

Countering Web Injection
Attacks: A Proof of Concept

MSc Project Background Report

Benjamin Hall

Benjamin Hall

i Countering Web Injection Attacks: A Proof of Concept

Table of Contents

Abstract ... iii

Introduction .. 1

Why is the problem worth investigating? ... 1

Aims of the project .. 1

Project Background ... 2

Web Injections .. 2

Cross-Site Scripting (XSS) ... 3

Non-Persistent ... 3

Persistent .. 3

DOM .. 4

Cross-Site Request Forgery .. 4

SQL Injection ... 5

Tautology .. 5

Union queries .. 5

Piggy-back queries ... 5

Stored procedures ... 5

Illegal or logically incorrect queries .. 5

Inference ... 6

Alternate encodings ... 6

HTTP Header Injection ... 6

Cache Poisoning... 6

Carriage Return and Line Feed (CRLF) .. 6

HTTP Request/Response Splitting .. 6

HTTP Request/Response Smuggling ... 7

Session Fixation ... 7

Cross-Site Cooking ... 8

Cross-Sub domain Cooking... 8

Detection and Prevention Techniques ... 8

Validation .. 8

Filtering ... 9

Escaping .. 9

Encoding .. 9

Encryption ... 9

Tokenisation .. 10

Issues with filtering methods ... 10

Existing Methods and Tools ... 10

Benjamin Hall

ii Countering Web Injection Attacks: A Proof of Concept

Development languages .. 10

Development techniques and other methods .. 12

Conclusions ... 13

Research Methods... 14

Objectives of the project ... 14

Technical Requirement Specification ... 14

Injection tool ... 15

Deliverables ... 16

Development methodologies ... 16

Design & Implementation .. 16

Testing ... 16

Evaluation & appraisal ... 17

Project plan ... 17

Bibliography .. A

Appendix ... B

Glossary of Terms .. B

Cross-Site Scripting .. C

Non-Persistent/Reflected Example: ... C

Persistent Example: ... C

Cross-Site request forgery ... D

Cross-Site request forgery Example:... D

PHP Sanitation methods .. E

Filter .. E

Sanitisation .. E

Flags .. E

Flag – ASCII filter .. F

Project Plan ... G

Benjamin Hall

iii Countering Web Injection Attacks: A Proof of Concept

Abstract

Web injection attacks are a set of web vulnerabilities intended to exploit the web application’s
security, by inserting a malicious payload into the web application. Their purpose is typically to gain
elevated right of entry in order to access application data or cause malicious damage such as data
manipulation or destruction.

This report looks at some of the most common injection attacks containing the most predominant
exploitation outcomes. Subsequently injection detection and prevention techniques are outlined as
a proof of concept, from both an application environment perspective along with available
development practice and procedures for language specific developments.

The project aims to produce a Technical Requirement Specification, providing guidance to web
application developers regarding the importance of injection attacks and ways of detecting and
preventing injection attacks. Furthermore, the project will develop a scripting library in order to
demonstrate these techniques within the web application.

Finally, this report includes a plan of how the project will be accomplished, the development
methodologies, along with the required resources and a rough project timescale.

Benjamin Hall

1 Countering Web Injection Attacks: A Proof of Concept

Introduction

Why is the problem worth investigating?

Today's web is used for international commerce and online banking, which has led to a multi-million
dollar criminal industry. With more than 10,000 new threats detected every day (McAfee Labs
Presentation,12/2010), threat intelligence has become one of the most critical aspects in protecting
web based businesses to ensure high levels of business continuity. There are many dedicated
companies whose aim is to try and protect organisations including banks, governments, small
businesses and everyday users in order to make sure their online experiences are safe and secure.

Web technologies include large numbers of different web programming languages; frameworks,
libraries and development paradigms; communication standards including HTTP, FTP, SMTP; and
also server-side platforms such as Apache. When developing new technologies, web security is often
an afterthought in sacrifice to innovation. Constant development of new technologies also increases
the complexity of securing a web application. In recent years we have seen the growth of web
security attacks, most commonly these attacks are performed using web application injections.

Web injection attacks are a set of web application vulnerabilities whereby an attacker inserts a
malicious payload into the web application through a variety of entry points. Their purpose is to
exploit the application, providing the attacker with some gain through either elevated access or
malicious sabotage. The most common and severe web injection attacks are discussed within the
Project Background section of this report.

Aims of the project

This project will focus around securing a web application against web injection attacks. In particular
this will include performing research into the various types of injection attacks, their sub-variants
and how they are successfully executed. The aim is to develop an understanding of how web
injection attacks may be detected and ultimately prevented. Based upon these findings the project
will aim to develop an appropriate web injection solution through the production of a programming
scripting library or plug-in.

The development will focus on providing a solution that is easy to implement and use, thus it must
try to eliminate the need for training and reprogramming of the web application. This also includes
the avoidance of programming conflict with the existing system, possibly through the use of a
separate coding namespace. The package must allow widespread implementation over a number of
development platforms and must not be constricted to a single development programming
language. Finally, due to the fast evolving nature of these attacks, the package must be extensible
allowing fast inclusion of new injection measures and definitions.

The second development phase will be the production of a Technical Guidelines Specification. The
guidelines are aimed at educating technical specialists with respect to the known types of web
injection attacks, along with some methods for their detection and prevention. The guidelines will
focus more towards other security measures available to the developer along with advised
development practices and procedures to help prevent injection attacks.

Benjamin Hall

2 Countering Web Injection Attacks: A Proof of Concept

Project Background

Large areas of web security often referred to as ‘black areas’ or ‘zero day attacks’ exist for which we
cannot estimate or begin to defend against. However there are a large number of known web
injection attacks which we can try to understand, alleviating the risk from these attacks occurring by
and implementing measures to try detect and possible prevent these attacks.. Furthermore, the
amount of web injections we know are in existence is exhaustive. Some of these vulnerabilities are
trivial flaws within the web application, however others consist of sophistically complex actions
designed to manipulate the web application’s security and data.

This section outlines some of the most serious and common injection attacks, how they operate and
examples of successful exploits. Afterwards, this proof of concept outlines the previous work carried
out to try detecting and preventing these injection attacks. Finally, this report covers the current
solutions along with other methods of particular interest to a technical specialist when attempting
to develop this solution.

Most of the information within this section has been taken from academic papers, industry white
papers, news articles and books. Due to the nature of this project a large number of resources have
been taken from the Internet including web application security bodies, organisations and standards
associations. Appropriate referencing has been included where these Internet sources have been
discussed, including the date of access at time of writing. Please note some of these links may have
been revised since this initial access.

Web Injections

Input validation exploits are the most prominent form of application vulnerabilities, consisting of
maliciously constructed input strings to exploit browser behaviour. Specific malicious intentions vary
depending on the form of injection; nevertheless all malicious exploits endeavour to compromise
the three areas of information security: confidentiality, integrity and availability. Some examples of
successful application compromise include privilege escalation, information leakage or destruction
of data. (1)

Injection techniques include the use of HTTP headers to pass input data to the server-side web
application, more specifically the GET and POST methods may include malicious parameters
processed by the web application. The GET and POST methods are commonly sent within the HTTO
header by the use of html forms or, for GET requests, the use of specially formatted URL addresses.
McAfee’s threat report (2) contains an alarming increase in malware with the detection of more than
20 million new threats last year alone. Consequently many of these malware variants contain the
ability to inject arbitrary code into the client side browser, normally undetected and without the
knowledge of the server-side application.

