2011

DragonFly BSD 2.10.1
april 26, 2011

HP-UX 11.31/11iv3
Update 8 (1103)

march 2011

iOS 4.3.3
may 4,
2011

OpenBSD 4.9
may 1, 2011

iOS 4.3.4
july 15, 2011

OS X Lion
10.7

july 20, 2011

Darwin 10.8
june 27, 2011

Mac OS X 10.6.8
june 23, 2011

Mac OS X 10.6.8
Server

june 23, 2011

OpenBSD 5.0 beta
july 18, 2011

Darwin 11.0
july 20,

2011

GNU/Hurd 0.401
april 1, 2011

Linux 3.0
july 22, 2011

OpenIndiana
build 148

december 17, 2010

Android 2.3
Gingerbread

december 6, 2010

Android 3.0
Honeycomb

february 22, 2011
Android 3.1

may 10, 2011
Android 3.2
july 15, 2011

MidnightBSD 0.3
january 28, 2011

Mac OS X 10.6.8
v1.1

july 25, 2011

Mac OS X 10.6.8
Server v1.1

july 25, 2011

iOS 4.3.5
july 25, 2011

OS X Lion
10.7.1

august 20, 2011

Darwin 11.1
august 25,

2011

Linux 2.6.39.4
august 3, 2011

Linux 3.1
october 24, 2011

iOS 5
october 12, 2011

OS X Lion
10.7.2

october 12, 2011

Darwin 11.2
october 12, 2011

Oracle Solaris 10 8/11
september 15, 2011

BlackBerry BBX
(announced)

october 18, 2011

OpenBSD 5.0
november 1, 2011

Oracle Solaris 11
november 9, 2011

Linux 3.2
january 4, 2012

2012

PC-BSD 9.0
january 13, 2012

FreeBSD 9.0
january 12, 2012

DragonFly BSD
3.0.1

february 22, 2012

OS X Lion
10.7.3

february 1, 2012

Darwin 11.3
february 6, 2012

OS X Mountain Lion
10.8 beta

february 16, 2012

Minix 3 V3.2.0
february 29, 2012

NetBSD 5.1.2
february 11, 2012

Linux 3.3
march 18, 2012

OpenIndiana
build 151a

september 14, 2011

Android 4.0.1
Ice Cream Sandwich

october 19, 2011
Android 4.0.3

december 16, 2011

HP-UX 11.31/11iv3
Update 9

september 2011

HP-UX 11.31/11iv3
Update 10

march 2012

z/OS Unix V1R13
september 30, 2011

iOS 5.1
march 7, 2012

AIX 6.1 TL7
october 2011
AIX 7.1 TL1
october 2011

AIX 5L v5.3 TL12 SP5
october 21, 2011

AIX 6.1 TL7 SP4
may 17, 2012

FreeBSD 8.3
avril 18, 2012

AIX 7.1 TL1 SP4
may 17, 2012

OpenBSD 5.1
may 1, 2012

BlackBerry 10
(announced)
may 1, 2012

OS X Lion
10.7.4

may 9, 2012

Darwin 11.4
may 18, 2012

iOS 5.1.1
may 7, 2012

Android 4.0.4
march 29, 2012

Linux 3.4
may 20, 2012

DragonFly BSD
3.0.2

march 26, 2012

iOS 6.0 beta
june 11, 2012

Linux 3.5
july 21, 2012

Android 4.1.1
Jelly Bean

july 9, 2012

OS X Mountain Lion
10.8

july 21, 2012

AIX 5L v5.3 TL12 SP6
june 27, 2012

Figure 7
A fragment of Éric Lévénez’s Unix History chart, reproduced with permission and showing
the beginnings of Linux in amongst other versions of Unix.

12

http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Amazon_Kindle
http://en.wikipedia.org/wiki/Command_Prompt
http://en.wikipedia.org/wiki/Graphical_User_Interface

Figure 8
A photograph of Liraz Siri’s ‘rooted’ kindle, showing the Linux command prompt. Reproduced
with the author’s kind permission from www.turnkeylinux.org/blog/kindle-root

Figure 9
The Terminal Emulator window.

provided by Windows or macOS, so it may feel a bit odd at first to be issuing instructions to
a machine via a textual command-line. However, this is a crucial skill that you’ll need during
your studies here at University, and also in your future career. In fact, employers have often
said that our students’ abilities with the command-line come as a very pleasant surprise to
them and set them apart from many other students.

The default command prompt on the Terminal Emulator consists of four components as
shown in Figure 10.

• To the left of the @ symbol is the name of the user, and in this case that’s csimage, since
you’ve just logged in under that name.

• To the right of the @ is the hostname of the machine, which on a VM is quite reasonably
set to csimage-VirtualBox by default.

13

www.turnkeylinux.org/blog/kindle-root

Breakout 1: Don’t be a WIMP

The familiar Windows, Icons, Menus and Pointer (WIMP) paradigm used
on most graphical desktop environments is enormously powerful, but it’s
not suitable for every task, and understanding when you’re better off using
the command-line or a keyboard shortcut instead will make you a lot more

efficient.

Sometimes the clumsiness of the GUI comes from the fact that there’s no convenient visual
metaphor for a particular action; how do you graphically represent the concept of ‘rename
all the files I created yesterday so they start with a capital letter’?

But a lot of the time the issue is simply that it takes much longer to do some things with
the mouse than it does with a keystroke or two. Every time you use the mouse, a little
time is wasted shifting your hand off the keyboard and a little more time used up tracking
the pointer between the on-screen widgets. For casual use, this wasted time really doesn’t
matter. But as a computer scientist you’re going to be spending a lot of time time in front
of a machine, and all the seconds wasted moving the mouse pointer around add up.

What’s really fascinating here, though, is that although the keyboard versus mouse debate
is one that has been running since at least the mid-1980s, there isn’t a clear winner, or even
any definitive guidelines as to when one is better than the other.

In any case, you should definitely learn the keyboard shortcuts for the most common op-
erations in your favourite tools, and a handful of useful command-line tools. For example,
when you’re writing code you’ll be saving files very regularly; maybe even several times
a minute when you’re debugging. There are two options for this: 1) move hand off key-
board to mouse; use pointer to find the ‘File’ menu, from the file menu move the pointer to
the ‘Save’ option; move hand from mouse back to keyboard. Or 2) Press the combination
of keys that perform the ‘save’ function. Which do you think is faster?

And think carefully about the best tool for the job; sometimes it’ll be the mouse/menu
combination, but perhaps more often than you might think, a few selected commands
may get the job done considerably more quickly. You’ve probably had more experience of
doing things the GUI-way up until now so, during these labs, please use the command-
line wherever possible to built up your familiarity until you are able to judge the pros and
cons of both approaches to make an informed decision each time.

• The ~ tells you where in the VM’s file system you’re currently working. We’ll explain this
in a lot more detail later on, for now all you need to know is that the ~ symbol is called
a tilde (pronounced something like till-duh, though it’s often referred to colloquially just
as a ‘twiddle’), and is used here to refer to the ‘home’ of the current user.

• On the VM the default prompt ends with the $ symbol.

