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Abstract

This project is concerned with bit-error control ghanisms that are used in mobile
telephone and wireless computer networks today. udeeof Forward Error Correction
(FEC) techniques using convolutional codes is saidlong with the Viterbi Algorithm
for decoding convolutional codes. Due to its cotapanal complexity, a major portion
of the energy consumption at a wireless digitaénegr results from the Viterbi decoder.
This project investigates a new energy saving egsatthat may enable receivers to

decode convolutionally coded transmissions withdoenergy utilization.

In practical applications, there can be large viams in the bit-error rate encountered at
a mobile receiver. These variations will be morenpunced when the receiver is in
motion between access-points. The energy saviragegly is to switch to a simpler
decoding mechanism when it is ascertained tha¢rbitrs are not occurring. When the
presence of bit-errors is detected by the simptodier it switches back to the Viterbi
decoder to try and correct the bit-errors. On dwiitg from the simple decoder to the
Viterbi decoder, the Viterbi decoder must be adalyanitialized with the current state
of the simple decoder. Similarly, on switching frahe Viterbi decoder to the simple
decoder, the simple decoder must be accuratehalinégd with the current state of the
Viterbi Decoder. While it is easy for the simplecdder to detect the occurrence of bit-
errors, getting the Viterbi decoder to determineewlthere are no bit-errors and switch
back to the simple decoder presents a harder problEnese issues are addressed and a

working solution is presented.

Results obtained by MATLAB simulation demonstrate that, with appropriateirsgst

no increase in bit-error probability appears toitteoduced by the new method. The
packet loss rate was observed to be identical lovadues of signal to noise ratio

(En/Ng). Evaluating the energy saving capability of thew technique requires the

profiling of its energy consumption in comparisanthat of a standard Viterbi decoder.
To do this accurately for a true VLSI implementatiould require resources beyond
the scope of the project. However, MATLABrovides some profiling facilities based
on execution times and these can give some idé¢ledikely relationship between the

energy consumption of these particular algorith&isce they perform the same types of

operation, they are likely to be equally affected ibterpretation efficiency and the
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effects of caching. For a message length of 10b080and constant AWGN noise levels,
the MATLAB processing time shows that, in compamiso that obtained with a standard
Viterbi decoder, the new method requires aboustime execution time for SNR values
(as measured by,Mo) below 5 dB and always less for values above 5 dBEy/Ny is
increased beyond 5 dB, the difference in executiore between the two methods
becomes steadily greater. A{/Ny, = 7, 8, 9 and 10 dB, the execution time for thes ne
method becomes about 50 %, 35 %, 18 %, and 8 %ecteply of that taken by the
standard Viterbi decoder. We believe that thes#ilplg measurements indicate that

improved energy efficiency is a strong possibifdy the new decoder.
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Chapter 1
INTRODUCTION

This chapter gives an outline of the main motivadicand ideas that underpin this
project. The main objectives are then presenteagahath the scope of the investigation

and an overview of the report organization.

1.1 Motivation

Unlike wired digital networks, wireless digital ma&irks are much more prone to bit-
errors. Packets of bits that are received are kel to be damaged and considered
unusable in a packetized system. Error detecti@hcamrection mechanisms are vital
and numerous techniques exist for reducing thecetfebit-errors and trying to ensure
that the receiver eventually gets an error freesivar of the packet. The major
techniques used are error detection with Autonféipeat Request (ARQ) [4], Forward
Error Correction (FEC) [11] and hybrid forms of AR(pd FEC (H-ARQ) [8, 9]. This

project focuses on FEC techniques.

Forward Error Correction (FEC) is the method ofnsmitting error correction
information along with the message. At the receitl@s error correction information is
used to correct any bit-errors that may have oecurduring transmission. The
improved performance comes at the cost of introdpy@ considerable amount of
redundancy in the transmitted code. There are warkkEC codes in use today for the
purpose of error correction. Most codes fall intiher of two major categories: block
codes [11] and convolutional codes [6]. Block codesk with fixed length blocks of
code. Convolutional codes deal with data sequéyntfaé. taken a few bits at a time)

with the output depending on both the present imguiell as previous inputs.
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In terms of implementation, block codes become weryplex as their length increases
and are therefore harder to implement. Convoluti@ogaes, in comparison to block
codes, are less complex and therefore easier tdemgmt. In packetized digital

networks convolutionally coded data would still tbensmitted as packets or blocks.
However these blocks would be much larger in comparto those used by block
codes. The fact that convolutional codes are edsiemplement, coupled with the

emergence of a very efficient convolutional decgdadgorithm, known as Viterbi

Algorithm [1], is one of the reasons for convolui@ codes becoming the preferred
method for real time communication technologiesisTproject studies the use of
various error detection and correction techniquesriobile networks with a focus on

non-recursive convolutional coding and the Viteklgorithm.

The constraint length of a non-recursive convohai code results from the number of
stages present in the combinatorial logic of theoder. The error correction power of a
convolutional code increases with its constraingta. However, decoding complexity
increases exponentially as the constraint lengtheases. Fortunately, the efficiency of
the Viterbi algorithm allows the use of convolutrcoding with quite reasonable
constraint lengths in many applications. Due tohigh accuracy in finding the most
likely sequence of states, the Viterbi algorithmuged in many applications ranging
from communication networks [27, 30, 31], opticRhracter recognition [26] and even
DNA sequence analysis. Recently, interest has growmhe use of certain error
correction codes that provide much superior peréoree. Two of these codes are Low
Density Parity Check codes [19] and Turbo Codeq. [I6e ideas presented in this
thesis are likely to be relevant to these more aded codes as well as non-recursive

convolutional codes, but this thesis will conceratran convolutional codes.

Since preservation of battery energy is a majorceon for mobile devices, it is
desirable that the error detection and correcti@chmanism take the minimum amount
of energy to execute. This project explores thesipdgy of improving the energy

efficiency of the Viterbi decoder and develops loathm to achieve this.
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1.2 Outline and Context of the Report

This project focuses on the use of Viterbi Algamithor forward error correction in
mobile networks. It is desirable to keep energyscmnption at a minimum in order to
optimize use of available battery energy. In order get good error correcting
capabilities, the constraint length must be kegihhand since the complexity of a
convolutional decoder increases exponentially wglconstraint length, optimizing the

decoding mechanism with respect to energy consompicomes a worthwhile goal.

The growing need for improved energy efficiencydecoders has resulted in several
approaches being explored [20, 34]. The main fafuke project is to explore an idea,
proposed by Barry Cheetham [2] which is to switéhtlee Viterbi decoder and use a
simpler decoder when no bit-errors are occurrimngs Ipossible that by doing this, a
significant amount of energy could be saved. Whiemipoors are detected, the Viterbi
decoder can be switched back on to take advantai¢e @rror correction functionality.
This process at the receiver depends on having raomyeof previous bits received.
Correctly maintaining and using this previous memnd@previous history) when
switching between the two decoders is one of thé rtechnical challenges in the

project.

The energy saving mechanism proposed by Barry Gaee{2] is based on an earlier
idea published by Wei Shao [3], though it is hogeat the new approach will be easier
to implement. This algorithm can be developed gi$itATLAB © though it will require

a custom designed version of the Viterbi algoritturbe developed from scratch, and
then adapted to the new energy saving idea [2]siBlesproblems that may affect the
accuracy and energy saving capabilities of therdlgn must be analyzed and solutions
to these problems must be developed. The perforenahthe resulting algorithm must

be studied in terms of bit-error performance, patd®s rates and processing time.

In principle, evaluating the performance of thevrtechnique requires profiling of the
energy consumption of the two algorithms involvda do this accurately would
require resources beyond the scope of the prdy&TLAB ©, provides some profiling

facilities. But relating information obtained to exgy consumption as would be
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observed in a VLSI implementation of the code somplex issue. Nevertheless, it is
believed that the execution times of particulartpaf the algorithms can give some
idea of the likely relationship between the energgsumption of these particular parts.
Hence, in place of quoting estimations of the lkehergy consumption of different
techniques, execution times will be quoted withraplicit assumption that this gives a
first order approximation to the likely energy congption. By comparison with the
standard Viterbi decoder available in MATLABan analysis will be made of whether

this method provides a significant improvement amasting mechanisms.

1.3 Main Objectives

The main objectives of this project are as follows

i. An understanding of the background literature ratewto error detection and error
control mechanisms as currently used in packetigiggital communication
networks.

il. A detailed understanding of the concept ofvadational coding, and decoding using
the Viterbi algorithm.

i. An implementation of the Viterbi algorithm iMATLAB ® to obtain a ‘custom
designed’ version called ‘My Viterbi’ and check tha is working correctly by
comparing its performance with that of the Vitedecoder function (vitdec.m)
provided by MATLAB® (A custom designed Viterbi decoder is needed becaus
MATLAB ® does not provide access to the code for vitdec.m).

iv. A resolution of questions that still need todreswered about the new algorithm [2]
including the correct initialization of componergabders and the stability of the
feedback mechanism

v. An implementation in MATLAB of the new algorithm [2] as a modification of the
custom designed Viterbi algorithm.

vi. An evaluation of the new algorithm [2] in terno$ its accuracy and capacity for
achieving energy saving tAnalysis will be performed the basis of bit-error
performance, packet loss rates and execution tocoas{dered to provide a first

order approximation to energy consumption).
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1.4 Scope of the Project

This project is intended to further develop and langent the energy saving decoding
algorithm developed by Barry Cheetham [2]. Solwiaim some issues that still
remained to be resolved at the beginning of thigegt. The main focus of this project
is to provide a working demonstration of the algori by implementation in
MATLAB ® and to analyze its performance by comparison with standard Viterbi
decoder available in MATLAB. The system will be developed using a hard deisio
Viterbi decoder but may be extended to using adedision decoder. The project does
not consider the circuit level design of the altor but uses a high level approach to
test the proposed algorithm. This may be considerddture work if it is found that
this algorithm promises considerable benefits @xesting mechanisms.

1.5 Overview of the Report

Chapter 2 provides the background literature releva Error Detection and Control

Mechanisms and describes convolutional codes mld€hapter 3 is devoted to a study
of the Viterbi algorithm and in particular the Mité Decoder. Chapter 4 introduces the
new energy saving strategy proposed by Barry [&] explains the basic principles that
drive the mechanism. Chapter 5 describes the mdseaethodology that will be

followed to guide the structure of the project. Dasand implementation details of the
system to be developed are detailed in ChapteZl@apter 7 provides a summary of the
results obtained through testing and provides aildetanalysis of the results. Chapters
8 and 9 describe the conclusions that were madleeagnd of the project and provide

suggestions for further investigations on the dewedl algorithm.

1.6 Summary

This chapter has described the motivations behirsdproject and has defined its main
objectives and scope. The following chapter dessrilne major classifications of error

detection and correction mechanisms, their advastagd drawbacks.

9 September 2010 Page |16 |



wardr
Text Box


Chapter 2

ERROR DETECTION AND CORRECTION
TECHNIQUES

This section describes common methods of erroicdeteand error correction as used in
wireless networks. The methods described includev&a Error Correction (FEC) ,
Automatic Repeat Request (ARQ) and Hybrid- ARQ (R

2.1 Forward Error Correction (FEC)

Forward Error Correction is a method used to improkiannel capacity by introducing
redundant data into the message [8]. This redundatat allows the receiver to detect
and correct errors without the need for retransiomssf the message. Forward Error
Correction proves advantageous in noisy channelenwla large number of
retransmissions would normally be required befopaeket is received without error. It
is also used in cases where no backward channsetsekiom the receiver to the
transmitter. A complex algorithm or function is ds& encode the message with
redundant data. The process of adding redundaattdahe message is called channel
coding. This encoded message may or may not cottairoriginal information in an
unmodified form. Systematic codes are those thee l@aportion of the output directly

resembling the input. Non-systematic codes areethiwat do not.