Injected scripts often utilise the functionality of client-side ‘Turing complete’ web scripting languages
such as JavaScript and VBScript (3). Scripting tags used with some forms of code injections include:
SCRIPT, APPLET (deprecated, inserts a java applet) and OBJECT; although SCRIPT is the most
common due to incompatibility issues with the latter two (4) (3). Otherwise script may be inserted
‘inline’ to the HTML elements, for example this code is contained directly within the HTML script:

JavaScript inserted within HTML Anchor <a href=”JavaScript:[scripting code]”

Benjamin Hall

3 Countering Web Injection Attacks: A Proof of Concept

Cross-Site Scripting (XSS)

With around 80% of all web application vulnerabilities (5), Cross-Site Scripting (referred to as XXS) is
one of the most predominant web application injection attacks and a mount to other injection
vulnerabilities. Referring to a class of string based injection attacks (6), XSS mainly occurs due to
inadequate input filtering procedures exerted by the web application host (5). Like most web
injection attacks, successful XSS exploits may lead to compromised authentication information,
privilege escalation and possible disclosure of confidential information (6).

While this type of attack is achieved as a result of vulnerabilities on the server-side of the
application, exploits are within the client-side web browser, further adding to the complexity of
detection and gathering evidence of a successful attack (6). Prevention techniques associated with
XSS have not been applied mainly due to their development overhead and degradation in client side
application performance (7).

Reports suggest more than 100 XSS variants now exist, however XSS can be categorised into three
main injection methods: non-persistent or reflected, persistent or stored and DOM injections.
Usually these techniques are independently executed, although it is not uncommon for an attack to
consist of multiple variants (7).

Non-Persistent

Non-persistent or reflected XSS is a HTTP exploit, where parts of the incoming HTTP request are
simply echoed directly into the HTML of the HTTP response, resulting in unsecure output by the web
browser. More specifically this exploit is executed by a tampered URL address containing malicious
code with the HTTP GET request parameters. This vulnerability is particularly difficult to detect when
masqueraded by encoding techniques or used in conjunction with URL shortening services (such as
‘tinyurl.com’). Although this form of attack is not harmful within the server-side application, it is
caused by inadequate filtering standards and may lead to further application exploits (6). Please
refer to Appendix C for a breakdown of how non-persistent/reflected XSS can be performed.

Example:

URL containing malicious
code

http://website.com/?search=<script>alert(document.cookie)</script>

Script echoing <input name=”search” value=”<?php print REQUEST[’search’]?>”>

Persistent

Persistent or stored XSS is a more devastating form of web application exploit intended to
permanently inject malicious code into the web application’s server-side storage, typically in the
form of a database. Subsequently this attack will disseminate the stored malicious payload to all
users accessing the infected page (6). For example, an attacker injects the malicious code into a blog
comment, unfiltered this script is executed by every visit to the page, thus multiple users are
affected. Please refer to Appendix C for a breakdown of how persistent XSS can be performed.

In 2006 MySpace was infected by a persistent XSS vulnerability contained with a QuickTime video.
The exploit overlaid the video with a JavaScript menu containing links to a bogus login page,
targeted at stealing the user’s authentication credentials. Once the victim is compromised the
exploit uses the now legitimate access route to post spam message, furthermore this script
replicates on the victims profile page in attempt to spread further (8).

Benjamin Hall

4 Countering Web Injection Attacks: A Proof of Concept

DOM

DOM XSS is a variant of reflected XSS, a form of web injection that exploits vulnerabilities passed by
the URL. Typically this exploit passes JavaScript code to the web browser allowing the manipulation
of the DOM tree, including the addition or removal of elements and styling. At one time it was
possible for the open application to steal information from other simultaneously open windows, a
flaw which Netscape fixed with the introduction of Same Origin Policy (SOP). However this exploit is
still possible by forwarding the users’ information onto an external site using a ‘XML HTTP Request’.
(7)

Cross-Site Request Forgery

Cross-Site Request Forgery (CSRF/XSRF) also known as Session Ridding, Hostile linking or Cross-Site
Reference Forgery (9) is a client based vulnerability “among the top 5 worst vulnerabilities for web-
based programs” (10). The majority of web developers are oblivious to Cross-site Request Forgery
attacks, making this form of attack much harder to secure (11). Similar to XSS, CSRF contains two
main variants: Persistent and Non-Persistent (10).

Essentially CSRF is an exploit of trust between the web application and the user, as opposed to XSS
which exploits the trust between the browser and the web application (9). More specifically CSRF is
an attack executed on a web application against another application which the user is currently
authenticated, thus CSRF is mainly a form of Social Engineering exploit that performs unauthorised
and undetected user actions (9). This form of attack often occurs after the user has authenticated
with the legitimate web, by then navigating to another applications controlled by the attacker. Still
authenticated with the original web application, the attacker’s application executes malicious
requests with the original authentication application, consequently these request appear to
originate from the authenticated user. Once this authentication has been compromised, the attacker
may send arbitrary HTTP requests to the legitimate authenticated web application (11). Please refer
to Appendix D for a breakdown of Cross-Site Request Forgery can be performed.

The subsequent diagram within Appendix D shows a real-life example of CSRF. This attack uses an
exploit of the source attribute within a HTML image tag. The source path consists of a URL address
containing GET parameters, used to perform an input action upon the legitimate web application.
The exploit of the image tag provides a simple form of execution, with minimal sign of exploit
disclosure. Attempts made by the browser to receive an image with an invalid path name will result
within an image error due to the output mismatch of received text/html opposed to the expected
image/jpeg (10).

An important deliberation of this exploit is the origin of the second web application. The CSRF attack
may originate from another legitimate source compromised by another form of injection attack. For
example an application may be compromised by a cross-site scripting attack containing a malicious
payload to send requests to another web application similar to the previous example. This form of
application attack may be as a result of weaker security constraints upon the second legitimate web
application, furthermore this attack may increase the amount of successfully executed exploits.

From the perspective of the browser, Same Origin Policy (previously discussed within XSS) it is not
sufficient enough to prevent CSRF attacks. Solutions exist to reduce the likelihood of CSRF attacks,
such as checking the HTTP referrer header; however these measures are easily bypassed as shown
with attacks upon a second legitimate application, or in this case of execution on an attacker’s
application – the use of HTML Meta tags (10).

Benjamin Hall

5 Countering Web Injection Attacks: A Proof of Concept

SQL Injection

Structure Query language (SQL) is the de-facto standard for accessing and manipulating web
databases and consequently the point of entry for the majority of persistent web injection attacks
including XXS and CSRF. However the database language itself is prone to attacks known as SQLIA
(SQL Injection Attacks) (12), with 75% originating from China and the United States of America (2).
This injection attack consists of unfiltered application input containing SQL code. The attackers
endeavour is to change the “logic, semantics or syntax of an SQL query by inserting new SQL
keywords” (13). Consequences of SQLIA’s are some of the most severe, with attacks directly on
application data, exploits lead to a violation in confidentiality or integrity by disclosing or deleting
data.