You can change this prompt to something more or less verbose later, but for now we’ll leave
it as it is. For simplicity in these notes, we’ll use the $ symbol from now on to mean ‘type
something at the command prompt and press Enter’. So for example

$ echo Hello World

means ‘type echo Hello World at the command prompt and then press Enter’ (you can do
this if you like; the result will be that ‘Hello World’ gets ‘echoed’ echoback to you on the next line

14

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/Miscellaneous#echo

Figure 10
The different components of the VM’s default command prompt.

of the screen). (Notice that this reference to a Unix command has caused a small cog to appear
in the right hand margin, so you can find this reference easily later. If you are reading the notes
online, the cog also contains a link to a web page describing some Unix commands.)

To confirm that you’re now connected to the network, use the ping pingcommand, which sends a
low-level network message to a designated place and checks for a response, to see if you can
reach our Department’s web server.

$ ping www.cs.manchester.ac.uk

15

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

Breakout 2: Ping

The ping command is named after its use in the field of active sonar, where
an actual ‘ping’ sound was sent through water, and distance calculated by
listening for the echo to return. It’s the classic boingy pingy noise associated
with submarine movies!

You should see output like:

PING cs2.eps.its.man.ac.uk (130.88.101.49) 56(84) bytes of data.
64 bytes from eps.its.man.ac.uk (130.88.101.49): icmp_req=1 ttl=61 time=0.949 ms
64 bytes from eps.its.man.ac.uk (130.88.101.49): icmp_req=2 ttl=61 time=1.01 ms
64 bytes from eps.its.man.ac.uk (130.88.101.49): icmp_req=3 ttl=61 time=0.861 ms

Each of the lines starting with ‘64 bytes’ represents a short response from the machine you’ve
just pinged, and you’re shown the round-trip time for ping’s data to leave your VM, find (in
this case) www.cs.manchester.ac.uk on the network, and return back to your VM. Since
we’re just using ping here to give us some confidence that the network is okay, we don’t need
to leave it pinging away for ages, so let’s stop the ping command in its tracks. Hold down
the control key (marked ‘Ctrl’ on the keyboard), and press ‘c’. This will signal the currently
executing command that it should stop what its doing and return to the command prompt
(quite often this is referred to as “control-c-ing” a command, and it will have the same effect
on the majority of command-line tools). This key combination is often written <ctrl>c.
If you see this notation in these notes, don’t type the individual characters, press the key
marked ctrl and the appropriate letter key.

The readout from the ping command is important - you should check which machine exactly
is responding to your pings. If your network is configured correctly you should find that the
output from the ping command looks similar to the one here. You shouldn’t worry about
subtle differences such as the time.

12 Processes and the Unix Shell

Before doing anything else, let’s take a few steps back and look in a bit more detail at what
you’ve just done; you may be surprised how much stuff happened as a result of that simple
command you’ve just typed.

The first concept you’ll need to understand is that you have been interacting with what is
known in Unix circles as a shellW: a program that prompts the user for commands, accepts
them, executes them and displays the results. A shell is just a program running on the Linux
operating system like any other program – it’s not ‘built in’ to the computer or the operating
system in any special way, it just happens that by default, the VM is set up so that when a user
logs in, the first program that gets executed on behalf of that user is an interactive shell that
allows users to execute further programs themselves. The shell that we are using here is called
bash, a name we will explain a little later.

But what do we mean by ‘execute commands’? And if the shell is ‘just a program’, how does
it get to communicate with the keyboard and screen? What is a ‘command’ anyway, where do
commands come from?

16

www.cs.manchester.ac.uk
http://en.wikipedia.org/wiki/Shell_(computing)

1

2
3

4

Process 1
(bash)

Process 2
(ping)

5

Ti
m

e

Figure 11
Running a command at a bash shell involves two process, one for the bash shell itself, and
a second child process that is started by the bash shell in which to run the command: 1
initially, just the bash process is running. 2 at the point where you type the ping command
and press enter, bash starts a second process and hands over its input and output to that
new process, which executes the command on your behalf; at this point the bash process
continues to exist but ‘goes to sleep’ until the command finishes. 3 the new process starts
up, and executes your command, until at 4 it’s either aborted by the user or finishes what
it’s doing, at which point 5 the ping process terminates and hands back control to the shell,
which wakes up ready to accept the next command.

To understand what’s going on here you’ll need to make sense of a concept that’s fundamental
to pretty-much any operating system; that of a processW. As you no doubt know, modern com-
puters have one or more Central Processing UnitsW (CPUs) which are capable of carrying out
simple instructions; a basic computer will have a single CPU, whereas a big server machine
or supercomputer may have several tens of CPUs in a single box. To a first approximation,
each CPU is only capable of following one instruction at a time, and the illusion that a com-
puter is capable of doing a very large number of things simultaneously (e.g. streaming music,
displaying web pages, downloading a video of a unicycling kitten and playing MinecraftW) is
achieved by the operating system arranging for each of these tasks to be given access in turn
to the CPU for a tiny fraction of a second. More technically, these tasks are called processesW.
The relationship between anything that you as a user may recognise – for example a desktop
application – and what’s happening in the operating system in terms of processes is quite com-
plex, since many applications are made up of several processes, and there will be a whole load
of other processes doing housekeeping jobs that aren’t immediately obvious to a user. But for
now we’ll gloss over this detail and work on the assumption that when you ask a computer to
do something for you, a process will be started to deal with that task for you.

In terms of what’s just happened when you ran the ping command a moment ago, there are

17

http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/Minecraft
http://en.wikipedia.org/wiki/Process_(computing)

Breakout 3: Unix shells

Unix has many shells: the first shell was called the ‘Thompson’ shell (also
known as just ‘sh’, and pronounced “shell”), written by Ken Thompson for
the first Unix system; then came the ‘Bourne’ shell (also called ‘sh’), written
for a later commercial version of Unix by Stephen Bourne. You have just

been using the Free Software Foundation’s ‘Bourne Again’ shell (a pun-name taking a
dig at its commercial fore-runner), or ‘bash’. The various different shells offer the user
different facilities: ‘sh’ is rather primitive compared to the more modern ones. However,
their basic functionality is always the same: they accept commands from the standard
input (for now, we can treat that as meaning ‘the keyboard’), execute them, and display
the results on the standard output (i.e. for now ‘the screen’, which in this case was the
entire screen, or console). Shells repeat this process until they have reached the end of
their input, and then they die. Unix shells are rather like Command Prompt windows in
Microsoft Windows, except that Unix shells are considerably more sophisticated.

at least two processes involved. The shell program itself is a process that’s waiting for you to
type something at the keyboard; when you pressed enter after having typed your command,
the shell interpreted your input, and started up a second process to run the ping program for
you. It handed access to the keyboard and monitor over to the process running ping, and then
went to sleep briefly to wait for the ping command to finish. When ping finished (in this case
because you aborted it), the shell woke up again, took back control of the keyboard/screen,
and was ready for your next instruction. This is illustrated in Figure 11.

You will learn much more about processes and the way they are managed in COMP15212
Operating Systems; for now there’s one more thing you need to understand about the rela-
tionship between processes.

12.1 The process ’family tree’

When the shell’s started up a process to run your command, the new process (the one that’s
running the command) is thought of as a ‘child’ of the shell’s process. The child inherits many
of the properties of its parent (you’ll see why this is important in the next lab).

13 File systems and files

Next we’re going to explore the VM’s filesystem a little. You’ll be familiar with the idea of a
hierarchy of files and folders from whatever graphical environment you’re used to using on
desktop or mobile devices: files represents things that you’ve created or downloaded such
as documents, images or movies, and folders are a way of organising these into related col-
lections. By putting folders inside folders, you can organise your stuff starting with general
concepts such as ‘Photographs’ and ending up with much more specific collections, e.g. ‘Hol-
idays’, then ‘Bognor Regis 2018’.