It was earlier believed that as some degree ofenwizs present in all communication
channels, it would not be possible to have erree rommunications. This belief was
proved wrong by Claude Shannon in 1948. In his p§@gtitled “A Mathematical
Theory of Communication”Shannon proved that channel noise limits transonseate
and not the error probability. According to hisdahe every communication channel has

a capacity C (measured in bits per second), antbrag as the transmission rate, R
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(measured in bits per second), is less than Cs pdssible to design an error-free
communications system using error control code® fbw famous Shannon-Hartley
theorem, describes how this channel capacity cacalmeilated. However, Shannon did
not describe how such codes may be developed. [€dido a wide spread effort to
develop codes that would produce the very smalbreprobability as predicted by
Shannon. It was only in the 1960’s that these coda® finally discovered [10]. There
were two major classes of codes that were developathely block codes and

convolutional codes.

2.2 Block Codes

As described by Proakis [11], linear block codenstst of fixed length vectors called
code words. Block codes are described using twegers k and n, and a generator
matrix or polynomial [6]. The integer k is the nuentof data bits in the input to the
block encoder. The integer n is the total numberisfin the generated codeword. Also,

each n bit codeword is uniquely determined by tib& knput data.

Another parameter used to describe is its weighis 1 defined as the number of non
zero elements in the code word. In general, eadk wmrd has its own weight. If all the

M code words have equal weight it is said to bedixveight code [11].

Hamming Codes and Cyclic Redundancy Checks areMdely used examples of block
codes. They are described below.

2.2.1. Hamming Codes

A commonly known linear Block Code is the Hammingde. Hamming codes can
detect and correct a single bit-error in a blockdata. In these codes, every bit is
included in a unique set of parity bits [12]. Tpresence and location of a single parity
bit-error can be determined by analyzing pariti€c@mbinations of received bits to
produce a table of parities each of which corredpomo a particular bit-error
combination. This table of errors is known as theresyndrome. If all the parities are
correct according to this pattern, it can be cometuthat there is not a single bit-error in

the message (there may be multiple bit-errorsphdfe are errors in the parities caused

9 September 2010 Page |18 |



wardr
Text Box


by a single bit-error, the erroneous data bit carfdund by adding up the positions of
the erroneous parities. The reference [12] provittes general algorithm used for

creating Hamming codes and is presented in AppeBdix

While Hamming codes are easy to implement, a proldeses if more than one bit in
the received message is erroneous. In some casestror may be detected but cannot
be corrected. In other cases, the error may go teci@el resulting in an incorrect
interpretation of transmitted information. Hendeere is a need for more robust error
detection and correction schemes that can detedtcanrect multiple errors in a

transmitted message.

2.2.2 Cyclic codes and Cyclic Redundancy Checks (CRR

Cyclic Codes are linear block codes that can beressed by the following
mathematical propertylf C = [Ch.1Cn-2 ... C1 Co] IS @ code word of a cyclic code, then,fc
Cn-3 ... CoCn-1], Which is obtained by cyclically shifting all tredements to the left, is also a
code word [11]. In other words, every cyclic shoft a codeword results in another
codeword. This cyclic structure is very useful inceding and decoding operations

because it is very easy to implement in hardware.

A cyclic redundancy check or CRC is a very comnmmf of cyclic code which is used
for error detection purposes in communication systeAt the transmitter, a function is
used to calculate a value for the CRC check bisedaon the data to be transmitted.
These check bits are transmitted along with thea dat the receiver. The receiver
performs the same calculation on the received alaacompares it with the CRC check
bits that it has received. If they match, it is sidered that no bit-errors have occurred
during transmission. While it is possible for certpatterns of error to go undetected, a
careful selection of the generator function willhimize this possibility.

Using different kinds of generator polynomials,stpossible to use CRC’s to detect
different kinds of errors such as all single bitoes, all double bit errors, any odd
number of errors, or any burst error of length lgms a particular value. The specific

types of generator polynomials for detecting thessers are listed in Appendix C. Due
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to these properties, the CRC check is a very udeful of error detection. The IEEE
802.11 standard for CRC check polynomial is the €RJ13].

2.3 Convolutional Codes

Convolutional codes are codes that are generatpeesgally by passing the information
sequence through a linear finite-state shift regisf convolutional code is described
using three parameters k, n and K. The integepkesents the number of input bits for
each shift of the register. The integer n represtm number of output bits generated at
each shift of the register. K is an integer knaagnconstraint length, which represents
the number of k bit stages present in the encodimff register [6]. Each possible
combination of shift registers together forms asgas state of the encoder. For a code

of constraint length K, there exist 2possible states.

Since convolutional codes are processed sequenttat encoding process can start
producing encoded bits as soon as a few bits haea processed and then carry on
producing bits for as long as required. Similathge decoding process can start as soon
as a few bits have been received. In other wohis,mheans is that it is not necessary to
wait for the entire data to be received before dewpis started. This makes it ideal in

situations where the data to be transmitted is \@mg and possibly even endless! e.g.:

phone conversations.

In packetized digital networks, even convolutionatles are sent as packets of data.
However, these packet lengths are usually condiiedanger than what would be
practical for block codes. Additionally, in blockaes, all the blocks or packets would be

of the same length. In convolutional codes the ptciknay have varying lengths.

There are alternative ways of describing a convarhall code. It can be expressed as a
tree diagram, a trellis diagram or a state diagfaon.the purpose of this project, trellis

and state diagrams are used. These two diagranexplsned below.

9 September 2010 Page |20 |



wardr
Text Box


2.3.1 State Diagram

The state of the encoder (or decoder) refers tosaiple combination of register values
in the array of shift registers that the encoder decoder) is comprised of. A state-
diagram shows all possible present states of tisedam as well all the possible state
transitions that may occur. In order to create dta#e diagram, a state transition table
may first be made, showing the next state for gaadsible combination of the present
state and input to the decoder. The following tabded figures show how a state
diagram is drawn for a convolutional encoder. Far purpose of illustration a 3 stage
encoder with rate %2 has been shown. In the prdjeetstandard rate %2, 7stage encoder
will be used.

Figure 2.1 shows a convolutional encoder with a tatand K =3, (7, 5). Rate ¥z is used
to denote the fact that for each bit of input theagler a two bit output. K, the constraint
length of the encoder being three, establishesth®input persists for 3 clock cycles
[11]. The constraint length can be calculated as more than the number of serially
connected shift registers in the encoder. Octaibars seven and five when converted
to binary form represent the generator polynonsaisify the shift register connections
to the upper and lower modulo-two adders respdgtive, in binary form is 111. Hence
direct input, output of first shift register andtput of second shift register are connected
to the fist modulo-two adder (A in Figure 2.1). 8arly, 5g) in binary form is 101.
Hence direct input and output of second shift tegisre connected to the second

modulo-two adder (B in the Figure 2.1)

/i\ﬂ
L
g\», }
SEL OUTRUT
INPUT » FRy »  FF, A/B atn = 2k symbolg'sec
at k bits/ sec

B

f

Figure 2.1: %2, K=3 Convolutional Encoder
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By looking at the transition of shift registersg@lknown as Flip Flops) FF1 and FF2, the

State transition table is created for each comimnatf Input and Current State. This is
shown in Table 2.1

Current State Next State if
(FFL FFR) Input =0 Input=1
00 00 10
01 00 10
10 01 11
11 01 11

Table 2.1: State Transition Table

Another table can be created to demonstrate thegehim output for each combination
of input and previous output. This is called thegti Table and is shown in Table 2.2

Current Output Output Symbols if
Input =0 Input= 1

00 00 11

01 11 00

10 10 o1

11 01 10

Table 2.2: Output Table

Finally, using the information from Table 2.1 andble 2.2, the state diagram is created
as shown in Figure 2.2. The values inside the esrahdicate the state of the flip flops.
The values on the arrows indicate the output oktieder.
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00
Figure 2.2: State Diagram

2.3.2. Trellis Diagram

In a trellis diagram the mappings from currentestat next state are done in a slightly
different manner as shown in Figure 2.3. Additibnathe diagram is extended to

represent all the time instances until the wholessage is decoded. In the following

Figure 2.3, a trellis diagram is drawn for the abawentioned convolutional encoder.

The complete trellis diagram will replicate thigudre for each time instance that is to be
considered.

State 00 TR R0 -5 State 00

State 01 ‘N

state 10

State 10

State 11 .7 State 11
Figure 2.3: Trellis Diagram for a 1/2, K=3,(7,5)smlutional encoder

The solid lines in Figure 2.3 represent transitisnen the input is 1. The dashed lines
represent transitions when input is 0. From thégthm it can be observed that each state
has two possible successor states depending orhevhibie input bit was 1 or 0. The

diagram also shows that each state has two pogsidiecessor states.
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The most common convolutional code used in comnatioic systems has a symbol rate
of ¥2 and constraint length K = 7. The most widelsed method for decoding
convolutional codes has been the Viterbi Algorith@hapter 4 is devoted towards a
detailed description of the algorithm. Prior totfreme recent developments in this area

are described below.

2.4 Recent Developments

Since its discovery, the Viterbi algorithm has beke most widely used method for
decoding convolutional codes. However, more compderes are now increasingly
being used to provide superior performance. Whildeustanding these complex codes
in a short amount of time is difficult, an attentms been made to provide a basic
description of two of these codes, namely Low DignBarity Check Codes and Turbo
Codes.

2.4.1 Low Density Parity Check Codes or LDPC Codes

LDPC codes were first introduced by Gallager in D thesis in 1963[18]. However,

it was a long time before interest grew in thes#eso As described by Shokrollahi [19],
LDPC codes are linear block codes obtained fronrsgpaipartite graphs. A sparse
bipartite graph is a graph with ‘n’ left nodes knmoas message nodes and ‘r’ right nodes
known as check nodes. The graph creates a lineler @ioblock length n and dimension
at least ‘n — r’ as described below: The n coorngisaf the codewords are associated
with the n message nodes. The codewords are tlem$ers (c1, . . ., cn) such that for
all check nodes the sum of the neighboring posstimmong the message nodes is zero.

Shokrollahi provides this example [19] shown indfgy 2.7 to illustrate this concept.
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3 Ty +Fo+rg+ry+rI5+ra+rn=10

I +J';|_ T Iy +J'7 +J':- +J'-;| +J'||| =1}

I + ¥sT2IX7 +J'x +J'r| + ip = [}

Ts + Y4+ XI5 +J'7 + 19 = ]

Figure 2.4: Example of an LDPC Code. Reproduceh fiio]

LDPC codes can be mathematically defined in thevwehg way [19].

“Let H be a binary r x n matrix where entry (ii$)1 if and only if the'f check node is
connected to thé"jmessage node in the graph. Then the LDPC codebmalgfined by
the graph as the set of vectors ¢ = (c 1, .cn.),such that H -'c= 0. Matrix H defined

in this manner is known as the parity check mdtixthe code.”

LDPC Codes are not particularly advantageous agaoed to other codes in terms of
probability of decoding errors for a particular dtdength. Also, the maximum rate at
which LDPC Codes can be used is limited below ckhroapacity. The biggest

advantage of LDPC Codes, as explained by Gallagdri$ that they allow the use of a

simple decoding scheme and this outweighs its daalud

One of the simpler decoding schemes that may be feseBinary Symmetric Channels

is done by calculating all of the parity checks floe code and then reversing the digit
that is contained in more than a certain numbeurdfatisfied parity check equations.
This process is repeated many times until all theity checks are satisfied. This

decoding scheme is not optimal. Better schemeshmisea posteriori probabilities at

the channel output to decode data are describ&hbgger [18].
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2.4.2. Turbo Codes

Concatenated coding schemes combine two or margvedly simple component codes
as a means of achieving large coding gains. Suobatenated codes have the error-
correction capability of much longer codes whileha same time permitting relatively
easy to moderately complex decoding. [6] Turbo spdest introduced by Berrou,
Glavieux and Thitimajshima, [15] are a modificatiof the concatenated encoding
structure with an iterative algorithm for decoditigg associated sequence. Serial and

parallel concatenated Turbo codes are in facta oy DPC codes.