There exists a number of SQLIA variants used to exploit different SQL vulnerabilities.

Tautology

Aimed at bypassing authentication, an attacker injects SQL tokens that evaluate a comparative
statement as true (13). For example when passing authentication details through a login entry form,
the attacker may pass an injected SQL code for the password input:

Input password’ OR ‘1’=’1’

SQL statement SELECT * FROM employee WHERE id=’9’ AND password=’password’ OR ‘1’=’1’;

Union queries

When SQL is used to retrieve data, the UNION operator is used to join multiple relational database
tables together. By inserting code containing the UNION operator, the attacker may return more
information than the query intended; therefore this attack aims to compromise data confidentiality.
(13)

Piggy-back queries

This form of attack exploits the ‘;’ delimiter used at the end of an SQL statement to separate
multiple statements from one another. By exploiting this syntax the attacker may append multiple
queries to the original SQL statement. The first query will be legitimate; however succeeding
injected and illegitimate queries will allow the attacker a great amount of flexibility with the ability
to execute arbitrary SQL statements. (13)

While most languages allow multiple queries within one statement, this is not supported within
PHP’s ‘mysql_query()’ function, thus eliminating the risk of this vulnerability (14). It must also be
noted some scripting languages do not require the ‘;’ delimiter, thus ruling out prevention
techniques such as removing data after the initial statement. (13)

Stored procedures

A database administrator may set an additional abstraction layer in the form of a stored procedure
intended to hide some of the applications functionally. Similar to the piggy-back vulnerability, an
attacker may manipulate these procedures by appending terminating syntax to the query. (13)

Illegal or logically incorrect queries

Unlike other SQLIA’s, the primary focus of this attack is to disclose weaknesses of the database
rather than attempting to manipulate the data. By entering rejected queries, the application will
return error messages containing useful debugging information. This information can be used by the
attacker to further assist in finding vulnerable query parameters for subsequent injection attacks
(12).

Benjamin Hall

6 Countering Web Injection Attacks: A Proof of Concept

Inference

Inference attacks are designed to change the behaviour of the database in order to gather
vulnerability information. They differ from illegal/incorrect queries by the output returned by the
execution, instead of debugging information the user is often presented with a generic error
warning. Detecting vulnerabilities within the applications code instantly becomes more difficult;
however there are various techniques that use this limited output to the attacker’s advantage.

Blind injections use the error output as a true/false feedback for the attempted query. By executing
a series of queries the attackers may learn from application weaknesses. Timing attacks involve the
use of injected ‘if then’ and ‘WAITFOR’ commands. The success of the injected statement can be
determined by observing the time delays between each application response, acting as a true/false
mechanism. (12) (13)

Alternate encodings

Encoding techniques may be used to bypass application filtering processes. Using alternate
encodings such as ASCII, Unicode or Hexadecimal allow the masquerading of known bad characters.

HTTP Header Injection

Cache Poisoning

Cache poisoning is a mechanism for performing HTTP header injections by exploiting vulnerabilities
within the web cache. This vulnerability is particularly significant when a shared cache is in use, for
instance those found in proxy servers. Within this case the injected HTTP header will be distributed
to all users until the cache entry is purged. Cache poisoning is a particularly difficult attack to
perform and requires a number of conditions in order to be successful.

To perform a successful cache poisoning attack, the attacker must flush the cache of its contents by
establishing a vulnerable service code to inject the new HTTP header. Once flushed the attacker may
send a specially crafted message, stored in the cache to become the response for all subsequent
requests. (15) (16) (17)

Carriage Return and Line Feed (CRLF)

Carriage Return and Line Reed (CRLF) refers to a sequence of special input characters that represent
End of Line (EOL) markers, used to terminate HTTP header information. In order for EOL exploits to
succeed, the application must allow the input of the special Carriage Return (CR) and Line Feed (LF)
characters, often given by the syntax ‘%0d’ and ‘\r’ respectively. This form of vulnerability is
commonly exploited within many Internet protocols including MIME (email), NNTP (newsgroups)
and HTTP. (18) (19)

The CRLF vulnerability contains 4 main HTTP exploits: HTTP Request Splitting, HTTP Response
Splitting, HTTP Request Smuggling and HTTP Response Smuggling (15).

HTTP Request/Response Splitting

HTTP Request/ Response Splitting are forms of response hijacking exploits that utilise the CRLF
vulnerability (15). Although not a direct form of attack itself, it does provide a mount for other
injection attacks including XSS, cache poisoning and Cross-User Defacement (18).

This form of vulnerability allows an attacker to break the original HTTP request into multiple
requests; subsequently this allows the attacker to inject arbitrary header or body content including
the construction of an entirely new HTTP header. The malicious data contained within this HTTP

Benjamin Hall

7 Countering Web Injection Attacks: A Proof of Concept

payload is consequently included within the HTTP response header, injecting the malicious payload
onto the requested page (18) (17). The example below shows an end of line marker contained within
the HTTP header string terminating the original HTTP header and starting the new inserted HTTP
header.

Malicious string containing EOL characters Some String \r\nHTTP/1.1 200 OK\r\n...

HTTP header after injection HTTP/1.1 200 OK
. . .
Set-Cookie: author=Some String
HTTP/1.1 200 OK
. . .

The second HTTP response shown above is now under complete control of the hacker and may
contain any content including an entirely new HTTP response.

HTTP Request/Response Smuggling

Similar to HTTP Request/Response Splitting, HTTP Request/Response Smuggling also facilitates other
injection vulnerabilities. Within this HTTP exploit the attacker smuggles the request using
encapsulation techniques to embed a secondary HTTP header within the original HTTP payload,
exploiting incomplete parsing carried out on an intermediate HTTP proxy system (20). However HTTP
Request/Response smuggling “…does not require the existence of application vulnerabilities” (21).
The following example shows a second HTTP header contained within a parameter of the original
HTTP header.

HTTP header GET /some_page.jsp?param1=value1¶m2=
Content-Type: application/x-www-form-
Content-Length: 0
Foobar: GET /mypage.jsp HTTP/1.0
Cookie: my_id=1234567
Authorization: Basic ugwerwguwygruwy

Session Fixation

Session management is the fundamental principle allowing today’s web based applications to track
user interactions. The session architecture requires Session Identifies (SIDs) to map each application
action to the specific user due to HTTP being a stateless protocol (cannot remember previous
requests) (11), thus SIDs are the underlying tool of authentication. As SIDs possess a significant
control over the user’s interaction with the web application, they evidently become a natural target
for malicious attack. SIDs can be stored a number of ways including hidden form fields, cookies and
URL arguments; although the use of cookies is prominent and arguably the most secure. (22)

Session Hijacking is the process whereby an attacker obtains the session identifier of the victim,
performing a replay attack by re-submitting the authentication parameter to gain authenticated
access to the web application. Session fixation on the other hand does not concentrate on obtaining
the users SID, instead this attack alters the victims SID to an authenticated SID held by the attacker,
commonly known as the ‘trap session’. Upon further authentication actions by the user (such as
bank verification), the attackers account now has access to the newly authenticated resources. (23)
(22)

Benjamin Hall

8 Countering Web Injection Attacks: A Proof of Concept

Cross-Site Cooking

Cookies provide the most “convenient, covert, effective and durable means of exploring session
fixation vulnerabilities” (22). Under Same Origin Policy (SOP) (11), browsers will only accept cookies
assigned by the originating server or domain; however there are a number of injection methods
which can be used to carry out an exploit of cookie data. This includes the injection of Meta tags
containing the ‘Set-Cookie’ attribute or the HTTP ‘Set-Cookie’ header response utilising CRLF
exploits; embedded client-side scripts such as JavaScript to exploit the ‘document.cookie’ DOM; and
even XSS flaws within the URL handling. (22)

In 2008 the CVE (Common Vulnerabilities and Exposures) reported a flaw within Apple’s Safari web
browser (named CVE-2008-3170) (24), allowing websites to set country specific top level domains
including ‘.co.uk’ and ‘.com.au’ (23). The successful exploitation of this vulnerability directed
towards session fixation attacks.