Interacting with a standard Unix filesystem via the command-line uses similar concepts (actu-
ally, it’s the graphical environment that’s being ‘similar’ here really, since the Unix command-
line existed quite some time before anything graphical appeared). Files are called files, but
what are commonly represented as ‘folders’ in graphical environments are more correctly

18

http://studentnet.cs.manchester.ac.uk/ugt/COMP15212 Operating Systems/syllabus
http://studentnet.cs.manchester.ac.uk/ugt/COMP15212 Operating Systems/syllabus

called ‘directories’ when we are operating at this level (and we’ll call them directories from
now on, because it’ll make some of the command names and manual pages make more sense).

Let’s first see what stuff we already have on our VM. The ls lscommand lists files and directo-
ries. Type it now, and you should see some directories that have already been created for you.
Type:

$ ls

Now let’s make a new directory, using the mkdir command, which we’ll explain further later
on. Type:

$ mkdir python_games

Then type ls again, look at the list of names printed and check that you can see python_games.
If not, check you did the mkdir correctly, and ask for help if your’re stuck.

When we’re using a command-line prompt, we have the notion of current working directoryW

which is the directory that we’re currently ‘in’ (so in this example, using ls like this really
meant ‘run the list command on my current working directory’). There are numerous Unix
commands that allow you to move around the filesystem’s directory structure, and it’s very
important that you become familiar with these early on.

Let’s say we want to look at the contents of the python_games directory. There are several
ways of doing this, but for now we’ll break the process down into simple steps. Use the cd cd

command to Change Directory to python_games:

$ cd python_games

Here we have a command, cd, together with an argument, python_games which specifies the
object on which the command is to operate.

Now look at what’s happened to the command prompt. Whereas before it was just

csimage@csimage-VirtualBox:~$

it has now become

csimage@csimage-VirtualBox:~/python_games$

to indicate that we’ve changed our current directory to python_games (remember the ~ sym-
bol means ‘home directory’, so ~/python_games really means ’a subdirectory called python_games

which is in my home directory’).

Now use the ls command to list the contents of our new current working directory. You will
see that this directory is empty as you have created it.

We actually want to play a game that isn’t there, so we’ll need to get it. We’ve put a copy of
the game on the web at:

http://syllabus.cs.manchester.ac.uk/ugt/COMP10120/files/worms101.py

19

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#ls
http://en.wikipedia.org/wiki/http://en.wikipedia.org/wiki/Working_directory
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#cd
http://syllabus.cs.manchester.ac.uk/ugt/COMP10120/files/worms101.py

Rather than browsing the web in the normal way, we sometimes want to just obtain a copy of
file; we can do this using the command curl curl. Type the following:

$ curl http://syllabus.cs.manchester.ac.uk/ugt/COMP10120/files/worms101.py -o worms101.py

and you’ll see curl fetch the file you need ‘over the web’ and save it in your home directory.
This is also the first time you’ve encountered what’s called a command-line argument switch:
the -o switch tells curl to use the next argument on the command-line as the output filename.
Check that the file has arrived by using ls:

$ ls

Now, at the prompt type

$ python3 worms101.py

to start a simple version of the classic ‘Snake’ game. You can guide your green snake around
the screen with the cursor keys; you score a point every time you eat one of the red squares and
an extra segment gets added to the length of your snake. The game finishes if you crash into
the edge of the screen or eat yourself. Once you’ve convinced yourself this is working (don’t
spend too long playing the game!), press the Escape key to return to the command prompt.

13.1 The Unix filesystem

In Unix, as with most other operating systems, the files and directories you create can have
more or less any name you like. It is very sensible to give them names which mean something
and make their purpose clear. This is despite some of the traditional file names in Unix being
rather cryptic – this is particularly true for most Unix commands. You’ll get used to that.

File name formats. The filesystem on your VM (which uses a type of
filesystem called ‘ext4’) is case sensitive, which means that Hello.txt and
hello.txt are treated as different files because they have different case
letters in their names. The filesystem used by Microsoft Windows since XP
(called ‘NTFS’) is also case-sensitive. Apple’s macOS/iOS uses (since High
Sierra and iOS 10.3)‘APFS’ which is case-sensitive on iOS, and can be con-
figured as case-sensitive/not case-sensitive on macOS. The FAT32 filesys-
tem, used on most removable USB drives, is not a proper case-sensitive file
system; although it will remember whether you called a file Hello.txt or
hello.txt so files appear to be case sensitive, the OS itself treats them as
being the same file!

Most of the time this complexity isn’t a problem, but you should be careful
of the effects when copying files from one filesystem to another, especially if
you are using a USB drive to transfer files from a Linux box to somewhere
else. For example, if you have two files in the same directory on Linux with
the same name but with different capitalisation, one file will overwrite the
other when you copy them onto your USB drive (and which one survives will
depend on the order in which they are copied). One way around this problem
is to use commands such as tar taror zip to bundle the files up into a single
archive file, and then transfer that via the USB drive.

20

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Compression#tar

As you already know, directories are created within directories to create a hierarchical struc-
ture. The character / (slash) is used to separate directories, so if we wish to talk about the file
y within the directory x we write x/y. Of course, y may itself be a directory, and may contain
the file z, which we can describe as x/y/z.

But where is the ‘top’ directory? Surely that has to go somewhere? On each machine, there
is one directory called ‘/’ which is referred to as the root, which is not contained in any other
directory. All other files and directories are contained in root, either directly or indirectly. The
root directory is written just as / (note this is the opposite slanting slash character to that used
in Windows).

One really important, and slightly strange thing to get used to, though, is that computer sci-
ence trees grow upside down, so although we call them trees, the ‘root’ is usually thought
of as being at the top, and the ‘leaves’ at the bottom. You’ll hear phrases like ‘go up to the
root directory, and then down one level to the home directory’. We normally think of the root
directory as being at the top of the tree. (For those of you who are interested: Unix actually
allows links, which means the structure can really be a cyclic graphW. Links are similar to, but
fundamentally not the same thing as, shortcuts in Windows.)

Apart from / there are two more directories of special note:

• Your home directory is the directory where you find yourself when you log in. It might
be tempting to think of this as being the ‘top’ of the tree (and for every-day purposes
thinking this way is probably okay), but in reality your home directory is probably one
or more levels away from the root of the file system. We’ll find out where this is on the
VM shortly.

• Your current working directory is the one you are working in at a particular moment.

So let’s see where we are in the VM’s filesystem at the moment. Assuming you’re following
these instructions properly you should still be in the python_games directory (check the com-
mand prompt to confirm this is the case). To go back to our home directory, we can use the cd
command without an argument:

$ cd

You should see the command prompt change back to being as it was when we first logged
in. So where in the filesystem is our home directory? We can find out where we currently are
using the pwd command, which stands for Print Working Directory:

$ pwd
/home/csimage

So apparently we’re in a directory called /home/csimage which sounds plausible enough.
Notice that the pwd pwdcommand has returned us an absolute pathnameW, that is, it starts with a /
character. Absolute paths, such as /home/csimage are given by their ’steps’ from the root. So
we now know that the home directory for the user csimage is in a directory called home which
itself is a subdirectory of the root /.