2.4.2.1 Encoder

In most communication links, bit-errors are introdd into the message as short bursts
due to some sudden disturbance in the medium. Waay bit-errors occur adjacent to
each other, it is more difficult to correct thermurbo Codes try to reduce the effect of
such bursts of error by spreading out adjacentimédion bits. The encoder as shown in
Figure 2.4 and described by Ryan [16], consisthiae individual components

i. The Recursive Systematic Encoders,

ii. Permuter or N-bit interleaver

iii. Puncturer (optional).

?f=.\'_r
RSC 1 ;
| 82(D) x?
v 2(D)
N-bit .
Interleaver Puncturing o
................................. »/Mechanism
RSC 2 z
, g'r(D) 1
7 b =2 N
g(D)

Figure 2.5: Schematic Diagram of a Turbo Encodéhn o identical Recursive
Systematic Encoders, an N-bit Interleaver and RueactReproduced from [16]

As shown in the figure, the two Recursive Systematicoders are separated by an N-
bit interleaver or permuter. However instead ofceding the two encoders serially, as
is the convention for concatenation, the encodeesaaranged to facilitate parallel

concatenation [16]. A conventional interleaver ages data in a pseudo random order.
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The permuter differs from this in that it takeslack of N bits of data and rearranges
them in a pseudo random manner. It is hence aldedcan N-bit interleaver. This
rearranged code is then passed to the second encode

The advantage is that any bursts of errors thatrowdl now be spread over a wider
range bits. As the bit-errors are now farther affgete is a higher probability that the
bit-errors may be corrected at the decoder. Thithoteis advantageous when the
medium is known to produce burst errors. Therdge a probability that this type of
code adversely affects the outcome. This may hagpeitrerrors which would have

been far apart are adjacent to each other as kh oé#loe rearrangement operations.

2.4.2.2 Decoder
Using a maximum likelihood sequence for the decadmuld prove too difficult since
the data has been rearranged in a pseudo randbiarfakistead an iterative decoding
algorithm is used to provide similar performanae.okder to make full use of this
method, the decoders must produce soft decisioputaitas hard decisions will
severely limit its error correcting capability. THecoding algorithm used by Berrou, et
al [15], is based on the symbol-by-symbol maximaimosteriori(MAP) algorithm of
Bahl, et al [17]. In this algorithm, the decodetssie data inputias 1 if P(W=1|y)
is greater than P& -1 | y ), where y is the received message witenpors. In other
words the decision of the value afequals sign [L(K)] which is the loga posteriori
probability (LAPP) ratio given by

Lu) =log [(P(w=+1]y)/(P(u=-1]y)] ---(Eq.1)
The following figure, Figure 2.5, described by RyHI6], demonstrates how an
iterative decoder is built using component MAP dizs. The N-bit interleavers and

de-interleavers are used to arrange informatidherright sequence for each decoder.

N-bit _
L De-Intriver Leﬂj

MAP L | N-bit

Y T Decoder 1 | Intriver MAP

Intriver

¥ ’_’ Decoder 2
T N-bit | | (

Figure 2.6 Schematic Diagram of Turbo Decoder.r&dyced from [16]
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Berrou, Glavieux and Thitimajshima conducted sirtiates using parallel concatenation
of Recursive Systematic Encoders and feedback degdd5]. The results showed a
marked improvement in error correction capabilitiegs the number of iterations
performed was increased. For binary modulatiorit arbor probability of 13 and B/No

= 0.2 dB is often used as a practical Shannon lieférence for a rate ¥2 code. The error
performance of this turbo code at bit error prohigbil0™ is within 0.5 dB of the
pragmatic Shannon limit.

2.5 Automatic Repeat Request (ARQ)

Automatic Repeat request or ARQ is a method in iwe receiver sends back a
positive acknowledgement if no errors are detectdtie received message. In order to
do this, the transmitter sends a Cyclic Redunda@bgck or CRC along with the

message. This has been described in Section 2t#21CRC check bits are calculated
based on the data to be transmitted. At the recetiie CRC is calculated again using
the received bits. If the calculated CRC bits mdtabse received, the data received is

considered accurate and an acknowledgement idaekto the transmitter.

The sender waits for this acknowledgement. If ksloot receive an acknowledgement
(ACK) within a predefined time, or if it receivesnagative acknowledgement (NAK), it
retransmits the message [4].This retransmissidone either until it receives an ACK or

until it exceeds a specified number of retransrorssi

This method has a number of drawbacks. Firstiynsirassion of a whole message takes
much longer as the sender has to keep waitingdanavledgements from the receiver.
Secondly, due to this delay, it is not possiblehttve practical, real-time, two-way
communications. There are a few simple variatianghé standard Stop-and-Wait ARQ
such as Go-back-N ARQ, selective repeat ARQ. Theselescribed below.

2.5.1 ‘Stop and Wait’ ARQ
In this method, the transmitter sends a packewaaits for a positive acknowledgement.
Only once it receives this ACK does it proceeddndsthe next packet [5].This method

results in a lot of delays as the transmitter bbasdit for an acknowledgement. It is also
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prone to attacks where a malicious user keeps sgmMihAK messages continuously. As
a result the transmitter keeps retransmitting tes packet and the communication

channel breaks down.

2.5.2 ‘Continuous’ ARQ

In this method, the transmitter transmits packetginuously until it receives a NAK. A
sequence number is assigned to each transmittddcetpao that it may be properly

referenced by the NAK. There are two ways a NAKrscessed.

2.5.2.1 'Go-back-N" ARQ

In ‘Go-back-N’ ARQ, the packet that was receivaderror is retransmitted along with

all the packets that followed after it until the KAvas received. N refers to the number
of packets that have to be traced back to reaclpdbket that was received in error. In
some cases this value is determined using the segquaimber referenced in the NAK.

In others, it is calculated using roundtrip del&y.The disadvantage of this method is
that even though subsequent packages may haverdssned without error, they have

to be discarded and retransmitted again resultirigss of efficiency. This disadvantage

is overcome by using Selective-repeat ARQ.

2.5.2.2 ‘Selective-repeat’ ARQ

In Selective-repeat ARQ, only the packet that waseived in error needs to be

retransmitted when an NAK is received. The othekpts that have already been sent in
the meantime are stored in a buffer and can be osee the packet in error is

retransmitted correctly [5]. The transmissions thek up from where they left off.

Continuous ARQ requires a higher memory capacityc@spared to Stop and Wait
ARQ. However it reduces delay and increases infaandhroughput [5].

The main advantage of ARQ is that as it detectm®ijusing CRC check bits) but makes
no attempt to correct them, it requires much simgeroding equipment and much less
redundancy as compared to Forward Error Corredgchniques which are described

below. The huge drawback however, is that the AR&hod may require a large
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number of retransmissions to get the correct paffdetespecially if the medium is

noisy. Hence the delay in getting messages acragberexcessive.

2.6 Hybrid Automatic Repeat Request (H-ARQ)

Hybrid Automatic Repeat Request or H-ARQ is anotfaration of the ARQ method. In

this technique, error correction information iscaleansmitted along with the code. This
gives a better performance especially when thexedot of errors occurring. On the flip
side, it introduces a larger amount of redundamcthe information sent and therefore
reduces the rate at which the actual information ba transmitted. There are two
different kinds of H-ARQ, namely Type | HARQ andpie/|l HARQ [7].

Type I-HARQ is very similar to ARQ except that mg case both error detection as well
as forward error correction (FEC) bits are addeth&information before transmission.
At the receiver, error correction information isedsto correct any errors that occurred
during transmission. The error detection informatie then used to check whether all
errors were corrected. If the transmission chanmat poor and many bit-errors
occurred, errors may be present even after the eoreection process. In this case, when

all errors have not been corrected, the packaseaed and a new packet is requested.

In Type II-HARQ, the first transmission is sent lwitnly error detection information. If
this transmission is not received error free, tbeoad transmission is sent along with
error correction information. If the second transsion is also not error free, information

from the first and second packet can be combinetitanate the error.

Transmitting FEC information can double or tripke tmessage length. Error detection
information on the other hand requires fewer numbeir additional bits [7]. The
advantage of Type Il HARQ therefore, is that itrewses the efficiency of the code to
that of simple ARQ when channel conditions are gand provides the efficiency of

Type | HARQ when channel conditions are bad.
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2.7 Summary

This chapter has given a review of backgroundditee pertaining to different error
detection and error control techniques. Some ofntioee recent approaches including
LDPC codes and Turbo codes are briefly described=HC, convolutional codes are
preferred to block codes since they are less contpldecode. The encoding process has
been described in this chapter. The next chaptdeveted to a detailed description of
the Viterbi Algorithm which is one of the most pdgu algorithms for decoding
convolutional code. Related energy saving techmiqtleat have previously been

investigated to optimize its energy consumptionadse described.
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Chapter 3
THE VITERBI ALGORITHM

The Viterbi Algorithm was developed by Andrew Jtérbi and first published in the
IEEE transactions journal on Information theorylB67 [1]. It is a maximum likelihood
decoding algorithm for convolutional codes. Thigaaithm provides a method of finding
the branch in the trellis diagram that has the ésglprobability of matching the actual
transmitted sequence of bits. Since being discoyeatehas become one of the most
popular algorithms in use for convolutional decadiApart from being an efficient and
robust error detection code, it has the advantddeaaing a fixed decoding time. This

makes it suitable for hardware implementation.

3.1 Encoding Mechanism

Data is coded by using a convolutional encodedeasribed in Section 2.3.2. It consists
of a series of shift registers and an associatedbegwtorial logic. The combinatorial

logic is usually a series of exclusive-or gatese Tdonventional encoder Y2 K=7,
(171,133) is used for the purpose of this projébe octal numbers 171 and 133 when
represented in binary form correspond to the caimoreof the shift registers to the upper
and lower exclusive-or gates respectively. Figuré Bepresents this convolutional

encoder that will be used for the project.
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Ui= 2=U1 xor FF3 U3= =U3 xor FF6
T Input xer FE2 T T U2 xor FF5 ]\

Input FF1 FF2 FF3 FF4 FF5 FF6 Output
Multiplexer | =

{ i ; f\% { ’é%} Lowrer encoded bit
Li= L2= L3=L2 xor FF3 =L3 xor FF6

Input xor FF1 L1 xor FF2

Figure 3.1: Rate = %2 K =7, (171,133) ConvolutioBatoder

3.2 Decoding Mechanism

There are two main mechanisms by which Viterbi daop may be carried out namely,

the Register Exchange mechanism and the Tracebechkamnism

Register exchange mechanisms, as explained by Rampal Sam Ha [20] store the

partially decoded output sequence along the pdth.alvantage of this approach is that
it eliminates the need for traceback and hencecesdiatency. However at each stage,
the contents of each register needs to be copiethe¢onext stage. This makes the
hardware complex and more energy consuming thatrdbeback mechanism.

Traceback mechanisms use a single bit to indicdtetiver the survivor branch came
from the upper or lower path. This information sed to traceback the surviving path
from the final state to the initial state. Thistpaan then be used to obtain the decoded
sequence. Traceback mechanisms prove to be leggyarmsuming and will hence be

the approach followed in this project.