Cross-Sub domain Cooking

Unlike Cross-Site Cooking, the malicious attacker originates from a sub domain hosted upon the root
domains server example: ‘badsite.goodsite.com’. This exploit relies on the ability of a sub-domain to
set wildcard cookies, valid upon either the root domain or another sub-domain (11).

Detection and Prevention Techniques

From the analysed literature and the injection discussion, it is a common observation that
insufficient validation and sanitisation standards are the prominent cause among the successful
execution web injection vulnerabilities. This is most commonly due to negligence on the
development side of the web application and can be related to a substantial lack of awareness
regarding web injection vulnerabilities.

A number of techniques may be used when trying to secure web applications against the injection of
malicious code. The three main forms of application detection techniques for web injections include
filtering, validation and escaping. These methods aim to alert the application of unexpected entry
through the validation methods, or manipulate the data into a format that can be safely executed by
the application. These methods are insufficient prevention techniques when used on their own and
most effective when used in conjunction with one another.

It is important to understand the theory of ‘zero day attacks’ when considering prevention
techniques, even the most comprehensive combination of the techniques outlined will never
guarantee the application is completely secure. Security measures can be taken against known
injections attacks, whilst mechanisms must implemented to allow the addition of new detection and
prevention techniques.

Validation

Validation procedures are used to check data against a defined, expected criterion; returning a
Boolean value according to the success or failure of the operation. This may include checking the
validity of the data’s type, length or format. This validation process is only a detection method and
does not manipulate the data.

For example, an application containing a registration form may wish to validate an input string
against an email address criterion. This will include the correct format, inclusion of special characters
‘@’ and ‘.’ along with a valid host domain-name. When applied to injection attacks, data validation
may be used against input strings, checking for scripting syntax or unexpected encodings. Upon
finding a false entry, the validation method should raise an exception.

Benjamin Hall

9 Countering Web Injection Attacks: A Proof of Concept

Although these methods provide feedback to the web application regarding the cause of the raised
exception, application developers must be careful when implementing application output. As
previously discussed with blind injection attacks, not only may this form of output provide detailed
debugging information, it may also provide a true/false response through other attacks such as SQL
timing attacks.
(25)

Filtering

Data filtering is a process of sanitisation through data normalisation by the transformation of data
values. This process is achieved by altering and often removal of certain characters within the data.
For example, if a required input is an integer and the data processed by the application contains
non-integer characters, filtering procedures may remove extra values in order to try upholding the
validity of the input, therefore this method can therefore be seen as an automatic correction
mechanism. In context of injection attacks, filtering methods may remove special characters used
within browser or client-side scripting for example <>/ characters used within HTML and XML tags.

Escaping

For some web applications the input of special characters may be desired, therefore they must
undergo other forms of filtering processes in order to eliminate the risk of illegal execution. Instead
of removing special characters, escaping introduces special escape values inserted within the data.
These escape values remove the meaning of subsequent special character, treating the value as
ordinary text when performing further operations on the data.

For example, an application allowing textual input will commonly allow for the input of commonly
used characters such as quotations marks. When data is processed by filters, special characters are
removed resulting in punctuation errors, whereas escaping this data will maintain the original data,
removing the escaped values when output to the user.

Encoding

Character encoding is the process of how characters are understood by computer systems and
involves substitution of each character by an encoded value. There are numerous standards of
character encoding varying by the characters available. For example the use of special punctuation
symbols, Diacritic marks and even Latin characters are possible with different types of encoding.

As discussed in previous sections, many web injection vulnerabilities use character encoding to
bypass sanitisation and validation methods. When performing data filtration, all input data must be
fully de-encoded to eliminate this risk of bypassing the filter. It is also necessary to include the
possibility of multiple encodings when de-encoding data input. Encoding may also be used as a form
of character escaping to avoid malicious code from being executed. (25)

Encryption

For information processing, encryption is the process whereby the input data is converted into a
format that does not resemble the original data. Normally this methods is used for the safe transfer
and storage of sensitive information, however this project proposes the use of encryption to reduce
the risk of server-side web injection attacks, by removing the meaning of script syntax.

Encryption may be an appropriate solution to solve many forms of web injection attacks whist
fulfilling other standard practice requirements when dealing with information security.

Benjamin Hall

10 Countering Web Injection Attacks: A Proof of Concept

Tokenisation

When performing data filtering methods, it can often be difficult to process an exorbitant amount of
information at once. Tokenisation is the process of breaking the input data stream into separate
strings, allowing for an easier processing load on the data filter. However the process of tokenisation
does produce a number of problems when extracting an individual word from an exceptionally long
string. Additionally this function may prove error prone when scripting keywords only have meaning
in a larger context.

Issues with filtering methods

While filtration methods are crucial towards the prevention of web injection attacks, their use can
become complicated when implemented alongside a verity of complex web applications. Filtering
requirements will differ not only by the purpose of web application, but also by each individual
application interface. The application requirements may range from simple input forms with strict
filtering methods, blog posts allowing for minimal coding such as html picture or hyperlinks, or the
use of back-end content management systems allowing the arbitrary storage of code.

The most significant issue when implementing filtration methods is to develop an understanding of
the applications filtering requirements, particularly if the filtration methods are called before the
web applications business logic. Subsequently, appropriate methods should be put into place
allowing for the customisation of those filtration methods on an input specific basis. Strict rules
should be applied by default with the addition of overriding methods allowing for the adaption of
filtration rules.

Existing Methods and Tools

Some web application development tools contain either built-in methods to help counter web
injection attacks, or methods to assist when developing a filtration tool. This section looks at the
most popular web development languages, their methods and how effective these tools are towards
preventing web injection attacks. Some of these methods may not provide a direct influence upon
preventing injection attacks; however they may present valued functionality when producing a
detection or prevention solution.

Development languages

When producing web applications, there are an ample amount of development languages varying by
their functionality; however two of the most renowned and widespread include PHP and Java. This
section looks briefly at these languages and some of their methods which may be used when
developing a solution to detect and prevent web injection attacks.

PHP
Hypertext Pre-processor: PHP; is the most widely-used server-side web development language. They
claim to be currently implemented on more than 20million domains. This development language is
popular mainly due to its easy inline integration within the applications HTML content, along with a
large development community and extensive online documentation. At time of writing PHP v5.3
contains a number functions to help prevent web injection attacks. These functions consist of
various methods allowing the user to specify input data, for example: strings, arrays and HTTP inputs
such as GET, POST and COOKIE data. The input method then takes a second parameter of either a
validation or sanitation method.