Let’s confirm that this is true. Issue the command:

$ cd /

21

http://en.wikipedia.org/wiki/Cycle_graph
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_System_Utilities#pwd
http://en.wikipedia.org/wiki/Path_(computing)

which just means ‘change directory to the root directory’ and use the ls command to look
at the root directory’s contents. You’ll see several directories with names like bin, boot, dev
and lib. Most of these contain ‘housekeeping’ files for the operating system, and at this stage
you don’t need to know what’s in them (Appendix ?? gives you a brief description if you’re
interested). The one called bin is quite interesting though, so let’s investigate that by typing:

$ cd bin
$ ls

Here the argument to cd is not an absolute pathname (starting with /) but a relative pathname
(not starting with /). A relative pathname can be thought of as a ‘pathname starting from
here’, where ‘here’ means the current working directory. So, because we are in /, the relative
pathname bin refers to the directory /bin.

The above commands should have produced a fairly long list of files. Look carefully, and you’ll
find two names that you recognise: ls and pwd. Files like these are called binary executable
files and are the programs run when the commands are used (which is why they are in the ‘bin’
directory, which is short for binary). In Unix, most commands are not ‘built into the system’,
but are just programs put in a special place in the filesystem that are picked up by the shell
when you type things. This makes Unix very easy to extend with new features; you just write
a program to do what you want, and put it in the right place. We’ll look at how the system
knows where to find commands later, and explore several of the other commands you can see
in this directory as well.

We now need to get back to our home directory. There are many ways of doing this, including
the following:

1. cd on its own means ‘take me directly to my home directory’

2. We know that the tilde symbol also means ‘my home directory’, so cd ~ will also work
(though at the expense of two extra keystrokes!)

3. We could go back to the root directory by first typing cd /, then cd home and finally cd

csimage

4. We could go back to the root directory by first typing cd /, then cd home/csimage

5. We could go straight from where we are now (which is /bin, remember) by typing cd

/home/csimage – use this method now

Now we’re back in our home directory (check the command prompt to make sure), you may
have noticed that our commands for navigating around the filesystem are missing one feature.
We can go to the ‘top’ of our home directory easily enough; and we can go straight to very
top of the whole filestore using cd / ; and we know how to descend into a subdirectory (e.g.
cd python_games). But how do we go up one level? If we were in some nested subdirectory
several levels below our home, and wanted to go just one level back up the tree, it would be
very tedious to have to start back at our home directory and traverse back down to where we
wanted to be.

Unix represents the idea of going ‘up’ one directory with the .. symbol (that’s two fullstops
typed immediately after one another with no spaces, usually pronounced ’dot dot’.). So if you
are in, say, python_games and want to go back up to the directory above, you could type:

$ cd ..

22

Figure 12
Given the VM’s default filesystem structure, starting in the python_games directory, the
command cd ../../../bin will take you to the /bin directory (by an admittedly tortuous
route!)

We use .. whenever we we want to specify a move up the directory tree. So, assuming you
are still in python_games, how could you get into /bin using only a relative path in the cd

command? Yes, this is a slightly artificial exercise because the simplest solution would just be
to use the absolute path cd /bin, but just go with the flow for now and work it out using a
relative path. The answer is shown in Figure 12.

We can also refer to the current directory in a similar manner. Just as the directory above is
referred to as .., the current directory can be referred to as ., or ‘dot’. So the relative pathname
x/y/z refers to exactly the same place as ./x/y/z

13.2 Files in more detail

The files we’ve looked at so far, and the behaviour of the commands we’ve used to manipulate
them shouldn’t feel too alien – we’re just doing similar things on the command-line to actions
that you’ll have performed using a graphical interface before. But the Unix take on files is
rather more sophisticated than this, and to understand that, we’ll need to think in a bit more
detail about what a file actually is. When we think of an image or a music track as being stored
‘in a file’, what do we actually mean?

A file is actually just a sequence of numbers on some storage device such as a hard drive. The
right program can interpret these numbers, and turn them into pictures on screen, or sounds
coming out of your speakers. The wrong program would be able to make no sense of a file at
all; if you could ‘display’ an audio track on screen, or ‘play’ an image file as sound, it would
just be a meaningless mess. So there’s nothing very special about a file that makes its contents
mean one thing or another; it’s just up to a program to interpret what’s in the file correctly. So
what are the properties of a file? So far we’ve seen that files have a filename, and a location
within a file system. We’ve seen that some files can be executed, whereas other files contain
data. But in both these cases, files are just sequences of numbers. Although we’ve not explored
this yet, some files can be written to or modified, whereas others can only be read from; but
they are still just sequences of numbers which when interpreted correctly have a particular
meaning.

The designers of Unix exploited this idea to create a very elegant way of representing the

23

hardware of the underlying computer, and many of the properties of the operating system by
treating anything that can be thought of as behaving like a file as being a file.

What, for example, might a hard disk look like to the operating system? Well, a hard disk is a
device that can store a long sequence of numbers, and if you interpret those numbers correctly,
they can be made to represent a filesystem. So as far as Unix is concerned, a hard disk is a bit
like a file that you can read from and write to.

What about a process? Well that’s a sequence of numbers in memory that happen to be in-
structions to the CPU to do useful things; so that’s a file too (probably in this case a read-only
file).

What about a keyboard? Surely that’s not a file? Actually it can be thought of as having some
file-like properties; it’s a stream of numbers that represent the keys pressed by the user, so it
too is a sort-of read-only file. And the screen? That too is file-like. . . because it represents a
sequence of numbers that can be interpreted as the output from various processes; so it’s a bit
like a write-only file.

This may seem all a bit esoteric and confusing right now, but as we explore more examples of
these file-like things, you’ll start to see how elegant the idea is.

For now, to give this stuff about files some time to sink in a bit, let’s play another game.

14 The Colossal Cave

We’re now going to explore a bit of computing history, and install and play one of the very
early computer games. Colossal Cave Adventure was the first ‘adventure game’, in which
a virtual world is described using only text, and the player controls the game’s protagonist
using simple textual commands. The game was created in 1976 by a keen caver called Will
CrowtherW who at time was a programmer at Bold, Berenek & Newman, the company that
developed ARPANETW, the forerunner to the modern Internet. He later collaborated with Don
WoodsW, then a graduate student at Stanford University, to create the Colossal Cave Adventure
as we would recognise it today. The original version consisted of around 700 lines of the
FORTRANW programming language and a similar number of lines of data. When running on
a PDP-10W (see Figure 13 for a picture of what one of these machines looked like) Colossal
Cave would consume around half of the machine’s memory.

Although the original FORTRAN source code for Colossal Cave still exists, the version you’re
going to play with is based on a re-implementation of the game on what became known as
the Z-MachineW: a virtual machineW specifically for running interactive fiction games, such as
Colossal Cave.1

1Don’t confuse the Z-machine, which is a virtual machine for adventure games, with the Z Machine, which is
the largest X-ray generator in the world. Doing so is likely to make your lamp melt, and the trolls very grumpy.

24

http://en.wikipedia.org/wiki/William_Crowther
http://en.wikipedia.org/wiki/William_Crowther
http://en.wikipedia.org/wiki/ARPANET
http://en.wikipedia.org/wiki/Don_Woods_(programmer)
http://en.wikipedia.org/wiki/Don_Woods_(programmer)
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/PDP-10
http://en.wikipedia.org/wiki/Z-machine
http://en.wikipedia.org/wiki/Virtual_Machine

Figure 13
A PDP-10 from CERN, circa 1974, reproduced with permission. http://cds.cern.ch/
record/916840.