Decoding may be done using either hard decisiontspr soft decision inputs. Inputs
that arrive at the receiver may not be exactly zegrone. Having been affected by noise,
they will have values in between and even highdower than zero and one. The values
may also be complex in nature. In the hard deciMderbi decoder, each input that

arrives at the receiver is converted into a binaatye (either 0 or 1). In the soft decision
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Viterbi decoder, several levels are created andathiging input is categorized into a
level that is closest to its value. If the possilshlues are split into 8 decision levels,
these levels may be represented by 3 bits andsthkisown as a 3 bit Soft decision. This
project uses a hard decision Viterbi decoder ferghrpose of developing and verifying
the new energy saving algorithm. Once the algorithwverified, a soft decision Viterbi

decoder may be used in place of the hard decisoader.

Figure 3.2 shows the various stages required tod#edata using the Viterbi Algorithm.
The decoding mechanism comprises of three majgestaamely the Branch Metric
Computation Unit, the Path Metric Computation anddACompare-Select (ACS) Unit

and the Traceback Unit. A schematic representatidhe decoder is described below.

Local Winner

for each state
Branch Metric State at Decoded

*
Branch Metric | for each stata,| Path Meric Computatin O] otamut | Output
Computation Unit and ACS Unit TR Detemination

Global Winner at
current time slat

Figure 3.2: Schematic representation of the Vitddwoding block

Block 1. Branch Metric Computation (BMC)

For each state, the Hamming distance between tsevesl bits and the expected bits is
calculated. Hamming distance between two symbokh@fsame length is calculated as
the number of bits that are different between th&mese branch metric values are
passed to Block 2. If soft decision inputs wereb® used, branch metric would be
calculated as the squared Euclidean distance bettireereceived symbols [21]. The
squared Euclidean distance is given asb(} + (a-b,)* + (a-bs)*> where al, a2, a3 and
b1, b2, b3 are the three soft decision bits ofdoeived and expected bits respectively.

Block 2. Path Metric Computation and Add-Compare-S&ct (ACS)
Unit
The path metric or error probability for each tifins state at a particular time instant is

measured as the sum of the path metric for itsegoliag state and the branch metric
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between the previous state and the present stageinitial path metric at the first time

instant is infinity for all states except state O.

For each state, there are two possible predecesBoesmechanism of calculating the
predecessors (and successors) is described belSection 3.2.1 and Section 3.2.2. The
path metrics from both these predecessors are cemhgend the one with the smallest
path metric is selected. This is the most probé#ialesition that occurred in the original
message. In addition, a single bit is also stooeeach state which specifies whether the
lower or upper predecessor was selected. In caBesevboth paths result in the same
path metric to the state, either the higher or lostate may consistently be chosen as the
surviving predecessor. For the purpose of thisegatofhe higher state is consistently
chosen as the surviving predecessor.

Finally, the state with the least accumulated patiric at the current time instant is
located. This state is called the global winner andhe state from which traceback
operation will begin. This method of starting tliaceback operation from the global
winner instead of an arbitrary state was describgd.inda Brackenbury [22] in her
design of an asynchronous Viterbi decoder. Thiattyemproves probability of finding
the correct traceback path quicker and hence redineeamount of history information
that needs to be maintained. It also reduces tmebau of updates required to the
surviving path. Both these measures result in imguloenergy savings. The values for
the surviving predecessors (also called local wisin@nd the global winner are passed to
Block 3.

Block 3. Traceback Unit

The global winner for the current state is recagiyem Block 2. Its predecessor is
selected in the manner described in Section 312.2his way, working backwards
through the trellis, the path with the minimum aocliated path metric is selected. This
path is known as the traceback path. A diagranokgscription will help visualize this
process. Figure 3.3 describes the trellis diagramaf’, K=3 (7, 5) coder with sample

input taken as the received data.
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Time
State 00

State 01

State 10

State 11

Received Data 0o 11 11 0o

— ——pTransition when Input =0
——>Transition when Input =1

B Accumulated Error Metric
B sclected minimum error path

Figure 3.3 Selected minimum error path for a ¥2 K&, 5) coder

The state having minimum accumulated error at #s¢ fime instant is State 10 and
traceback is started here. Moving backwards thrabghrellis, the minimum error path
out of the two possible predecessors from thae staselected. This path is marked in
blue. The actual received data is described abotgmm while the expected data written
in blue along the selected path. It is observeddhéime slot three there was an error in
received data (11). This was corrected to (10hleydecoder.

Local winner information must be stored for fiveés the constraint length. For a K =7
decoder, this results in storing history for 7 x 85 time slots. The state of the decoder
at the time instant 35 time slots prior can therabeurately determined. This state value
is passed to Block 4. At the next time slot, a# thellis values are shifted left to the
previous time slot. The path metric for the lastereed data and compute the minimum
error path is then calculated. If the global winmérthis stage is not a child of the
previous global winner, the traceback path has @¢oupdated accordingly until the

traceback state is a child of the previous sta2¢ [2

Multiple traceback paths are possible and it maghbeght that traceback up to the first
bit is necessary to correctly determine the sungvpath. However, it was found that all
possible paths converge within a certain distancdepth of traceback [23][24]. This
information is useful as it allows the setting afeatain traceback depth beyond which it
IS neither necessary nor advantageous to storerpathc and other information. This

9 September 2010 Page |36 |



wardr
Text Box


greatly reduces memory storage requirements andehenergy consumption of the
decoder. Empirical observations showed that a depflve times the constraint length
was sufficient to ensure merging of paths [8]. Zherefore, local winner information is

stored for 35 slots (five times seven) in the decaged for this project.

Block 4. Data Input Determination
Now going forwards through the traceback path,dfiage transitions at successive time
intervals are studies and the data bit that woaldehcaused this transition (using the

method described in Section 3.2.1) is determinédk flepresents the decoded output.

3.2.1 Determining Successors to a particular State

Each state is represented by 6 shift registergh@ncase of a K=7 encoder or decoder).
The next state can therefore be obtained by a syift of the values of the shift
registers. The first shift register is given a wabf 0. The resulting state represents the
next state of the coder if the input bit was 0.d8iging 32 (1x9 to this value, the next
state of the coder if the input bit was 1 is dative

3.2.2 Determining Predecessors to a particular Stat
In a similar way, the first predecessor can beuated this time by a left shift of the
values of the shift registers. By adding one £]1@ this value, the value of the second

predecessor to the state is derived.

3.3. Applications

The Viterbi algorithm has a wide range of applicas ranging from satellite and space

communications, DNA sequence analysis and Optibar&cter Recognition.

An attempt to perform optical character recognitidriext was investigated by Neuhoff
[26]. The initial approach considered was to creatalictionary which simulated
vocabularies. Each time a character was read byptieal reader, it would search the
dictionary for the most likely estimate. The hugeoaint of computational and storage
requirements required under this approach madenifrdctical. However, another

approach makes use of statistical information altbet language such as relative
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frequency of letter pairs. A maximum a priori prbbidy (MAP) of a word is determined
based on its probability as the output of the seumodel. The Viterbi algorithm may

then be used to perform this MAP sequence estimatio

An interesting application discussed by Metznei] [B¥estigated among others, the use
of Viterbi decoding with soft decision to increaiee probability of successfully
transmitting a data packet during a meteor burstceSmeteor trails are made up of
ionized material, these can be used for reliablaranications. Some characteristics of
such meteor burst communication and descriptionstofpractical applications are
detailed in [28, 29]. Metzner showed that convioh#l codes with soft decision were

considerably better for meteor burst applications@npared to Reed-Solomon codes.

Low power applications of the Viterbi decoder aegtigularly relevant to many digital
communication and recording systems today. As destiby Kawokgy and Salama [30]
systems like these are increasingly being used irelegs applications which being
battery operated, require low power consumptioraddition, these systems also require
processing speeds of over 100Mbps to allow multiméhnsmission. Following this
trend, many papers have been written on designavg power Viterbi decoding
algorithms targeted for next generation wirelespliegtions, particularly CDMA
systems [31, 32, 33]. Some of these energy sadedas that have been investigated are

described in the next section

3.4 Related Work

In mobile networks, decoding capabilities are laditoy the receiver which is a mobile
handset. As such, it has limited resources of gnargl computation power. Another
factor that affects wireless communication is thahdwidth is expensive. Therefore,
there is a high demand for codes that can correatsevery efficiently while at the same
time utilizing minimum energy. Hence, a lot of thast research has been focused on

how this may be achieved.

The fixed T-algorithm algorithm is an optimizatief the Viterbi algorithm which

applies a pruning threshold to the accumulated pagtrics of the Viterbi decoder.
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Instead of storing all the survivor paths for dil*tates, only some of the most-likely
paths are kept at every trellis stage. This resnlfewer paths being found and stored.
The following Figure 3.4 demonstrates the resultaof experiment conducted by
Henning and Chakrabarti [34] which compares norredli energy estimates for the
Viterbi and the fixed T-algorithm decoders as ities with signal to noise ratio (i)

and code rate.
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Figure 3.4: Normalized energy estimates for theNitand fixed T-algorithm (]

decoders as code rate and signal to noise rajibl{Evary. Reproduced from [34].

From the graph, it is estimated that a 33% to 8&#@tiction in energy consumption can
be achieved when the signal to noise ratio is betv&1 and 4 dB.

One of the other approaches taken has been toogesel adaptive T-algorithm which
adjusts parameters of the decoder based on realMamations in signal to noise ratio
(SNR), code rate and maximum acceptable bit-emate. rThe parameters adjusted are
truncation length and pruning threshold of the geathm along with trace-back
memory management. Henning and Chakrabarti denadesir their paper [34] how this
can achieve a potential energy reduction of 70991®%% as compared to Viterbi
decoding. Truncation length refers to the numbdbitsf a path is followed back before a
decision is made on the bit that was encoded. Byaiag the truncation length more bits
can be decoded per traceback. Similarly, lowerhg runing threshold means fewer
paths need to be found and stored. Both of thessesumes can reduce the number of

memory accesses required by the decoder and heuee energy consumption.

9 September 2010 Page |39 |



wardr
Text Box


However, these measures may cause significant tiedun the error correcting

capability of the decoder.

Nevertheless, adjusting these parameters basedabtime changes in the channel can
optimize energy consumption. The following figuFégure 3.5 demonstrates the results
of an experiment conducted by Henning and Chaktidi3dl in which pruning threshold
and truncation length are adapted to maintain rodrerate below 0.0037. From the
graph, it is estimated that an energy consumptduagction of 70 to 97.5 % compared to

the Viterbi decoder can be achieved when the signabise ratio is between 2.1 and 4

dB.

However, the adaptive T-algorithm does require dditeonal overhead in terms of
monitoring the real-time variations and choosing d@ppropriate truncation and threshold

parameters from a lookup table. Since these opasatire not complex it is assumed that

their energy consumption is negligible.
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Figure 3.5: Normalized energy estimates for theNitand adaptive T-algorithm T

decoders as code rate and signal to noise ragib{Evary while maintaining bit-error
rate below 0.0037. Reproduced from [34].

Yet another approach that was put forward by Jeafid Chi-Ying Tsui in the 2006
International Symposium on Low Power Electronicd &esign, [35] was to integrate
the T-algorithm with a Scarce-State—Transition (B8dcoder structure [36]. The SST
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structure first pre-decodes the received data (x@®erforming an inverse operation of
the encoder. The pre-decoded signal will contaan dhiginal message along with bit-
errors (Pre-Dec). This message Pre-Dec is re-edcag XOR’ed with Rx, the original
received data. The operation results in an outghithwconsists of mainly 0’s and the
errors in the message. This output is then fedhéoMiterbi decoder and the errors are
corrected. In the end, the pre-decoded data (Po@-Beadded to the decoded output of
the Viterbi decoder using modulo-2 addition. Wldiannel bit-errors are low, most of
the Viterbi decoder output bits are zero and tledsices switching activity.