Validation methods – The PHP validation methods shown within Appendix E allow for the
validation of data types including Boolean, email, floating point number, integer, IP
addresses, regular expressions and URL addresses (according to RFC 2396 specification). The

Benjamin Hall

11 Countering Web Injection Attacks: A Proof of Concept

function then returns a Boolean true/false response according to whether the input string
matches the validation type.

Sanitation methods – Appendix E shows the sanitation methods provided by PHP. These
methods are invoked the same way as validation methods, although they return a sanitised
value rather than the Boolean true/false response. These methods include the ability to
sanitise an input string against a particular data type, for example: when sanitising against an
integer, all non-integer characters are removed. Furthermore, these methods also include
the ability to remove encode values and special characters.

Flags – The flag functions shown within Appendix E and F are declared along with the
validation or sanitation method as a subsequent parameter. Their purpose is to add greater
flexibility to the these methods, for example: FILTER_FLAG_STRIP_LOW can be used within
the sanitise method FILTER_SANITIZE_STRING to remove all ASCII characters with a
numerical value less than 32 (please refer to Appendix F), FILTER_FLAG_IPV6 is used within
the validation method FILTER_VALIDATE_IP to specify the IP address must conform to the v6
standard. The accessibility of these flags varies according to the purpose of the validation or
sanitisation method; consequently all flags are not accessible to every method.

(26)

Java
Java is one of the most popular and powerful programming languages, variations such as JSP (Java
Servlet Programming) are similar in construction to PHP allowing server-side scripting within the
HTML code. Java also contains useful built-in functions when implementing a solution to prevent
web injection attacks.

 Prepared Statements – Aimed at preventing SQLIA’s, Java contains a built-in function called
‘PreparedStatement’. This function uses SQL statements pre-defined by their internal
function, while still allowing for the insertion of input variables. This function succeeds
against SQLIA’s by ensuring the entirety of the statements purpose and syntax, therefore the
input variables are isolated from the SQL syntax and processed independently, thus do not
interfere with the original SQL statement. (27)

doFilter – This built-in java function intercepts the users request before any information is
processed by the business logic. This function is also aimed at allowing data manipulation
including filtration functions, before the data is sent back to the user.

Validation – Within Java data can be validated by using the exception handler. A ‘type’ is
explicitly defined when assigning an input value to a variable. If the input variable does not
match the defined type, an exception is triggered which may be caught by the exception
handler. However this method does not allow for the validation of more complex data types
such as IP and email addresses; these types will be validated by using regular expressions.

(28)

Summary
Both PHP and Java contain many useful methods to assist with preventing web injection attacks. PHP
offers the most comprehensive arrange of validation and sanitation functions allowing easy
integration with the web application. Java contains built-in methods for data handling processes,
however lacks the sanitation methods available within PHP. However Javas method for SQL handling
provides an extensive solution against SQLIA’s, not present within PHP. Both contain the ability to
validate data against regular expression, allowing a flexible validation solution.

Benjamin Hall

12 Countering Web Injection Attacks: A Proof of Concept

None of the languages discussed contain a complete solution against web injection attacks; all
contain different methods providing different forms of protection. Furthermore all of the
investigated methods are not initiated by default, therefore must be explicitly evoked by the
developer. Throughout the project these inconsistencies must be taken into consideration when
attempting to provide a web injection solution.

Development techniques and other methods

Although this project looks into ways of securing already established web applications, attention
must be paid towards guiding web application at different stages of their development life cycle.
This section outlines some recent techniques changing how web applications are developed,
furthermore how these methods could help to protect applications against web injection attacks.

Frameworks
Over the last decade Frameworks have become increasingly popular when developing web based
applications. They provide a platform for developing advanced, large web applications typically
involving a team of developers. This includes a number of tools which may become beneficial to
preventing web injection attacks.

- The Model View Controller paradigm is the separation of the applications business logic,
data retrieval and view elements. The aim of this segmentation is to allow easier
maintenance of the application as developers may work upon separate aspects of the
application simultaneously. For example the back end business logic may be
programmed by some developers whilst graphics designers may work on the application
views, without causing conflict. This concept may prove useful when educating the right
development team about the risks of injection attacks; furthermore this application
separation may provide an essential feature when implementing new filtering and
validation methods.

- Bootstrapping is a technique used within frameworks to perform multiple standard

actions on each application request. Essentially all application requests are diverted to
the bootstrapping file, performing a number of actions before loading the required
application content within the MVC architecture. Bootstrapping may become one of the
most important development techniques, allowing for the central application of a data
sanitisation function, performed upon every application request before the business
logic and data retrieval.

(29)

Libraries
Libraries such as PEAR provide web applications with pre-built object orientated classes, aimed at
speeding up development time. This method of deployment will prove valuable when producing,
issuing and updating a web injection prevention solution.

SQL - CRUD
Other techniques within the development architecture allow further prevention measures against
attacks such as SQLIA’s. CRUD (Create, Read, Update and Delete) is a term often given to an object
querying the database; however the Update and Delete aspects provide unnecessary data access for
normal application actions. Alternatively, the database can enter a new record for every operation,
distinguishing through a time stamp and retrieving only the latest version. This process would
eliminate the need the UPDATE and DELETE functions whilst maintaining the same functionality,
furthermore application access rights can be changed to deny UPDATE and DELETE functions.

Benjamin Hall

13 Countering Web Injection Attacks: A Proof of Concept

This method of eliminating some of the application database functions does create the issue of the
storage system becoming bloated, due to a large number of stored records. To counteract this issue,
a second user may be defined with full CRUD privileges. This user can be used within the application
for processes that do not take user input. Furthermore to reduce the effects of the bloated
database, old entries may be removed using the account with CRUD access. (29)

Validation based methods
As previously discussed, some of the injection techniques perform undisclosed form submissions on
the user’s behalf such as Cross-site Request Forgery attacks (30). There are a number of other
techniques to validate the authenticity of input data and try to distinguish human input from non-
human based input.

CAPTCHAs (Completely Automated Public Turing test to tell Computers and Humans Apart) have
become a common standard when validating for human input. A number of random characters are
displayed upon the web application, which the user must input as part of the form submission.
However as attack methods have become more sophisticated to counteract this security measure,
the complexity of this validation method has grown. To prevent attacks using tools such as Optical
Character Recognition, CAPTCHAs have evolved to include distorted background images along with
skewed characters both varying in size and font. Other forms of CAPTCHAs have also arisen
compromising of advanced browser features such as sound and video output. (29)

Other forms of validation methods include the use of email to verify the user’s entry point into the
system. This often involves the use of URL links with embedded GET parameters containing random
values. These values are stored on the application database and validated against the received
parameters. Although special links provide some form of authentication, there use is often limited to
actions such as password reset and account variation, due to the lengthily time involved with
retrieving the email link.

Conclusions

The Background Research section of this report discussed a number of injection attacks, based on
their use and severity. It provides a proof of concept towards the detection and prevention of these
attacks. Due to an exhaustive amount of web injection vulnerabilities, only a sample of these attacks
can be covered within this report. These detection and prevention methods mainly focused around
string evaluation including filtering techniques such as sanitization and validation function. This
section also looked at other prevention techniques surrounding the development environment
including recommended development standards and practices. Although these methods may prove
a time consuming and costly prevention against injection attacks for already deployed web
application, they provide important guidance for new web application developments.