14.1 Installing Frotz, a Z-Machine Interpreter

Unlike the other commands that you’ve used so far, the program we need to be able to play
Colossal Cave Adventure isn’t pre-installed on the VM, so we’re going to have to fetch and
install it ourselves. Fortunately, the version of Linux that we have on the VM comes with a
package management system that makes this quite easy.

But first, we’re going to have to understand a command called sudo sudo. Everything that you’ve
done so far has involved looking at files that either belong to the ‘csimage’ user, or are parts
of the system that can be read or executed by any user. But of course, installing a new piece of
software involves modifying the operating system in some way, and that’s not something that
you want to do casually since mistakes could potentially mess up the whole device.

You’ll be familiar with the idea of a user with Administrator privilegesW from Windows or
macOS; on Linux the superuserW that can do anything to any part of the system is called ‘root’
(because this user can modify any part of the system from the root of the filestore downwards).
In the early days of Unix, administrators would log in as the root user to modify, update and
repair the system. This had the major downside that all the normal safety nets that prevent
you from accidentally deleting or damaging the operating system itself are deactivated, so its
much easier for a slip of the finger or a brief moment of stupidity to have disastrous effects. To
avoid these problems, Unix systems now usually recommend the use of the sudo (’Substitute
User Do’) command to temporarily elevate a normal user’s privilege to that of super user for
a single command. sudo privileges are not normally given to every user on a Unix system, but
the user csimage on the VM is trusted and is given sudo rights.

The system that we’re going to use to install this game is called apt apt, which stands for Ad-
vanced Packaging ToolW. This tool maintains a list of remote repositories in which packages
have been put that contain all the programs, libraries and data files necessary to install a par-
ticular Linux program. It can deal with fetching packages over the Internet, as well as extract-

25

http://cds.cern.ch/record/916840
http://cds.cern.ch/record/916840
https://en.wikipedia.org/wiki/Sudo
http://en.wikipedia.org/wiki/Administrators
http://en.wikipedia.org/wiki/Superuser
https://en.wikipedia.org/wiki/APT_(software)
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool
http://en.wikipedia.org/wiki/Advanced_Packaging_Tool

ing and copying their contents into the right places on your system. It also performs a series
of sanity-checks to make sure that what you’re adding is compatible with whatever you’ve
already got in place.

The system we want to install to play this game is called frotz (to learn why, you’ll have to
play the game a bit, or look it up on Google). Let’s try running the apt-get

apt-get

command without
having gained superuser privilege first. Try typing:

$ apt-get install frotz

The operating system will respond with something like:

E: Could not open lock file /var/lib/dpkg/lock - open (13: Permission denied)
E: Unable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend),

are you root?

Notice the question at the end: ‘are you root?’. Well, no you’re not, so Linux has rightly
prevented you from performing this operation. Now we’ll try again using the sudo command.
This time type:

$ sudo apt-get install frotz

You will be prompted for your password here, so enter password for csimage

You should see a series of lines printed out on the screen, ending with:

Setting up frotz (2.44-0.1) ...
Update alternatives [...and more text...]

before being returned to the command prompt. It’s possible that apt-get
apt-get

will fail to find the
frotz package in one of the repositories it knows about; if this happens, it’s usually because
the repository has moved somewhere else on the internet, so you need to tell the APT system
to update itself first: run the command sudo apt-get update, and when that has completed
try installing the frotz package again, and all should be well.

The frotz system on its own is just a virtual machine into which you can load adventure game
data, so we’ll need to fetch the Colossal Cave datafile before we can play anything. We’ve put
a copy of the game on the web at:

http://syllabus.cs.manchester.ac.uk/ugt/COMP10120/files/Advent.z5

which we’ll get, as we did with the snake game in the first lab, using the command curl. First,
use cd to change to your home directory if you’re not there already, then

$ curl http://syllabus.cs.manchester.ac.uk/ugt/COMP10120/files/Advent.z5 -o Advent.z5

Use ls to confirm that you can see the file Advent.z5 in your home directory, then type:

$ frotz Advent.z5

26

https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/APT_(software)
https://en.wikipedia.org/wiki/APT_(software)
http://syllabus.cs.manchester.ac.uk/ugt/COMP10120/files/Advent.z5

Breakout 4: APT

The APT system is a very convenient way of managing packages, since it will
automate the process of finding, fetching, configuring and installing software
on your VM (or indeed, on other Debian-based Linux installations). The RPM
system does something similar for distributions based on Red Hat’s version

of Linux.

The various repositories that contain the packages for your VM are updated regularly, so
it’s worth running apt-get update

apt-get

once in a while to refresh your VM’s list of software.

You should also at some point run apt-get upgrade, which will cause all the packages
that have already been installed to be upgraded to the latest version that the APT system
can find. This lab will work just fine with the versions of software that are pre-installed
on your VM, and the upgrade process can take quite some time (hours, possibly), so you
mustn’t do it now or you won’t be able to complete this lab in time. Try it at home, or
outside of a lab session.

to start playing the Colossal Cave Adventure. Once the game has started, type HELP to get
instructions. When you’ve had a bit of a wander around and got the general idea of the game,
you can type quit to get back to the command prompt. There are some parallels between using
commands to wander around Colossal Cave and using Unix commands to navigate around
the VM ’s filesystem.

Earlier, we referred to Colossal Cave as a work of Interactive Fiction (IF). In truth, this is per-
haps stretching the term somewhat, since the genre has matured considerably in the decades
since this first adventure game. For a much more compelling example of Interactive Fiction
with beautifully written prose, and funny and challenging puzzles we suggest you have a go
at playing Curses by Graham NelsonW, or one of the many other games written by Interactive
Fiction enthusiasts that are available for free from www.ifarchive.org. If you find yourself
getting hooked on playing IF, the frotz interpreter is available for most platforms, including
iOS, Android, macOS and Windows.

15 Extracting files

We’ll finish this lab session off with exploring a standard file archiving utility called tar tar.

Use curl to fetch the file hosted at

https://bit.ly/3hRVsZr

making sure you save it in your home directory. By default, curl will just output whatever it
has fetched to the screen. Use the -o option you learned about earlier to save it to a file called
mintwallpapers.tar.gz. As we are using a shortened url, you would also need -L flag and
the complete comand to get the file will be:

curl -L https://bit.ly/3hRVsZr -o mintwallpapers.tar.gz

Notice that this file ends with .tar.gz. The .gz suffix tells us that this file has been com-
pressed using a utility called gzip gzip, so the first task is to uncompress the file. Type:

$ gunzip mintwallpapers.tar.gz

27

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands
http://en.wikipedia.org/wiki/Graham_Nelson
www.ifarchive.org
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Compression#tar
https://bit.ly/3hRVsZr
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Compression#gzip

This will uncompress the file, removing the .gz and leaving you with mintwallpapers.tar.
A ‘tarfile’ is a bundle of individual files that have been assembled together into a single file
for convenience (you’ll probably have already encountered ‘zip’ files, which have a similar
purpose). The name ‘tar’ is an abbreviation of ’Tape Archive’, since the tar command was
originally used for making backups of filestores onto magnetic tape. It remains, however, a
very versatile way of bundling up lots of things, and you’ll find tar files all over the internet.