The SST structure was used to reduce the switchotiyities of the decoder and
combined with the T-algorithm to reduce the averagmber of Add-Compare Select
calculations. In their experiments, Jie Jin and-@hg Tsui achieved a 30%-76%
reduction in power consumption over the traditioderbi design for a range of SNR

values varying from 4 dB to 12 dB.

A different approach investigated by Sherif Wel§#aker, Salwa Hussein Elramly and
Khaled Ali Shehata [37] at a Telecommunicationsuforheld in Belgrade last year
(2009) was to use the traceback approach with ajatikg. In clock gating, the clock of
each register is enabled only when the registeatgsdt survivor path information. This
reduces power dissipation. Their simulations shoa&9% reduction in dynamic power

dissipation which gives a good indication of powedtuction on implementation.

A similar approach investigated by Ranpara and $&m[20] and presented in the
International ASIC conference at Washington in 19@8 the use of clock gating in
combination with a concept known as toggle filtgri®ignals may arrive at the inputs of
a combinational block at different times and thasises the block to go through several
intermediate transitions before it stabilizes. Bgcking early signals, the number of
intermediate transitions can be reduced and heoaempdisspation can be minimized.
This mechanism of blocking early signals until @mlput signals arrive, called toggle
filtering, was used by Ranpara, et al, [20] to energy consumption of the Viterbi

decoder.
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Recently a new approach, targeted towards wiredg@gdications has been introduced
[38] and involves a pre-traceback architecture for tm@igor path memory unit. The

start state of decoding is obtained directly thfoagpointer register pointing to the target
traceback state instead of estimating the state sfarough a recursive traceback
operation. This approach makes use of the sinyjlddtween bit write and decode
traceback operation to introduce the pre-tracelmpekation. Effectively resulting in a

trace forward type of operation, it results in &b@eduction in survivor memory read
operations. Apart from improving latency by 25% pleamentation results predict up to
11.9% better energy efficiency when compared toventional traceback architecture

for typical wireless applications.

3.5 Summary

This chapter has explained the decoding mechanighredViterbi decoder in detail and
described a few of its applications. A number afrgly saving techniques that have been
investigated in the past has been discussed. Ttiechapter gives a detailed description

of the proposed energy saving algorithm that wellused in this project.
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Chapter 4

AN ALTERNATIVE ENERGY SAVING
STRATEGY

Much previous research has been focused on makayiterbi decoder less energy
consuming (e.g. [20, 34, 35, 36, 37, 38] ). Onssgue approach is to try to minimize
the amount of time which the Viterbi decoder netdse switched on. Conventionally,
the decoder is on all the time, even when therdeaveor no bit-errors. In practice the
bit-error rate with mobile equipment can be veryialale especially when the receiver
IS moving relative to access-points. Switchingtb# Viterbi decoder when there are no
bit-errors seems a promising strategy.

Two different ways of doing this have been investiggl previously at the University of
Manchester. One method proposed by Wei Shao [3lyolves a method of pre-
decoding and identifying no-error code word segaengsing an ‘inverse circuit’ [35].
An alternative method, proposed by Barry Cheeth&ijp fhakes use of simple
properties of the Exclusive-Or (XOR) operation anmbination with a simple feedback

mechanism for detecting the presence of bit-errors.

An adaptive algorithm is proposed to directly usehspre-decoded data as the decoded
output without the Viterbi decoder having to pracéisem. This makes it possible to
switch on the Viterbi decoder only when bit-erraxscur. In this project, the second
approach to reduce energy consumption at the reiceil be investigated.

4.1 Principle

The underlying principle proposed by Barry [2], the switch off mechanism can be
described in the following way. Taking the cas¢hafY2 K=7, (171, 133) convolutional
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encoder, it is known that each input bit is XORieith flip flops 1,2 , 3 and 6 for the
lower output bit and flip flops 2 ,3 ,5 and 6 fétretupper output bit. The lower and
upper bit are then interleaved and transmittedasshown in Figure 3.1.

Exclusive-Or (XOR) has the property that ((A XORXPR B) = A. This property has
enormous implications and will prove very helpfal aur analysis. To understand its
importance, let us take the following example. Gd&isA to be the information bit that
must be transmitted and B to be the result of tbenkinatorial logic of the
convolutional encoder before it is XOR’ed with théormation bit. A XOR B gives Y,
i.e. the transmitted message. Now it is clear ftbm above property that Y XOR B
gives A which was the original information bit. dther words, XORing the transmitted
message with the same combinatorial logic resat Was used in the encoder gives
back the original information bit. As long as thare no bit-errors, the message can be

decoded this way and the Viterbi decoder need eaatwtched on.

In the conventional % rate encoder, each inputi®itXOR’ed with 2 different
combinations of flip flops (FF1, FF2,FF 3 and Fe8 fower bits and FF2, FF3, FF5
and FF6 for upper bits) to produce two output bitsese bits are then interleaved and
transmitted. This is the structure described inufég3.1. At the receiver, XORing
alternate arriving bits with the corresponding sktlip flops (FF1, FF2, FF3 and FF6
for lower bits and FF2, FF3, FF5 and FF6 for uppis), gives back the original

message bit.

It is also understood that each upper receivedridteach corresponding lower received
bit were produced, at the transmitter, by the sanginal information bits. Assume
that a correct copy of all previous informationsbis available at the receiver. This
assumption is bound to be correct at the beginoing packet transmission, since all
previous bits, at both the transmitter and receiae¥ assumed to be zero. XORing the
upper received bit with the 'appropriate’ corrempies (as held at the receiver) of the
previous information bits should produce the curiginal information bit. The term
‘appropriate’ refers to the information bits tharevtaken into account in the upper part

of the convolutional encoder i.e. th¥ 239 5" and &" bit in this example.
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Similarly, XORing the lower received bit with theppropriate’ correct receiver copies
of the previous information bits should also pragltlie same correct information bit. If
there is no bit-error the same correct value fahlibe upper and lower decoded bits
will be obtained at the receiver. Clearly, in tba&se, the process can then continue with
the next received upper and lower bits. The diagfar the proposed design is

provided in Figure 4.1.

Upper decoded Bit
= 2= Ul ¥or FF3 =U3 xor FF6
Upper bit U3=
Upper B T i T T
Received
Signal

U2 xor FF5
o Demultiplexer FEL > P2 —> FF3 > P4 # FF5 - Compare bits.

Output 0 if equal
Output 1 if not

Error Flag

Lower Bit

/ @ Lower Decoded Bit
Li= L2= 13=L2 yor FF3 =13 or FF6 Decoded Output

Lowier it xor FFL |4 yor 2

Feedback

Figure 4.1: Proposed Simple Decoder

If the upper and lower received bits are found ¢odifferent at any stage, it can be
concluded that a single bit-error has just occyregtther in the upper transmission or in

the lower one.

On the other hand, if they are found to be equalannot be concluded that there was
no bit-error introduced in transmission. There rbaytwo bit-errors, one in the upper
transmission and one in the lower transmission.rdfbee the occurrence of multiple
bit-errors may not be detected straight away, amlindeed possible for some bit-error
patterns to pass completely undetected. As wilihmewvn in the following chapters, it is
expected that in these rare cases not even thebVatigorithm would be able detect the

presence of bit-errors.

However, in most cases, the occurrence of a bargraittern, containing one, two, three

or more bit-errors would create a difference betwtbe upper and lower decoded bits.
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When such a difference is observed, it may be coled that there has been at least one
bit-error recently (within in the last 14 bits i.2.time slots). However, it is not known
exactly where and how many. When this happens;uhrent proposal is to go back 14
bits, start up the Viterbi decoder and proceed eatignally. This principle lies at the

heart of the attempt to reduce energy consumpfidimeoViterbi decoder.

Since this method involves going back 14 bits waererror is detected, it will require
the last 14 received data bits to be stored. Whbit-error occurs, the Viterbi decoder
will be switched on and the T4revious data bit (that was stored) will be taksrthe

next input.

4.2 Summary

This chapter gives only a description of the basiecepts that motivated this approach.
There still remain many issues that have to beess$eéd in this algorithm such as the
mechanism of switching and determining the inistdte of the decoder. These are
described in Section 5.4 as ‘Likely Issues’ andrasgsed in the Chapter 6. The next

chapter describes the research methods that watlbpted to structure the project.
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Chapter 5
RESEARCH METHODS

The core objectives of the project were discusse@hapter 1 and in this Chapter the
research methodologies that were adopted to aclpi®yect goals are described. Based
on the strategy described in Chapter 4, the keiyetables and software tools that will

be used are identified. A project plan for the aeslke project has been developed and
summarized with the help of a Gantt chart. Thelyikesues that may be faced during the

design and implementation of the algorithm are disoussed.

5.1 Research Approach

As discussed in Chapter 1, the main aim of thigegtois to develop a more energy
efficient method of decoding convolutionally encdd#ata. Towards this end, the new
algorithm described in Section 4 is developed a&stet. A structured research approach
is essential in obtaining reliable results and @nguhat all aspects of the problem to be
solved are addressed. A major portion of this meseavill require observation and
evaluation of performance of the new algorithm omparison with conventional
systems. Hence, this project will follow an emmpfiapproach [39, 40]. Some of the
main objectives of this approach are to learn famthective experience of the field and
to identify, explore, confirm and advance theowdtmoncepts. An emphasis will be laid

on utilizing the appropriate test cases, data ctla and analysis techniques.

The project also uses a constructive research melihgy. A constructive research
approach is defined as “A research procedure fodymring innovative constructions,
intended to solve problems faced in the real weantdl, by that means, to make a
contribution to the theory of the discipline in whiit is applied.” [41]. A construction as
described by the author, may be a new theory, idhgoy model, framework or method.

In this project, the construction is a new algoritfor an energy efficient technique of
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decoding convolutional codes. Some of the fundaaldiocus points in this type of

research are listed and answered here.

5.1.1 Definition of the research problem.

As described in Section 1.2, with the sudden graeftivireless applications, there is an
inherent need for efficient and less energy consgndiecoders. Conventional decoders
such as the Viterbi decoder are computationallyeagve and hence consume a lot of
energy. This project seeks to provide a more eneffygient solution that will prolong
battery life of the receiving device.

5.1.2 A general and comprehensive understanding tife topic.
Sections 2.1 -2.5 were devoted to a detailed dasmmi of the background surrounding
Error Detection and Forward Error Correction medcsras and recent developments in

the area.

5.1.3 Construct a solution idea.

The basic solution idea based on the work done agyBCheetham [2] has been
described in Section 2.6. Some key issues remabe &olved and these will be pursued
in the following stages. Chapter 4 gives a compmsive description of the design and

implementation features of the solution. Some efkby deliverables for the project are

i. A MATLAB ® Implementation of the algorithm to turn the Vitedecoder on/off at the
appropriate time

ii. A mechanism to detect when errors have stastegdped occurring

iii. A communication channel that simulates theeef6 of AWGN noise over a range of
bit-error rates

iv. A fully functional decoder unit based on thewnalgorithm and implemented in
MATLAB ©

5.1.4. Demonstrate that the solution works.

Chapter 5 is devoted towards testing and analyistteodesigned system. In order to
demonstrate that the proposed system works as texpatis compared at every stage
with the MATLAB® Viterbi decoder. The criteria that will be usecet@luate the system
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include Bit-Error Probability (BEP) Performance cRet Loss Rate and Measurement of
Processing Time. Actual design components of the sgstem need to be defined in
order to explain exactly how this system will beakesated. Therefore a detailed
statement of evaluation criteria has been defdo&kction 7.1

5.2 Implementation Tools

The configuration of the computer used affects precessing time required by
MATLAB ® to execute its commands. The code was implemersied a DELL Inspiron
6400 Laptop with the following specifications.