With the existence of many other web injection attacks, recommendations for further projects may
include the security of individual client and server-side languages. The recent development of
HTML5 could play a significant role within the future of web injection attacks, due to the greatly
improved functionality of this language supporting more complex forms of digital media including
sound, video and voice activation. Prevention techniques may also look into client side solutions and
how they may interact with the information held on the server-side application.

Benjamin Hall

14 Countering Web Injection Attacks: A Proof of Concept

Research Methods

The background research focuses on the most common web injection methods, the literature
analysed and discussed conveys one primary cause of injection vulnerabilities - the people who use
the IT system. Employees are often regarded as the biggest security risk, injection vulnerabilities
ultimately occur from insufficient development standards and practices outlined by development
team managers and employees. The risk associated with web injections can be significantly reduced
when a formal security standard is applied to the development process.

This section discusses the objectives of the project, along with a plan for both the Technical
Requirement Specification and the plug-in library.

Objectives of the project

Technical Requirement Specification

As mentioned, the most common flaw within web application security is the application
development practices put in place by the development team. Generally, this is due to a lack of
awareness towards web injection vulnerabilities including their risks, cost and impact of their
successful execution.

The first phase of the project will involve the production of a Technical Guidelines Specification. This
formal standard will be aimed at helping the organisation secure their web application against web
injection vulnerabilities by informing technical specialist about web injection attacks. There are
many advantages towards using standards when securing IT system; they often are a more widely
understood form of policy from which multiple users may follow simultaneously, also as they
become more widely used their effectiveness increases with refined versions incorporating feedback
from real life instances. This will become one of the key goals towards the successful development
of the Technical Requirement Specification – through user participation and accreditation by real
working environments. It must also incorporate the organisations adoption strategy, with guidance
on periodic reviews and achieving an effective return on investment.

The purpose of this standard is to educate an organisation about web injections attacks. This
includes presenting the various types of web injection attack, the flaws they try to exploit and how
they are successfully executed. Ultimately this specification endeavours to convey the risk associated
with these attacks and the consequences of negligence towards securing their system against web
injection vulnerability. This will include reference to other standard requirements and applicable
legislation the organisation must adhere to. The consequences of these risks are so severe, the
specification must be presented to all employees involved within the application development with
personal responsibility applying to those in breach of these terms.

The detection and prevention of these attacks will become the definitive goal of this specification. As
organisations may be at different levels of the application development process, these solutions
must allow for easy integration into already established applications along with prevention
techniques for new application starting the development life cycle. Guidance will be provided for
each prevention solution along with implementation requirements. Prevention methods will also
include standard practices and procedures for associated organisation employees regarding how
they can develop and maintain the injection prevention system.

Benjamin Hall

15 Countering Web Injection Attacks: A Proof of Concept

Upon completion of the Technical Guidelines Specification and following successful guideline
appraisal, the specification will be published via a number of sources including the National
Computing Centre, available for download.

The final dissertation report will aim to bridge the gap between the Technical Requirement
Specification and a high enterprise level view. Ultimately this will include information regarding how
an organisation can provide the best development strategy and achieve the most effective return on
investment. Due to the severity of negligence towards securing these forms of attack, the
organisation must seek an enterprise wide acceptance of the new practices and procedures.

Injection tool

Along with the Technical Requirement Specification, the project will include the development of a
solution to show a proof of concept when trying to prevent against some of the most common web
injections encompassing the most severe consequences.

The prevention solution will consist of a plug-in library to be deployed within the web application.
The purpose of the library will be to handle the input of the applications data and perform a number
of filtration processes. This will consist of inputs from all sources including, but not limited to: GET
requests, POST requests, stored cookie data and sever session data.

Initially the data will pass through a decoding process, removing all hidden encoding techniques.
Once decoded a number of sanitation processes will be applied to the data, detecting and removing
injected coding. The input will be filtered before the execution of application data and business logic,
thus providing an invisible abstraction layer. Some applications may allow for the input of special
characters including coding data. For this occurrence the library should provide functions to override
the sanitation process or invoke another sanitation method such as character escaping rather than
removal of the entities. Although the application sanitises the input data, the already deployed
applications may hold previously input data stored within a database or file; the solution must
therefore provide some functionality to sanitise this data. This may include a batch processing
method connecting to the database, discovering the database tables and fields before processing
the sanitation methods upon each record.

The solution will require compatibility upon a number of web environments; therefore this may
require the library to be coded using a number of scripting languages. As frameworks play an
important role within today’s web application development, integration should be considered with
the major framework providers along with a standard version for those applications running without
framework controls. A substantial focus will be paid towards integration, once implemented the
library should allow some functionality without modification of the current web application. Ease of
use is also a desirable trait aiming to achieve little to no training requirements. This will also be
reflected by the libraries usability with no required understanding of its inner workings. Validation is
another important functionality requirement of this solution; appropriate validation solutions should
be provided which are consistent through the various platform implementations.

The library will be deployed on the project website (http://thewebjunkie.com) for download. One
important requirement of this solution is the easy expansion to include new sanitation rules,
validation procedures and user controls. The application will also be deployed using version control,
allowing for developers to contribute towards the project.

http://thewebjunkie.com/

Benjamin Hall

16 Countering Web Injection Attacks: A Proof of Concept

Deliverables

The Technical Requirement Specification, tested by a number of contributors and deployed for
download by a number sources including the National Computing Centre and the project website
(thewebjunkie.com)

The plug-in scripting library will consists of a number of library implementations using a range of the
most popular web development languages. This will also include a number of formats for framework
implementations and standalone versions. For contributors to the project, the library will be
controlled by sub versioning and deployed along with adequate test files. Both implementations will
require some form of documentation. For the standard user version this will consist of installation
procedures along with details of how to control the advanced features of the package. For
contributors this will require extensive documentation on coding standards and testing procedures.

The project website will be the primary source for all application and requirement specification
downloads. This will also include a blog to assist with all areas of development. Pages will provide
the primary source of documentation for both users and developers, news articles will contain
information regarding the current version and development news, for develops this will also provide
information on required updates and the voting of new system features.

Development methodologies

Design & Implementation

Development will be carried out simultaneously between the Technical Requirement Specification
and the prevention library. A modular, process orientated approach will be taken when developing
the library. This methodology is commonly used within projects where entities of the organisation
develop separate parts of the system, thus will be ideal when developing a number of independent
decoding, sanitation and validation solutions to counter a wide range of injection attacks.
Furthermore the use of a modular implementation may be carried past initial development to
release further updates, another critical aspect when developing this solution.

The resources required for this section of the development life cycle include a web development
playground. Due to the nature of this research, development will be carried out upon a safe local
environment to avoid the risk of damage to live web applications if hosted upon a live architecture.
The web server will consist of a local install of Apache with the required programming library
extensions including PHP and Tomcat (for running Java applications). A database system is also
required to develop against SQLIA; this will consist of a MySQL server along with a database control
panel such as ‘PHPMyAdmin’.