To see what’s in this archive, run the command

$ tar tf mintwallpapers.tar

and you’ll see a long list of the archive’s contents scroll past on the screen. The first argument
to tar is a bit of an odd one, since it’s a collection of options, which unusually for Unix are not
prefixed by individual minus signs (recall the -o option we used for curl; that’s a far more
common way of specifying options to tools). In this case the options mean:

• the t causes tar to list the ‘table of contents’, for the archive, without extracting anything,
and

• the f tells tar that the next argument is the file containing the archive.

To actually extract the contents of the archive we issue the command:

$ tar xvf mintwallpapers.tar

where

• x means ‘extract’.

• v means ‘be verbose, and show what you’re extracting as you do it’.

• f again means ‘and here is the file to work on’.

When tar has finished working you’re presented again with the command prompt. Use ls

to confirm that you now have a directory called mint-backgrounds-ulyana in your home
directory. Feel free to explore the contents of this directory in your spare time.

16 RTFM

Although we’ve introduced several Unix commands in this lab, we’ve only done so quite
superficially in this session, giving you just enough detail to get through the tasks we’ve given
you. Each of the commands is much more powerful than what you’ve been exposed to so far.
Though you won’t need to know every possible option off by heart, there are a lot of useful
things you can learn about them quite easily.

Most Unix systems, including the one on your VM, have an instruction-manual system that
gives more details about the available commands (and most things that you install yourself
also install their own manual pages). Try running:

$ man ls

28

Breakout 5: RTFM?

The acronym RTFM stands for Read The Flipping Manual, and is sometimes
used as a response when somebody has asked a lazy question on a forum
or by email where decent documentation already exists and is easily acces-
sible. The F is sometimes interpreted as meaning something less polite than

‘Flipping’.

for information on the ls command, and use the same trick to find out more about the other
commands you’ve seen in this session. If you need more help on how to use the man mancommand,
you can always use:

$ man man

When you’re looking at a manual page, pressing the Space Bar will advance you on a page,
and the Up and Down cursor keys will move you back and forth line-by-line. Press q to quit
viewing a man page.

16.1 Using VM and University’s lab machines

In case you want to use VM machine at home and also one of the university’s lab machines
in person then you need to make sure that you have run the CS Backup script on your VM
before going to a lab. It will backup the files under ~/csimage/ and when you log into a lab
machine, the CSImage work will be there.

Similary, you can restore your work to the VM by running the given below command on a
VM command terminal (not the lab machine) and it will update your home directory with the
changes that you may have made while using a lab machine.

rsync -avzh <username>@kilburn.cs.man.ac.uk:csimage/ ~/

Note: Don’t forget to replace <username> with your University of Manchester username
(e.g. c12345ab)

29

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/Getting_Help#man

17 Shutting down your VM safely

Like any other computer, it is really important that you shut your VM down properly; if you
just close the VM there’s a chance of corrupting the filesystem. To shut the VM down safely,
click on the icon at the bottom left corner and then select the icon as shown in Figure 14):

Alternatively, you can also save the current state of your VM without losing your work by sim-
pling clicking on the the cross icon at the top right corner of the VirtualBox and then selecting
“save the sate machine” from the menue as shown in Figure 15

Figure 14
Shutting down your VM.

Figure 15
Saving the current state of your VM.

30

18 What have you learned?

It might seem like you’ve been playing games for most of the lab, but if you’ve followed the
instructions carefully and read through all the text you’ll have learned a lot of new things.
These include:

• the anatomy of a VM

• how to safely start and stop your VM

• running commands, e.g.: echo, ls, cd, pwd, sudo, gunzip and tar.

• how the filestore is structured

• basic apt commands

19 Logging in

Make sure you have started the VM, and log in using the provided username and password .
Open ‘Terminal Emulator’ window as you did in the previous lab. Type pwd to find out which
directory you are in. It should be something like /home/csimage.

The environment you are now in is known as terminal mode. This is a way of interacting
with the computer via a screen containing only text, without the now familiar windows and
images. All interaction is done using a command line interface (CLI), typing commands into
a program known as a shell. When the terminal occupies the entire screen, as it does here, it is
known as console mode. Later we will be using a graphical environment, but for now we will
stick to terminal mode interaction.

20 Listing files

First, we will use ls which is a utility for listing the files in a directory. For example, you can
list the contents of /usr/bin by typing

$ ls /usr/bin

and notice that here we’re using ls to look at the contents of a directory other than the one
we’re currently in by passing the directory name as an argument. A whole load of things
should scroll past on the screen; most of them won’t mean anything to you right now, but
don’t worry, we’ll look at some of the important ones soon enough. Now that’s a lot of stuff to
look through, and depending on the size of your screen the command we’re looking for may
have scrolled off the top. So let’s try to narrow our results down a bit. Type:

$ ls /usr/bin/ma*

and you should be given a much smaller list of things from the /usr/bin directory; only those
starting with the letters ma. The asterisk symbol is interpreted as being a ‘wildcard’ that stands
for ‘anything of any length, including length zero’, so the command you’ve just typed means
‘list the contents of the /usr/bin directory, showing only files that start with the letters ma and
then are followed by zero or more other characters’.

31

You could narrow this down even further by typing ls /usr/bin/man*, in which case you’ll
only get files from /usr/bin that start with the letters man. Note that if you leave off the
asterisk from your command, you’ll be asking for files that are called exactly ma or man, which
isn’t what you want here.

So far we’ve been getting you to do a fair amount of typing, and now we have to admit that
you’ve been typing a lot more than you actually need to (it’s good practice though, so we’re
not feeling too guilty at this stage). The default Linux command line has a feature similar to
autocomplete that you’ll have seen on web forms and in graphical tools, that saves you typing
full commands by suggesting possible alternatives.

Type ls / but don’t hit Enter, and instead press the Tab key twice. You’ll be shown a list of
sensible things that could follow what you’ve typed – in this case it’s the list of the contents of
the system’s root directory. Now type the letter u (so that the line you’ve typed so far should
read ls /u) and hit Tab once. This time your command will be expanded automatically to
ls /usr/ since that’s the only possible option. Press Tab twice now, and you’ll get shown the
contents of /usr/. Type b, and press Tab to expand the command to /usr/bin/, and then
press Enter to execute the command.

20.1 Autocomplete

The autocompleteW function you’re using here is more commonly called tab complete by Unix
users. If you press Tab once and there’s exactly one possible option that would autocomplete
what you’ve typed so far, then that option gets selected; if there are multiple possible things
that could complete your command, then Tab will complete as far as it it can, then pressing
Tab a second time shows you all of them, giving you the option to type another character or
two to narrow down the list. Learning to use this will save you a lot of typing, because not
only does it reduce the number of characters you type, it also helps you see the possibilities at
the same time. Very usefully, it also saves you from making lots of typing mistakes.

Here are some other handy command line tricks for you to try out (give them each a go now
so that you remember them for later):

• You can use the up and down arrow keys to cycle back and forth through the list of
commands you’ve typed previously.

• The left and right arrows do what you expect, and move the insertion point (often re-
ferred to as the cursor) back and forth. Pressing <ctrl>a will move you to the start of
the line, and <ctrl>e to the end of the line (much faster than moving backwards and
forwards character-by-character).

• <ctrl>c aborts the current line, so if you’ve typed a line of gibberish, don’t waste time
deleting it one character at at time, just <ctrl>c it!

• Typing history lists all the commands you’ve typed in the recent past, useful if you’ve
forgotten something.

• Pressing <ctrl>r allows you to retrieve a command from your history by typing part
of the line (e.g. if you searched for ‘whi’ now, it’ll probably find the ‘which mutt’ line
you typed a while back). Pressing <ctrl>r again steps through possible matches (if
there is more than one).