Operating System (OS) Name: Microsoft® Windows &1%t Ultimate

Processor: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHR@00 MHz, 2 Core(s), 2
Logical Processor(s)

Random Access Memory (RAM): 2 GB

Total Physical Memory: 2.00 GB
Total Virtual Memory: 4.23 GB
Available Physical Memory: 810 MB
Available Virtual Memory: 2.16 GB

Implementation of the algorithm was done using MABR® Version 7.5.0.342
(R2007b), a product of MathWorks. The main toolsxkeat were used include the
Signal Processing Toolbox and the Communicatiorebiox.

There was an initial consideration to use Simuliakpther product of Mathworks to
build a simulation of the system. This would inwhbuilding a circuit level
implementation of the Viterbi decoder and then #idgpit to meet the requirements of
the new system. We were unable to acquire theldétenowledge required to do this.
The fact that Embedded MATLABFunctions do not support variable sized arrays in
MATLAB ® Version R2007b created further complications iimgiSimulink. It was then
decided to leave this pursuit as a future directowrresearch.

9 September 2010 Page |49 |



wardr
Text Box


5.3 Research Plan

The project has been categorized into four maikstasmmely Background Research,
Design and Implementation of the Code, Experiméntatith Data and Analysis of
Results and Preparation of Dissertation report. R\or the dissertation report was done
in parallel with the corresponding sections of preject in order to ensure sufficient
time for refinement of the report. A detailed dgstton of the sub-tasks and the expected

timeline is provided in Appendix A Section (i) a.

Reviewing this plan at the end of the project shobweat most of the project went on
track as planned. Tasks 2.4 and 2.8 took sligbthgér than planned. However this time
was recovered by the time allocated to Task 2.Zkwhias not implemented. It was also
found that doing parallel work on the report helpied clarifying thoughts and
continuously improving analysis methods. Task 3reftege, was carried out in
conjunction with the report writing process. Reviegvof the report, Task 4.7 took
slightly longer than expected. However this was pleted with remaining time

available before submission.

5.4 Likely Issues

The issues that needed to be addressed in thegapoethod are explained below. It
seems easy to detect when bit-errors start ocgurfinerefore, switching on the Viterbi
decoder at the appropriate time will not be difficuHowever, the initial state of the
decoder must also be known. In a conventional dacdlde initial state is set to 0 before
decoding begins. In this algorithm however, switchto the Viterbi decoder may take
place at any time in the middle of the decodingrapen. Therefore, the initial state

must be figured out.

Once switching to the Viterbi decoder is carried, tlue question of determining when to
switch off the decoder i.e. determining when errsig occurring, presents a tougher
problem. Finding a solution to this issue will benajor focus of this project. If it is

possible to detect that bit-errors have stoppedioicg, the control must be switched to
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the Simple Decoder. This also requires initializihg Simple Decoder to the correct

state. This presents the next issue that mustkee tzare of.

Another concern that needs to be tackled is whethieedecoder will go into an unstable
state when errors start occurring. Since the deced®loys a feedback mechanism,
there is a possibility that when an error occurs error will be propagated through the
system and result in the registers moving to aormect state. If this happens, it will not
be possible to decode subsequent bits correctly.

It also remains to be discovered whether this newhriique is in fact capable of
providing adequate energy savings. Careful experiaton and analysis of data is
required before this can be ascertained. The SiDptmder does not need to store state
history and path metrics as the Viterbi decodesd®berefore it requires far less storage
units and state transitions. It is hence reason#blexpect the Simple Decoder to
consume much less energy. Nevertheless, it islpedsiat the overheads involved in the
process of switching between the Simple Decoder taedViterbi decoder is energy
expensive. As a result, there may be an SNR lireibv which using the switching

technique is not advantageous.

Of even more importance is an analysis of whetherstvitching mechanism results in a
considerable degradation of bit-error probabiligrfprmance. The performance of the
new strategy will depend on how accurately errars loe detected and the corresponding
decoders initialized during switching. Even if dl@ove method does save energy, a poor
BEP performance will severely limit its relevanoeapplications.

5.5 Summary

This chapter has described the research approatiplan that will be followed along
with the implementation tools that will be useddéscription of issues that still remain
to be solved has also been detailed in this chapher next chapter describes the design
of the system and its implementation in MATLAB
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Chapter 6
DESIGN AND IMPLEMENTATION

This section gives a comprehensive description h&f various components of the
developed system and explains how these comporentsnplemented in MATLAB.
Finally, a flowchart is drawn to provide a visuapresentation of flow of control through
the significant sections of the system. Appendigdatains the MATLAE code for all

the modules of the system.

6.1 The Transmitter Block

The transmitter block is designed with the follogrcomponents

6.1.1 A Data Generating Source

Random binary data is generated using the ‘randisnction. Six ‘O’ bits are appended
to the randomly generated data. These act as péierd Since there are 6 shift registers
in the convolutional encoder, it is necessary to the encoder for an additional 6 time
slots after the last data input for the last datdadoappear at the output of the encoder.

For this reason, zero buffers are appended tontti@Ethe data bits.

6.1.2. A Convolutional Encoder

A %2 K=7 (171 133) convolutional encoder is usede Bix shift registers are initialized
to 0. At each time slot a new data bit is accemiad XOR’ed with values of the
corresponding shift registers as was shown in tiguré 4.1. These connections
represent (17%)and (133 in binary form. In this way the value for the upgacoded
bit and lower encoded bit is determined. The vabfesl registers are then shifted to the
register on the right. The 2:1 multiplexer outpth® upper encoded bit and lower

encoded bit in alternating sequences.
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6.1.3 A QPSK Modulator
Before transmitting the signal it is modulated iI@®SK signals with Gray encoding.
This is implemented via predefined functions adsidan MATLAB®. An oversampling

rate of 4 is used which results in 4 pulses fohedata bit.

6.2 The Communications Channel

In order to simulate the effects of the communaratthannel Additive White Gaussian
noise is added to the transmitted signal. The sigmanoise ratio is reduced by
10xlogp(4) in to account for oversampling. It is furtheduced by 10xlog(1/code rate)

so that the noise power is scaled to match codetbalyrate. The symbol to noise ratio

is varied over different iterations.

6.3 The Receiver Block

The receiver block contains the following composent

6.3.1 A QPSK Demodulator
The demodulator accepts the received signals anobdidates them. The demodulated

signals are then passed to the Simple Decoder.

6.3.2 The Switching Decoder
The Switching Decoder is made up of two componehtSimple Decoder which will be
used when there are no bit-errors and an Adaptéerbridecoder which will be used

when bit-errors start occurring. The two componanésdescribed in detail below.
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Part 1. The Simple Decoder
As shown in Figure 6.1 below, a 1:2 demultiplexeused to separate alternate arriving
bits into the upper and lower combination of XORistially all the flip flops are set to

0. This mirrors the initial state of the transmitfigo flops at start of transition. Therefore

Upper decoded Bit
U= U2= U1 xor FF3 =U3 xor FF6

: Upper bit u3=
Upper Bit T X'JDE " T U2 xor FF5
Received

Signal
—=

Demultiplexer B > P2 FF3 > FFé4 2 FF3 s R Compare bits.

Output 0 if equal Error Flag

FF1
Qutput 1if not
Lowier Bit J/
f @ Lower Decoded Bit
Li= L2= 13=12 %or FR =L.3 xor FF6 Decoded Output

Lower bit xor FFL |1 yorFR2

Feadback

the result of the XOR operations is the correctoded output as explained by the
principle in Section 4. The result of the upper X@peration is compared with the result
of the lower XOR operation.

Figure 6.1: Proposed Simple Decoder that will bedushen there are no bit-errors

If both bits are equal, Error Flag is set to OhEitone of the outputs, in this case the
lower branch output, is taken as the decoded owapdtappended to the decoded output
array. The decoded output is also fed back toitkeffip flop. This ensures that the set

of flip flops still mirror the state of the encodehen the next bit arrives.

If the two bits are different, an error has occdregther in the upper or lower branch.
There may also have been a double, triple or a M@OmMbination of errors in the
previous bits which could have resulted in giving same bit at the output. In order to
reduce the possibility that such errors go undetkaince an error is detected, the input
is retraced by 14 bits, the Error Flag set to 1 @trol switched to the Viterbi decoder.
Since a % rate encoder is used, going back 14 bitsustops at the"7previous output.

During the operation of the Simple Decoder, anyaohflength 7 is also maintained

which contains values of the 7 previous stateshefd@ncoder. When errors occur and
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decoding is switched to the Viterbi decoder, theuawlated error metric of the"7

previous state is set as 0 for the first time sfdhe Viterbi decoder. Since a 14 input bit
traceback occurs before starting the Viterbi decaiie above operation will ensure that
the Viterbi decoder starts from the correct stdftean error occurs before 7 bits are
decoded during a particular function call, theiahistate of the Viterbi decoder is set to

the traceback state that gave the last decoded bit.

Part 2. Adapted Viterbi Decoder

A traceback Viterbi decoder with a traceback degt85, i.e. five times the constraint
length is used. Instead of setting the accumulateatr for the first state to O as is the
convention, the accumulated error f8t previous state of the Simple Decoder is set to 0
for the first time slot. The reasoning behind tiislescribed in Section 6.3 (ii - a).After

this slight adjustment, the conventional procedsifellowed.

Two major issues needed to be resolved here. Téiepiioblem was to establish when
bit-errors have stopped occurring. The second waacturately determine the initial
state of the flip flops while switching from the t¥ibi decoder to the Simple Decoder.

The following solutions are proposed.

Once data for 35 time slots have been built upguBilock 1 and Block 2 as described in
Section 3.2, traceback operations can begin. Whenttaceback begins, a counter is
also maintained. This counts the number of consexuime slots for which the

accumulated path metric of the global winner hasaieed constant. If this path metric
has remained constant for 7 consecutive slots faiidy certain that bit errors have

stopped occurring. The Viterbi decoder is then ptoband the last traceback state
passed to the Simple Decoder. The Simple Decodear then resume operations

accurately.

On switching from the Viterbi decoder to the Simpdecoder (when errors stop
occurring), the initial state of the flip flopsset to the binary value representation of the
traceback state that gave the last decoded bis @ihgures that the initial state of the

Simple Decoder is correct and therefore it givasem outputs.
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A check is also maintained on whether less thatirB& slots are remaining for end of
data. If this condition is satisfied no switch ise to the Simple Decoder even if errors
have stopped occurring. This ensures that if erdwsoccur shortly afterwards, a
sufficient traceback depth still exists to accusatkecode remaining data. However this

check can be performed only if data length is kntweforehand.

In order to develop the Adapted Viterbi Decodbke tode for a normal Viterbi decoder
is developed that would function just as the MATLAB/iterbi decoder would.

Henceforth, this is called ‘My Viterbi’ Decoder. iBhdecoder was then modified into
what will be called an Adapted Viterbi Decoder twable switching. The flowcharts in

Figure 6.2a and 6.2b will help in summarizing theerall flow of control through the

/Receivetransmitted bits/

v

Demodulate bits using
QPSK demodulation,
Gray encoding
Initialize initState to 0

—

Start Simple Decoder
Initialize state of decoderto
value passed by function
as initState

entire Switching Decoder.

»

W

Decode next 2 bits
pState[7] = array of 7 previous states of decoder
if (upper decoded bit = lower decoded bit)
BitError=1
else BitError =0, output = lower decoded bit

%
NO / \
/ \ YES

BitError =17 A
™ e
™ 4
e,
v

End of data?