Testing

The core focus of project testing will be through penetration testing in order to determine the
success or failure of the prevention library. This testing strategy will include initial development of a
test web application, used as a testing platform when researching web injection techniques. This
application will be tested against a pre-defined test plan. The same testing strategy will then be
applied to the application after the integration of the prevention library. This may also include a
number of test sub-iterations where more advanced features requiring application manipulation are
activated. Furthermore this testing strategy will also include the following of other prevention
practices and procedures outlined as part of the Technical Requirement Specification. Testing may
include the use of purpose built web injection penetration tools like discussed within (25) to provide
a more rigorous test solution. All testing procedures will be performed upon a secure local
environment to avoid the potential risk of exposing other applications to attack.

Benjamin Hall

17 Countering Web Injection Attacks: A Proof of Concept

Required resources for the testing phase within the development life cycle will include the local
installation of the web development platform as noted from the Design & Implementation section.
Tools specifically designed for injection simulation may be used throughout this phase, consequently
using third party applications carries risk toward their authenticity, precaution’s must therefore be
taken to ensure the testing strategy is carried out upon a safe closed environment.

Evaluation & appraisal

The evaluation of the Technical Requirement Specification will include external appraisal by the
National Computing Centre to determine whether the specification is compliant and appropriate for
external release. The prevention library will be evaluated based upon the results of the testing
strategy; however the project will try to seek evaluation by external entities and trials within live
application environments.

Project plan

This report outlines a substantial amount of research regarding web injection attacks, detection and
prevention methods. Further to this report, the development of a test application will be used to try
and execute these attacks, in order to gain further understanding of how these attacks are
performed. This test web application, vulnerable to injection attacks will be used as a benchmark
against all development and testing procedures. Further to the benchmark web application, the
production of a test plan will allow comparisons to be taken against the various solutions throughout
the project.

Firstly, existing solutions including native programming controls for both PHP and Java development
languages will be examined, implemented and tested against the benchmark web application using
the pre-defined test plan. Once these results have been analysed and compared, work will begin on
producing a prevention library to accompany these techniques.

Initially work will be carried out upon the background of the Technical Requirement Specification,
outlining the various injection attacks. Once completed the remainder of the Technical Requirement
Specification and the prevention library will be developed simultaneously. Implementing and testing
each feature with the benchmark web application and test plan. Following the successful
development of these techniques, the Technical Requirement Specification will document their
findings.

Upon completion of both project deliverables and after approval, both deliverables will be released
for external use and appraisal. During this phase the deployment entity must be configured to
enable items to be downloaded. Documentation will be completed before applying version control
to the prevention library. A blog will be implemented upon the deployment agent to allow for
project discussion and information regarding the project and its solutions.

Following completion of the development phase, write-up will commence for the final dissertation
report, aimed to document the entire project. Initial writing will include an overview of the project,
an outline of the scope and context of the investigation and why this project is important. The
project background section will include a literature survey containing information on injection
research carried throughout the project, along with existing solutions including the initial testing
against the benchmark web application. The development of the prevention library and Technical
Requirement Standard will be documented, discussing how the project arrived at the final solution.
Testing will include a discussion upon the testing procedure and how the prevention library
performed against the test plan. Conclusions will be drawn from the project and testing phase to

Benjamin Hall

18 Countering Web Injection Attacks: A Proof of Concept

determine the success or failure of the project, including recommendations on future work and
possible project expansion.

For a time breakdown of the project plan, please refer to Appendix G. Please note, the exact
requirements for the project dissertation report have not yet been discussed, therefore the
information presented is a rough outline of the sections to be covered.

Benjamin Hall

A Countering Web Injection Attacks: A Proof of Concept

Bibliography
1. Defending Against Injection Attacks Through Context-Sensitive String Evaluation. Pietraszek,
Tadeusz and Berghe, Chris. 2006.
2. McAfee Labs. Threats Report Q4. s.l. : McAfee, 2010.
3. Web Injection Attacks. Morgan, David. 2006.
4. W3C. Objects, Images, and Applets. W3C. [Online]
http://www.w3.org/TR/html401/struct/objects.html.
5. Identifying Cross Site Scripting Vulnerabilities in Web Applications. Di Lucca, G A, et al., et al. 2005.
6. XSSDS: server-side detection of cross site scripting attacks. Johns, M, Engelmann, B and Posegga,
J. 2008.
7. Optimized Client Side Solutions for Cross Site Scripting. Tiwari, S, Bansal, R and Bansal, D. 2008.
8. Kirk, Jeremy. My Space Worm. Computer World. [Online] December 2006.
http://www.computerworld.com/s/article/9005607/MySpace_worm_uses_QuickTime_for_exploit.
9. The Open Web Application Security Project. Cross Site Request Forgery. OWASP. [Online] 7 April
2009. https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF).
10. Client-Side Detection of Cross-Site Request Forgery Attacks. Shahriar, H and Zulkernine, M. 2010.
11. Web Security - The University of Vienna. Platzer, C, et al., et al.
12. Evaluation of SQL Injection Detection and Prevention Techniques. Tajpour, A and Shooshtari, M.
2010.
13. SQL Injection Detection and Prevention Tool Assessment; 2010. Tajpour, A, et al., et al. 2010.
14. PHP. PHP: mysql_query - Manual. PHP. [Online] http://php.net/manual/en/function.mysql-
query.php.
15. Presentation on: HTTP Message Splitting, Smuggling and Other Animals. Klein, A. 2006.
16. The Open Web Application Security Project. Cache Poisoning. OWASP. [Online] 23 April 2009.
https://www.owasp.org/index.php/Cache_Poisoning.
17. HTTP Response Splitting. Klein, A. 2004.
18. Acunetix Web Application Secuirty. acunetix. [Online] 4 May 2010.
http://www.acunetix.com/blog/web-security-zone/articles/crlf-injection-http-response-splitting/.
19. The Open Web Application Security Project. HTTP Response Splitting. OWASP. [Online] 7 April
2009. https://www.owasp.org/index.php/HTTP_Response_Splitting.
20. HTTP Request Smuggling. Linhart, C, et al., et al. 2005.
21. The Open Web Application Security Project. HTTP Request Smuggling. OWASP. [Online] 7 April
2009. https://www.owasp.org/index.php/HTTP_Request_Smuggling.
22. Session Fixation Vulnerability in Web-Based Applications. Kolsek, M. 2002.
23. Claburn, Thomas. Apple's Safari Vulnerable To 'Cross-Site Cooking. Information Week. [Online]
29 July 2008. http://www.informationweek.com/news/internet/browsers/209800452.
24. Common Vulnerabilities and Exposures. CVE-2008-3170. CVE. [Online] http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2008-3170.
25. Veracode. Eradicate Cross-Site Scripting. 2011.
26. PHP. Data Filtering. PHP. [Online] April 2011. http://www.php.net/manual/en/book.filter.php.
27. Oracle. PreparedStatement (Java 2 Platform SE v1.4.2). Oracle | Hardware and Software,
Engineered to Work Together. [Online] 2010.
http://download.oracle.com/javase/1.4.2/docs/api/java/sql/PreparedStatement.html.
28. Schildt, Herbert. Java, The Complete Reference. s.l. : Osborne, 2007.
29. Vaswani, V. Zend Framework, A Beginner's Guide. s.l. : McGraw-Hill, 2010.
30. Cross-site Request Forgery: Attack and Defense. Alexenko, T, et al., et al. 2010.
31. LookupTables.com. ASCII. LookupTables.com. [Online] 2010. http://www.asciitable.com/.