• Pressing <ctrl>t swaps the two characters before your cursor around. What, really?
Yes: you’ll be surprised how often you type characters in the wrong order!

32

http://en.wikipedia.org/wiki/Autocomplete

Breakout 6: File extensions

If you’ve mostly used Windows or macOS via a GUI, then you’re probably
used to files such as cheese.jpg, where you would interpret cheese as being
the file name and jpg as being the file extension. Some operating systems –
notably Windows – have the notion of a filename extensionW of a particular

number of characters built in; for example things ending with exe, bat or com mean that
they are executable files. In Unix, a file extension is merely a convention that’s not enforced
or meaningful to the operating system. So although it’s common to give files a suffix that
makes it easy for a human to guess what kind of file it is, Unix itself just treats these as
part of the file name. In fact, you can have multiple ‘file extensions’ in a name, to indicate
a nesting of file types. In the previous lab the file mintwallpapers.tar.gz is a tar archive
that has been gzipped, but the presence of the .tar and .gz parts are really just there to
tell the user how to treat the file.

21 Browsing the Web

Although you will have experienced The Web so far as a highly graphical system, the technol-
ogy that underpins it is for the most part text-based, and it is (just about!) possible to browse
web pages using a terminal-mode application. It might seem like an odd thing to do, but
there’s an important point to be made here, so bear with us. For this, we will be using a special
command-line based web browser called lynx lynx.

First, let’s confirm that lynx is actually installed.

To see if lynx is installed and is accessible to you, use the which whichcommand. Type:

$ which lynx

This should respond with /usr/bin/lynx, telling us that the lynx command has been put in
the /usr/bin directory on our system.

Back to browsing the web, try browsing the Department’s web pages using lynx by typing

$ lynx https://studentnet.cs.manchester.ac.uk

The lynx program has just about enough on-screen help for you to be able to browse around
a little without any additional instructions from us. You may find that when you follow some
links, nothing very much appears to have happened; but scroll right down the page and you
should see the content that you’re looking for.

You’ll probably find using lynx an unsatisfying experience: tolerable, and probably okay in
an emergency, but not how you’d ideally like to browse the web. And you might be wonder-
ing why we’ve even bothered to get you to try viewing the web through a text-only interface.
Apart from the absence of images and videos etc., the main difference between using some-
thing like lynx and a regular browser such as Chrome, Firefox, Safari or Internet Explorer, is
that you’ll notice that web pages have been made into much more linear affairs than when they
are rendered in a graphical environment. While you might expect to see the navigation links
neatly arranged on the left or top of the page with the main content prominently displayed in
the centre, seen through a purely textual interface it’s all one big stream of stuff, and it’s very
hard to distinguish between the navigation links and the main content.

33

http://en.wikipedia.org/wiki/Filename_extension
https://linux.die.net/man/1/lynx
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/Finding_Files#which

Breakout 7: Spaced out filenames

Because of its roots in the early days of computing long before the advent
of graphical user interfaces, Unix filenames tend not to have spaces in them
because this conflicts with the use of a space to separate out commands and
their arguments. The Unix filesystem does allow spaces in filenames, but

you’ll have to use a technique called ‘escaping’ if you want to manipulate them from the
command line; this involves prefixing spaces in filenames with the backslash character \
to tell the command line not to interpret what follows the space as a new argument. For
example, a file called my diary.txt would be typed as my\ diary.txt. It’s a bit ugly,
but it works fine.

Now consider what the web ‘looks’ like if you are visually impaired or blind and have to use a
screen-reader (a voice-synthesiser program that vocalises the text that’s on-screen) to interact
with your computer. Whereas a sighted person can easily cope with a two-dimensional layout
that allows you to be aware of multiple things at the same time (i.e. you can be reading the
main content of the page, but conscious of the fact that there’s a navigation bar on the left for
when you need it), if instead you are listening to a voice reading the contents of the page out
to you, it’s only possible to be hearing one thing at a time. And what’s more, you have to
remember what has been read out in the past in order to make sense of what you are hearing
now; you can’t just ‘flick back’ a paragraph or two by moving your eyes, instead you have to
instruct the screen reader to backtrack and re-read something. So the experience of using the
web if you are visually impaired has some things in common to interacting with web-pages
using lynx.

21.1 Pipes and Redirects

One of the fundamental philosophies of Unix – and one that is a sensible philosophy when
you’re building any computer system really – is that the operating system is composed from
lots of simple sub-systems, each of which performs one clearly defined task. To do something
more complex than any of the individual tools allows you to do on its own, you are expected
to combine components yourself. At the command line, Unix makes this quite simple, so let’s
give it a go.

First, use lynx to look at the BBC’s weather page at www.bbc.co.uk/weather and have a
quick browse around to get familiar with what it looks like. Then quit lynx and get back to
the command prompt before typing:

$ lynx -dump http://www.bbc.co.uk/weather

Note the addition of the -dump argument before the URL this time. Instead of running as an
interactive browser, lynx should have just output the text that it would have displayed for
that page to the screen, and then ended. Now, most of the text of the page will have scrolled
off the top of the screen, so let’s use the less command to allow us to page through lynx’s
output in a more controlled manner. Type:

$ lynx -dump http://www.bbc.co.uk/weather | less

34

http://www.bbc.co.uk/weather

Breakout 8: Less is more

As we’ve mentioned before, many of Unix’s commands are plays on words,
puns, or jokes that seemed funny to the command’s creator at the time.
Though this gives Unix a rich historical background, it does rather obscure
the purpose of some commands. A prime example of this is the less com-

mand, used to page through text files that are too large to fit on a single screen without
scrolling.

Early versions of Unix included a command called more more, written by Daniel Halbert from
University of California, Berkeley in 1978, which would display a page’s worth of text
before prompting the user to press the space bar in order to see more of the file. A more
sophisticated paging tool, called less on the jokey premise that ‘less is more’ was written
by Mark Nudelman in the mid 1980s, and is now used in preference to more in most Unix
systems, including Linux.

Did you type all that? Hopefully not – remember you can use the up and down arrow keys to
get previous commands back at the interactive prompt, and then just modify or extend them
to save wearing out your fingers.

To explain what’s happened here, you’ll have to understand the concepts of standard in and
standard out, which are a neat and extremely powerful idea that is fundamental to the way
tools (and programs generally) work in a Unix environment.

The less lesscommand is used to display textual content from files and other sources (if you want
to know why it has such an odd name, look at Breakout 8). One of less’s features is that
it ‘pages’ through text, so that if the file you are looking at won’t fit on one screen, pressing
the space key will move you on to the next ‘page’; you may notice that the man command you
used in the previous lab session actually used less to display the manual pages.

Every Unix program has access to a number of ways of communicating with other parts of
the operating system. One, standard in, allows a stream of data to be read by the program;
another, called standard out, gives the program a way of producing text. By default, when
you execute things at the command prompt, the shell arranges for a program’s standard in to
be connected to whatever you type at the keyboard, and for its standard out to be connected to
whatever display you’re using at the time (this is a bit of an over simplification, but it’ll do for
now). It’s quite easy to arrange for standard in and standard out to be connected up differently
though, and that’s what you’ve just done.

The vertical bar ‘|’ before less is called the pipe symbol, and it is used to join the output of
one command to the input of another; so in this case we have connected the standard output
from lynx directly to the standard input of less. When less is invoked without a filename
argument, it expects to get its input from standard in.