Figure 6.2a: Flowchart for the Switching DecodeartA

9 September 2010 Page |56 |



wardr
Text Box


Go back 7 steps (14 input bits, 7 time slots)
Switch off Simple Decoder

v

Switch on Adapted Viterbi decoder
Initialize path metric to 0 at time t=1
for 7th prev. state indicated by pState(7)

ni<
h 4

Read next 2 input bits
Calculate branch metrics, path metrics, add-compare-select

*
N

End of data?

e > ) Traceback
O N e / YES output = decoded (t-35th) bit
B A v
\\/
if (oldLowest ==null} oldLowes = 0;
newlowest = path metric of last decoded bit

v

if(newl owest ==old Lowest)
noChangeCount=noChangeCount+1;
else neChangeCount=0;

oldLowest = newlowest

NO

noChangeCount ==217

initState = last tracebadk state
Stop Adapted Viterbi Decoder

End of data?

Figure 6.2b: Flowchart for the Switching DecodeartAB
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6.4 Analysis of Failure Cases for Simple Decoder

There are certain cases when the Simple Decodkfaito detect a particular sequence
of bit-errors in the received bit-stream. An anaysf why these sequences exist and
their probabilities of occurrence are provided keloThe impact of these cases on the
behaviour of the energy saving decoder [2] is tlvensidered. In all cases, the

convolutional encoder referred to is the %2 K=771(1133) convolutional coder.

6.4.1 Logical evaluation

The presence of bit-errors in the input bit-straamot detected by the Simple Decoder
until its upper and lower branches give differentpouts. With an isolated single bit
error, this will occur straight away, but two coaggve bit-errors can clearly cause the
upper and lower branches to remain equal even ththey are both wrong. Hence this
double error will not be detected straight awaputyh it may be detected when the next
pair of input bits arrives. Extrapolating fromgshiery simple case, it is not difficult to
see that further bit-errors may delay the erroect&in until the third pair of input bits
arrive, or even the fourth, fifth, sixth or sevempidir. Therefore, if the upper and lower
branches become different at any stage, the mtseausing this may occur within the
current pair of input bits or any of the previous pairs. In any of these cases, the
detection of a difference between upper and lowgpus will cause a switch to the
standard Viterbi decoder with a seven slot traggkbd@he seven slot trace-back ensures
that the standard Viterbi decoder has the bestilgesshance of correcting the bit-errors
that have occurred. In fact it has exactly the sah@nce that a standard Viterbi decoder
would have without the Simple Decoder’s switchingamanism. It may fail, but nothing

is lost by using the Simple Decoder first.

Going back to the Simple Decoder, it is straighfanrd to invent an input sequence
which causes the presence of bit-errors to remadietected by the Simple Decoder until
the seventh pair of bits arrives. It is also gfindfiorward to extend such a sequence to 8,
9 pairs or even to infinity. In this case, thetsWito standard Viterbi will occur too late,
since we only wind back by 7 pairs, or the switcllymever occur at all. So the Simple

Decoder will definitely produce a wrong output whithe standard Viterbi Decoder will
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not have any chance to correct. The question samgeether we may now have lost
decoding power by not switching early enough.

The answer is that no decoding power is lost sincan be shown and it is demonstrated
below that a sequence of 8 pairs for which the ugpel lower outputs of a Simple

Decoder are identical cannot be corrected by adatadnViterbi decoder because the
inputs will be compatible with a different (incoct message bit-stream when it is
received without bit-errors. The incorrect mess&agéhat generated by the Simple
Decoder which is guaranteed to produce smallermatated distances than the true
message. Looking at this another way, for a camgttength 7 convolutional coder, the
minimum free distance is about 10, and there valinany more than 4 bit-errors in the

sequence.

This argument also shows that there is no poirwvinding back’ by more than 7 input
pairs when switching from the Simple Decoder (SD)ttie standard Viterbi Decoder
(VD). This means that a latency of only 7 mesdai¢ee is imposed by the SD to VD

switching mechanism.

We must also ask if problems could occur when switg back to the Simple Decoder
from the standard Viterbi decoder. The switchmogurs when no changes occur to the
minimum accumulated distance for a suitable nurobarput pairs, since this is taken as
an indication that there are no bit-errors. Bus ipossible to invent an input sequence
of pairs, of any desired length, for which there many bit errors, but yet the minimum
accumulated distance does not change despite thmutogenerated being totally
incorrect. In this case an inappropriate switchthi® Simple Decoder may be made.
However, again nothing is lost by this inapprogiatvitch since the Viterbi Decoder is

failing to correct the bit-errors, so we just re@ane incorrect output by another.

6.4.2 Evidence through practical examples

The following examples that were developed manujiylogically applying the ‘odd
number of bit inversions to invert output’ rule f8r consecutive time slots. These
examples demonstrate how certain input sequendayg thee detection of bit-errors by
the Simple Decoder. The message bit obtained thendecoder will be incorrect if the

output of BOTH the upper and lower branches haea lmverted and thus give the same
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output. Since the output of each branch is thelteskee-or’ of a current input bit and
several previous ones, this inversion occurs wherethave been an odd number of bit
inversions (bit-errors) in each branch (a propeftXOR). If there is an even number of
bit inversions, the output remains correct. Usihig principle, examples of sequences
that delay the bit-error detection of the Simplec@er may be generated as shown
below. We assume that a pair of input bits areived from the channel at time slot T1,

another pair at time-slot T2, and so on.

Example Sequence 1: Output Bit-Error at slot T1

Message bits: 11101010

Transmitted sequence: 110110101100101

Received sequence:0011010111010011 (Bit-errors are shown in red)

At the Simple Decoder, the following operationsetg@iace:

Lower branch Output = Rx(L) xor FF1 xor FF2 xor B&8 FF6

Upper branch Output = Rx(U) xor FF2 xor FF3 xor Kieb FF6
where Rx(U) represents the input to the upper raRg(L) represents the input to the
lower branch and FF1 to FF6 are the shift registdjputs. The output of the decoder is
fed back to FF1.

Time Output | Output
Rx(L) | Rx(U) | FF1 | FF2 | FF3| FF4| FF5| FF6

Slot (L) (R)
T1 0 0 0 0
T2 1 1 0 1 1
T3 0 1 1 0 1 1
T4 0 1 1 1 0 0 0
T5 1 1 0 1 1 0 1 1
T6 0 1 1 0 1 1 0 0 0
T7 0 0 0 1 0 1 1 0 1 1
T8 1 1 1 0 1 0 1 1 0 0

Table 6.1: Operation of Simple Decoder under Exangadquence 1

In Table 6.1, we see that the outputs of both bras@re identical in all cases despite the

presence of nine bit-errors in the input bit-streafence the two bit-errors in the inputs
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at slot T1 are not detected, and neither are anthefothers. This was confirmed by
simulation in MATLAB® and the same sequence, embedded within a longeerses) of

zeros, was also applied the conventional Viterlsoder. Again as expected, the Viterbi
decoder could not correct the bit-errors. This iegpthat even if the Simple Decoder had
been able to detect the bit-errors and switch exaidi the Viterbi decoder, the bit-errors

would still not be corrected.

It can now be explained more clearly why, if thenfie Decoder does not detect a
sequence of bit-errors, neither will the Viterbicdder. Since convolutional codes are
linear, the number of bit-errors in the output deggeonly on the error sequence in the
input and not on the actual message bits. It ssipte to calculate which bit-error

sequences can produce errors in the output ofithpl& Decoder.

It is known that the ‘free distance’, the minimumniming distance de) between any
two possible code sequences, is 10 for a rate %2, edmistength 7 convolutional code
[42]. The number of close proximity errors that candoerected is calculated as a
function of the code’s free distance. It is giventb= (thee — 1) / 2 [43]. The Viterbi
Decoder can therefore correct a maximum of 4 eromcurring relatively near each

other.

If it is true that the minimum number of bit-erraesquired for the Simple Decoder to
give an incorrect output is greater than 4, thiplies that any bit-error that the Simple
Decoder cannot detect will not be corrected everthieyconventional Viterbi Decoder.

The Error Sequence producing Table 6.1isE=110111110001 100 0] where1's
represent the positions at which bit-errors oc€here are 9 bit-errors in the input to the
decoder within a space of 16 bits. As shown in EXanSequence 1, this results in a
single bit-error in the output at slot T1. There atso sequences which cause more than

one bit-error to occur in the output. Examplesgiven below

Example Sequence 2: Output Bit-Error at T1 and T3
Decoding of an input stream with the error sequéheef1 110000111101 101]
is represented in Table 6.2. ‘e’ represents anbérsion (bit-error).
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Time | Rx(L) | Rx(U) | FF1 FF2 FF3 FF4 FF5 FF6 | Output
T1 e e e
T2 e e
T3 e e
T4 e e e
T5 e e e e
T6 e e e
T7 e e e e
T8 e e

Table 6.2 Operation of Simple Decoder under ExarSplguence 2

Taking into consideration the 7 slot (14 bit) trdo@ek, once an error is detected, the
final output of the decoder will have at least enr at T1 after which it switches to the
Viterbi decoder. This example requires 10 bit-egrior the input sequence in a space of
16 bits.

Testing in MATLAB® confirmed that both the Switching Decoder and iterbi
decoder had 2 bit-errors in their output. Therefenen the Viterbi decoder could not

correct these errors as expected.
Example Sequence 3: Output Bit-Error at TL T2 T3 T4ATS5 T6 T7 T8

Decoding of error sequence E=[1101100 10011 1 1 1] is represented in Table
6.3

Time | Rx(L) | Rx(U) | FF1 | FF2 | FF3 | FF4 | FF5| FF6]| Output

T1 e e e

T2 e

T3 e

T4

TS5

o|o|®| @@

T6

T7

olo|P|o|d| DD
olo|®P| o @
o|o| Plo|®
o|o| P|®

@

MD| D

T8

Table 6.3: Operation of Simple Decoder under Exangaquence 3
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Taking into consideration the 7 slot (14 bit) trd@ek once a bit-error is detected, the
final output of the decoder will have at least en@r at T1 after which it switches to the
Viterbi decoder. This example also requires 1Cehibrs in the input sequence in a space
of 16 bits.

Testing in MATLAB® confirmed that both the Switching Decoder and iterbi
decoder had 8 bit-errors in their output. Therefenen the Viterbi decoder could not

correct these errors as expected.

In all the above examples the number of bit-erretgiired in the input sequence is 9 or
10 and exceeds the number that can be correctédebgonventional Viterbi Decoder
which is 4. Therefore even if the Viterbi Decodeasmsed conventionally, i.e. without a
Simple Decoder, these bit-errors would not be cbec:

The conclusion is that there has to be an odd nuwitigit-inversions in BOTH the two
branches for a bit-error not to be detected. Ther esequence must be at least 16 bits
long to ensure that at least one bit-error is pgaped to the output after the 7 slot (14
bit) trace-back.

Since there is only one input to each of the brasclt each slot, there is only one
possible error sequence that can result in a péaticombination of errors at the output.
Therefore, by calculating the number of such eocmmnbinations, the number of input

error sequences that will not be detected by thg® Decoder can be calculated.

The number of such error combinations can be catedl in the following way.
Accounting for the 7-bit trace-back, at least ongpat bit-error goes undetected only if
an error occurs in slot T1 (or)Tand an error is not detected until after slot(@8T.g).
There is only one 16-bit error sequence that goeetected AND results in a single bit-
error at the output (as in the Example Sequencestribed above). The number of
sequences with double bit-errors having one otikerrors at slot T1 (or J is ‘'C; (as

in Example sequence 2). The number of sequencéstripte bit-errors having one of
the bit-errors at slot T1 i€C,. Proceeding in a similar fashion, it is foundtttiee total

number of error sequences that go undetectedaslated as
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Number of sequences = 1@, +'Cy+'Ca+'Cy+'Cs+'Cs+'Cy

= 128 possib&bit sequences.