Benjamin Hall

B Countering Web Injection Attacks: A Proof of Concept

Appendix

Glossary of Terms

Term Description

Namespace A conceptual space to avoid conflicts with already defined elements
containing the same names.

HTTP Hyper Text Transfer Protocol – the protocol used to for communication
between the browser and the web server

GET, POST Requests sent within the HTTP header, these requests are generated
from form submissions or contained within URL addresses

Turing complete A term given to programming languages that can perform calculations.

DOM The Document Object Model is a model for representing and interacting
with objects within HTML and XML documents

SQL Structured Query Language - Language used to query the database

XML HTTP Request A DOM API used to send and receive HTTP requests directly from a
browser-based scripting language e.g. JavaScript

iFrame A HTML frame which is contained within the web application and may be
hidden from view.

PHP PHP: Hypertext Pre-processor (recursive acronym) - A server-side web
language used for business logic and database connections

MySQL A form of SQL language

ASCII American Standard Code for Information Interchange - A common
encoding format used within web applications

Apache Apache is a type of HTTP web server used to communicate with the
browser

Benjamin Hall

C Countering Web Injection Attacks: A Proof of Concept

Cross-Site Scripting

Non-Persistent/Reflected Example:

1. Attacker sends a legitimate URL to the victim containing an embedded malicious script

contained with GET parameters.
2. The victim requests the URL page from the legitimate web application passing the malicious

code.
3. The server returns a response, reflecting the malicious script without filtering the content.
4. The browser executes the malicious script.

Persistent Example:

1. The attacker sends the malicious script to the web application
2. The web application stores this malicious script, typically within a database.
3. A user requests a page from the web application
4. The server fetches content from the database, in this case containing the malicious script

previously inserted by the attacker.
5. The web application returns the page to the user containing the un-escaped malicious script.
6. When received the users browser executed the malicious script, perceived by the web

browser to be legitimate content sent by the web application.

Benjamin Hall

D Countering Web Injection Attacks: A Proof of Concept

Cross-Site request forgery

1. Victim navigates web browser to a legitimate web application
2. The victim authenticates with the legitimate web server, this will include some form of login

process.
3. The victim navigates to the attackers web application
4. Still authenticated with the legitimate web application, the attacker’s application secretly

sends requests to the legitimate applications web server, in return the response is passed
back to the web browser.

5. In some cases this response may include information which is then passed onto the
attacker’s application web server.

Cross-Site request forgery Example:

Benjamin Hall

E Countering Web Injection Attacks: A Proof of Concept

PHP Sanitation methods

Filter

ID Description

FILTER_VALIDATE_BOOLEAN Returns TRUE for "1", "true", "on" and "yes".
Returns FALSE otherwise.
If FILTER_NULL_ON_FAILURE is set, FALSE is returned only for
"0", "false", "off", "no", and "", and NULL is returned for all
non-Boolean values.

FILTER_VALIDATE_EMAIL Validates value as e-mail.

FILTER_VALIDATE_FLOAT Validates value as float.

FILTER_VALIDATE_INT Validates value as integer, optionally from the specified range.

FILTER_VALIDATE_IP Validates value as IP address, optionally only IPv4 or IPv6 or
not from private or reserved ranges.

FILTER_VALIDATE_REGEXP Validates value against regexp, a Perl-compatible regular
expression.

FILTER_VALIDATE_URL Validates value as URL (according to »
http://www.faqs.org/rfcs/rfc2396), optionally with required
components. Note that the function will only find ASCII URLs to
be valid; internationalized domain names (containing non-
ASCII characters) will fail.

(26)

Sanitisation

ID Description

FILTER_SANITIZE_EMAIL Remove all characters except letters, digits
and !#$%&'*+-/=?^_`{|}~@.[].

FILTER_SANITIZE_ENCODED URL-encode string, optionally strip or encode special
characters.

FILTER_SANITIZE_MAGIC_QUOTES Apply addslashes().

FILTER_SANITIZE_NUMBER_FLOAT Remove all characters except digits, +- and optionally .,

FILTER_SANITIZE_NUMBER_INT Remove all characters except digits, plus and minus sign.

FILTER_SANITIZE_SPECIAL_CHARS HTML-escape '"<>& and characters with ASCII value less
than 32, optionally strip or encode other special
characters.

FILTER_SANITIZE_STRING Strip tags, optionally strip or encode special characters.

FILTER_SANITIZE_STRIPPED Alias of "string" filter.

FILTER_SANITIZE_URL Remove all characters except letters, digits and $-
_.+!*'(),{}|\\^~[]`<>#%";/?:@&=.

FILTER_UNSAFE_RAW Do nothing, optionally strip or encode special characters.

(26)

Flags

ID Description

FILTER_FLAG_STRIP_LOW Strips characters that has a numerical value <32.

FILTER_FLAG_STRIP_HIGH Strips characters that has a numerical value >127.

FILTER_FLAG_ALLOW_FRACTION Allows a period (.) as a fractional separator in numbers.

FILTER_FLAG_ALLOW_THOUSAND Allows a comma (,) as a thousand separator in numbers.

http://www.php.net/manual/en/book.pcre.php
http://www.faqs.org/rfcs/rfc2396
http://www.faqs.org/rfcs/rfc2396
http://www.php.net/manual/en/function.addslashes.php

Benjamin Hall

F Countering Web Injection Attacks: A Proof of Concept

FILTER_FLAG_ALLOW_SCIENTIFIC Allows an e or E for scientific notation in numbers.

FILTER_FLAG_NO_ENCODE_QUOTES If this flag is present, single (') and double (") quotes will not
be encoded.

FILTER_FLAG_ENCODE_LOW Encodes all characters with a numerical value <32.

FILTER_FLAG_ENCODE_HIGH Encodes all characters with a numerical value >127.

FILTER_FLAG_ENCODE_AMP Encodes ampersands (&).

FILTER_NULL_ON_FAILURE Returns NULL for unrecognized Boolean values.

FILTER_FLAG_ALLOW_OCTAL Regards inputs starting with a zero (0) as octal numbers.
This only allows the succeeding digits to be 0-7.

FILTER_FLAG_ALLOW_HEX Regards inputs starting with 0x or 0X as hexadecimal
numbers. This only allows succeeding characters to be a-fA-
F0-9.

FILTER_FLAG_IPV4 Allows the IP address to be in IPv4 format.

FILTER_FLAG_IPV6 Allows the IP address to be in IPv6 format.

FILTER_FLAG_NO_PRIV_RANGE Fails validation for the following private IPv4
ranges: 10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16.
Fails validation for the IPv6 addresses starting with FD or FC.

FILTER_FLAG_NO_RES_RANGE Fails validation for the following reserved IPv4
ranges: 0.0.0.0/8, 169.254.0.0/16, 192.0.2.0/24 and 224.0.0
.0/4. This flag does not apply to IPv6 addresses.

FILTER_FLAG_PATH_REQUIRED Requires the URL to contain a path part.

FILTER_FLAG_QUERY_REQUIRED Requires the URL to contain a query string.

(26)

Flag – ASCII filter

(31)

Benjamin Hall

G Countering Web Injection Attacks: A Proof of Concept

Project Plan