As well as being able to join commands together, you can use the idea of manipulating stan-
dard in/out to create or consume files instead. Try:

$ lynx -dump http://www.bbc.co.uk/weather > weather.txt

and then use ls to confirm that a file called weather.txt has been created, and use less

to look at its contents (which should be just the text from the weather web-page we’ve been
looking at already). Here the ‘>’ symbol redirects the standard out of the lynx command so
that instead of going to the screen it gets put into a named file.

35

http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Viewing#more
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands/File_Viewing#less

21.2 Searching patterns through files

To finish off this first contact with pipes and redirects, we’ll use a new command called grep
grepalong with lynx to create a simple command of our own that tells you what the weather is like

in Manchester (there are very few labs with windows onto the outside world in the Kilburn
Building, so this may be more useful than you think!).

grep is a hugely powerful and useful utility, designed for searching through plain-text files.
Learning to master grep will take more time than we have in this lab, since you’ll have to
understand the idea of regular expressions to make full use of it (we’ll come to those in a later
lab). For now, we’ll use it in its very simplest form. Type:

$ grep BBC weather.txt

and you should see a list of all the lines from weather.txt that contain the word ‘BBC’. Use
less to have a look for other terms to ‘grep’ for (you might want to try something like ‘Sunny’
to give you a list of all the places where the weather is nice, for example).

Rather like less, if grep isn’t given the name of a file as its last command-line argument (in
this case we used weather.txt), it will operate on standard input instead of grepping through
a file (yes, it’s quite okay to use grep as a verb from now, no one will look at you funny). Use
this knowledge to join together lynx and grep so that the output is a single line describing the
weather in Manchester at the time we run the command. The output should look something
like:

Manchester Sunny Intervals

As a final flourish, let’s create a new a way of accessing this new ‘weather in Manchester’ tool
that you’ve created. Type:

$ alias mankyweather="[YOUR COMMAND GOES HERE]"

replacing [YOUR COMMAND GOES HERE] with the full command line you created to dis-
play the Manchester weather, being careful not to introduce extra spaces around the equals
sign =. Then try typing

$ mankyweather

to see the result. Okay, so this probably won’t replace your favourite weather web page or
app, but it’s early days yet! Note that this alias will disappear once you exit the shell in which
you created this, for example when you logout and login again. We will see in a later lab how
to make such aliases permanent.

22 Text Editors

A great deal of the lab work you will be doing over your time here will involve you creating
text files of various kinds, often source files in a programming language such as PythonW, JavaW,
PHPW or CW, or HTMLW files for use on the web. There are specialist tools called Integrated
Development EnvironmentsW or IDEs that can be used for programming; you will meet these
later in your programme. However, for many purposes, the simplest, and best, tool for creating

36

https://en.wikipedia.org/wiki/Grep
http://en.wikipedia.org/wiki/Python_(programming_language)
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment

Figure 16
gedit

(a) kate (b) emacs
Figure 17

Other editors

such files is a simple text editor. You have already met one such tool, nano, which is fine for
work at the console or quick modifications of existing files, but for more extensive work an
editor that takes advantage of X’s graphical capabilities is more appropriate.

The Linux environment in which you will be working offers many such editors, including the
default GNOME editor gedit, the KDE editor kate and the grand-daddy of all editors, emacs.
These three are illustrated in Figures 16 and 17. They are all shown ready to edit a Java source
file; note that they all use the fact that this is Java source to highlight key words within the text.
When you have some free time, please do experiment with some of the text editors available
and find one that you like; in the meantime you should probably use gedit.

23 Shell environment variables

You can set the value of a shell variable at the command line, for example type:

37

$ MYVAR=42
$ echo $MYVAR

Note that there should be no spaces either side of the = sign and that the variable’s name is
MYVAR and its value is obtained by using $MYVAR. If a variable is given a value on the com-
mand line in a terminal window like this its value is only available in the shell running in that
window.

When you type a command on the command line, the shell looks for a program of that name in
a number of places. These places are determined by the value of a shell environment variableW

called PATH. You can see what its current value is by using the command

$ echo $PATH

This will show a long list of directories, separated by colons (:).

There are many other shell variables already set for you. They can be seen by running the shell
command set set(do this now). How do you stop the output scrolling off the screen? Most of
these variables won’t make much sense to you at the moment, but among them are HOME, PWD
and HOSTNAME; you can check their values using echo. What do think their values represent?

When you first login, it looks for a file in your csimage directory called .bash_profile or
.profile and executes any commands it finds in there as though you’d typed them at the
keyboard; so this is a useful place to put the command to start the graphical environment. Use
the ls -a command to confirm that there’s already a file in your csimage directory called
.bash_profile or .profile (There should also now be one called .bash_history, take a
look at it and it should become obvious how the history command, and the ‘reverse search’
function you used earlier work).

.profile should look something like this:

~/.profile: executed by the command interpreter for login shells.
This file is not read by bash(1), if ~/.bash_profile or ~/.bash_login
exists.
see /usr/share/doc/bash/examples/startup-files for examples.
the files are located in the bash-doc package.

the default umask is set in /etc/profile; for setting the umask
for ssh logins, install and configure the libpam-umask package.
#umask 022

if running bash
if [-n "$BASH_VERSION"]; then

include .bashrc if it exists
if [-f "$HOME/.bashrc"]; then

. "$HOME/.bashrc"
fi

fi

set PATH so it includes user's private bin if it exists
if [-d "$HOME/bin"] ; then

38

http://en.wikipedia.org/wiki/Environment_variable
http://en.wikibooks.org/wiki/Guide_to_Unix/Commands

PATH="$HOME/bin:$PATH"
fi

set PATH so it includes user's private bin if it exists
if [-d "$HOME/.local/bin"] ; then

PATH="$HOME/.local/bin:$PATH"
fi

The way to make the change permanent is to modify your .profile file. Use gedit to modify
.profile, type:

gedit .profile

Add the following lines at the end of this file:

PATH=$PATH:/home/csimage/bin/
export PATH

This won’t have any effect until you logout and login again. So do that now and run echo

$PATH and you will see the new value, which contains your own bin directory, now preceded
by the other directories.

24 Acknowledgements

The notes for the Intro Labs notes are largely our own work, but have been inspired in places
by previous lab exercises created by Pete Jinks, John Sargeant and Ian Watson. We’re very
grateful to Paul Waring, Alex Day, Alex Constantin, Hamza Mahmud and Ben Mulpeter for
test driving and debugging the exercises.

39

	Computing Infrastructure
	About these notes
	Breakout boxes
	Styles and conventions

	What is a Virtual Machine?
	Get your Virtual Machine installed
	Installing VirtualBox and CS Image

	VM Backup
	Reading your email
	Meet the Department's Wiki pages
	Blackboard
	Meet SPOT
	Unix and Linux
	Operating Systems
	Unix Origins
	Modern Unix Variants

	Using the VM Image
	Processes and the Unix Shell
	The process 'family tree'

	File systems and files
	The Unix filesystem
	Files in more detail

	The Colossal Cave
	Installing Frotz, a Z-Machine Interpreter

	Extracting files
	RTFM
	Using VM and University's lab machines

	Shutting down your VM safely
	What have you learned?
	Logging in
	Listing files
	Autocomplete

	Browsing the Web
	Pipes and Redirects
	 Searching patterns through files

	Text Editors
	Shell environment variables
	Acknowledgements