There are 2 possible 16-bit sequences. Among these, only rleem is correct for a
given sequence of message bits, and the rest nohiaerrors. Therefore out of a
possible 2-1 error sequences, only 128 of them go undetdayettie Simple Decoder.
The probability of the errors not being detectedhisrefore 1.95 x 1¢. It has been
argued that the Viterbi Decoder will not be abledorect ANY of these error sequences,
and the failure has been illustrated by the exasngileen above [Example Sequence 1, 2
& 3].

6.5 Summary

This chapter has described the flow of control dath processing that takes place in the
system. Solutions to some of the unresolved questhave been proposed. The next
chapter details how the system will be tested amyiges an analysis of the results

obtained.
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Chapter 7
TESTING AND ANALYSIS

Now that the system has been developed, adequsitegtés required to ensure it works
as expected and also evaluate its performance. Jéasion describes testing and
evaluation criteria for the developed system analviges an analysis of the results

obtained.

7.1 Overview of Testing

In order to ensure that the new algorithm worksueately the following checkpoints are

used.

i. The MATLAB® code for the customized (‘My Viterbi’) decoder, itten from
scratch, for any input data the same output as dfiada MATLAB® implemented

conventional Viterbi decoder (vitdec.m).
il. The Simple Decoder should produce correct owstpehen no bit-errors occur

iii. With no errors introduced, the switching menlsn from the Simple Decoder to the
Adapted Viterbi Decoder and vice versa should pceduo error in the output. For this
test case, switches are forced at equal interfalsimthe Simple Decoder. The Adapted
Viterbi decoder automatically switches to the Sienplecoder when the path metric

remains constant for the predetermined number méeautive bits.

iv. With errors introduced in certain sectionslod signal, the Switching Decoder should
produce the same output as that of the MATAB Vitetbcoder. This is done in the

following way. Transmit data at zero bit-error rafdter a short period increase bit-error
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rate to 102 and then bring it back to zero subsequently. Ekiguence will allow us to
monitor the following cases

a. No bit-errors occur and the Simple Decoder is dvatton

b. Bit-errors start occurring and the receiver mustgwto the Viterbi decoder

c. Bit errors stop occurring and the receiver mustawio the Simple Decoder

v. Finally, with AWGN added to the signal, the auttgproduced by the Switching
Decoder should closely match the output producedhby'‘My Viterbi’ decoder. This
must be tested over a range of SNR varying front@® 1 dB.

vi. Estimating energy consumption of the decodeuires detailed knowledge of the
circuitry at transistor level. For the purpose lustproject however, a simpler technique
is used as described below. Though this methodsgiverery rough estimate of the
energy used, it is useful in loosely predicting ttenditions at which the Switching
Decoder is likely to give better energy efficienag compared to the conventional
Viterbi decoder.

The profiler tool available in MATLAB is used to run the simulation, first with no
errors introduced and then varying SNR from 7 wB4 For each case the simulation is
run 10 times. After each simulation the profileveg a description of the number of
times a particular function was called and thelt@RU time taken to execute that
function for all its function calls. In addition tihis information, the number of bits
decoded by each decoder (the Simple Decoder anddidugted Viterbi decoder) is also
displayed by inserting appropriate statements e dbde. Using this information, the
total time required by each decoder to decode ike di different SNR’s can be

calculated.

7.2 Results and Analysis

Once the code for ‘My Viterbi’ decoder was writténwas tested against the MATLAB
Viterbi Decoder as described in Section 7.1 (i) lthdle tests showed that it followed the
MATLAB ® Viterbi decoder excepting for minor variations.e5k may have arisen due
to the fact that the way in which MATLAB’s Viterlllecoder selects paths when their
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path metric is equal is not known. In this algamththe higher state is consistently
chosen as the surviving state. However, MATI®ABay choose the lower state or even
choose the upper or lower state in a random fast8ample graphs are produced and
explained in Section 7.2.1 -7.2.3

The Simple Decoder was then tested without introdudit-errors as mentioned in

Section 7.1 (ii). In all cases, the decoded outpatiched transmitted data.

In order to ensure that Switching does not intrederors in the output, switches were
between the Simple Decoder and the Adapted Vitboder as explained is Section 7.1
(ii). In all 10 tested cases, no errors occurrethe decoded output. This confirmed that

the initialization of states on both decoders warsact.

The process mentioned in Section 7.1(iv) was chmiat by separating the transmitted
message a 1000 bit long into 3 parts and introduemors only to the middle part. Once
errors were introduced the message was concatetmafedn a single array. The results
showed that the switching operations occurred etagbpropriate places. With one-third
of the message bits subjected to BEP of, Hbout 44% of the bits were decoded by the
Simple Decoder. The number of resulting errors thassame for the Switching Decoder
and ‘My Viterbi’ Decoder, though the MATLAB decoder had 3 more errors which

could be accounted for by the explanation in thet paragraph.

The following sections give detailed descriptiord @malysis of the test cases described
in Section 7.1 (i), (v) and (vi).

7.2.1 Bit-Error Probability (BEP) Performance

In order to test the performance of the Switchirec@ler, the following measures were
adopted. Random data was generated, encoded, abtediind transmitted. Uncoded
data was also modulated and transmitted. Dependimgthe desired §No, the
appropriate Additive White Gaussian Noise(AWGN) veakled to the signal. At the
receiver, data was demodulated. The encoded datala@ded by the three decoders,
MATLAB ® Viterbi decoder, ‘My Viterbi’ Decoder and the Sefitng Decoder.

The following parameters are given to the MATLAiterbi Decoder.
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trellis = poly2trellis(7,[171 133]);

tblen = 35;

matdecodedHard = vitdec(Rx,trellis,tblen, 'term' , 'hard" );
%Rx = Received Data

As with the other two decoders, the traceback depsiet to 35. The parameter ‘term’ is
used since the convolutional encoder appends Bifigdits at the end of the data bits.
The parameter ‘hard’ is used so that the Viterlid@ker uses hard decisions in decoding.
Now the MATLAB?® Viterbi Hard Decision decoder can be compared tith Viterbi’
decoder algorithm and subsequently with the Swigiidecoder.

The tests were conducted with a data length ofQIDkts. E/No was varied from 0.5dB
to 13 dB with an increment of 0.5 dB at each t€ke tests were repeated 5 times and
finally the results of the three decoders were canegb and analyzed. In order to find the
optimum settings for the Switching Decoder, tesesenconducted with three different
settings on the Adapted Viterbi Decoder. In thestfiround of tests, decoding was
switched to the Simple Decoder if the accumulatath pnetric for the global winner
remained constant for 7 consecutive slots. In #e®isd round of tests, this value was
increased to 35 which is five times the constréenggth and the maximum amount of
state history maintained in the table. In the thmodnd, this value is brought down to 21
which is three times the constraint length. The that the accumulated path metric of
the global winner has remained constant for a @ddr number of slots is taken to mean
that there have been no errors during those. slots

The tabulated results and calculations tables sreiged in Appendix D. A couple of
sample graphs are provided below. Since BEP fell &fter 6 dB, these data points are
not visible on the log-scale graph. The graph apped to show values only up to 10 dB
instead of 13 dB.

9 September 2010 Page |68 |



wardr
Text Box


Bit-error prob against Eb/MNo

"""" o i i < A e T i e s
i H I ' : : ' i | —+— Matlab Decoder :

—&— MyViterbiDecoder |,
&— Switching Decoder |}
+  Uncoded

Bit error prob

EbiNo (dB)

Figure 7.1: Data Length = 10,000, Switched to Seripécoder when no errors for 7

consecutive slots

Figure 7.1 shows that below 2 dB, the uncoded ngesgeerforms better than the
encoded messages. This is expected since the vgnyelror rates cause the Viterbi
decoder to follow an incorrect path. Above 2 dBijsitobserved that the MATLAB
decoder and ‘My Viterbi’ Decoder both follow eackther closely with only minor
variations. As the SNR increases to 5 dB very féwelvors occur, less than 10 in the
10,000 bits. This makes the result more unreliableigher SNR. Also, though the graph
appears to show a larger difference in values Bt 8uls is not true. As the data moves
to lower BEP, the log-scale increases the gap leetwigo consecutive lines from 1o
10“. This causes the gap between the two lines toaapgpeger even though difference

in values remains the same.

Comparing the Switching Decoder and ‘My Viterbi’cdeler, both of them follow each
other closely, though there is a slight variati@tween 3 and 4 dB. Comparison of the
average values over 5 tests show there are diffesepetween 0.5 and 5 dB. The values

are tabulated in Appendix D and plotted in Figuz 7
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—e—Fractional Difference in Number of Errors between Switching and My
Viterbi Decoder

10

>

Percentage ---—--

Figure 7.2: Average Fractional Difference in numbkeerrors between Switching
Decoder and ‘My Viterbi’ Decoder. Switched to Sim@ecoder when no errors for 7

consecutive slots

These differences in values show that the presen@bsence of errors has not been
accurately detected. The Simple Decoder may hawsech the presence of certain
combinations of errors and passed an incorrectaingtate to the Viterbi. These
deductions were verified by the fact that at lo8&R, there were a few cases when the
bits decoded by the Simple Decoder were incorrect.

Therefore, the tests are performed with anothéingetor the Adapted Viterbi decoder.
Since state history is maintained for 35 slots tdwng to the Simple Decoder is now
done only after 35 consecutive slots of constatit peetric for the global winner. Doing
this causes the switch to the Simple Decoder dnbjitierrors haven’'t occurred for a
longer period. This means that at lower dB the $&nipecoder will be called much less
frequently and thus reduce the possibility of erdbrwas found that in this case the
output of the Switching Decoder perfectly matchidt tof ‘My Viterbi’ decoder. A

sample graph is shown below in Figure 7.3.

9 September 2010 Page |70 |



wardr
Text Box


Bit-error prob against Eb/No

] I ] I ! ] ] ] ; |
g —#— Matlab Viterbi

—&— MyViterbiDecoder ||
*— Switching Decoder [

Bit error prob

Eb/No (dB)

Figure 7.3: Data Length = 10,000. Decoding switctee8imple Decoder when there are

no bit-errors for 35 consecutive slots

However, it may not be necessary to wait for 3%sslim the third case, Switching to the
Simple Decoder is done when no errors have occuoednore than 21 consecutive
slots. The graph in Figure 7.4 shows the BEP perdmice with this third setting. It is
observed that the red line for ‘My Viterbi’ Decodsrstill not visible as it lies exactly
beneath the green lone for the Switching Decodaees@& results seem promising.

As before, the actual fractional difference in esrbetween the two lines using average
values from 5 tests is studied. Plotted in Figuge it is observed that the improvement
is remarkable. There is almost no difference betwibe Switching Decoder and ‘My
Viterbi’ decoder. It was observed that now nonetled bits decoded by the Simple
Decoder had errors. This shows that the preseneerafs has been detected accurately
and the correct initial state passed to the Vitébcoder. Interestingly, at one point the

Switching Decoder has a slightly lesser numbeneittean ‘My Viterbi’ decoder.
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Figure 7.4: Data Length = 10,000. Decoding switctee8imple Decoder when there are

no bit-errors for 21 consecutive slots
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Figure 7.5: Average Fractional difference in erdoeswveen the Switching decoder and
‘My Viterbi’ decoder. Decoding switched to Simple&vder when there are no bit-

errors 21 consecutive slots

Another important observation is that at thesarggf the Switching Decoder causes no
deterioration in performance compared to the nofirbi decoder. This can also be

explained theoretically due to the fact that durswgtching no relevant state history is
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lost. The only requirement is that the initial stat both decoders is set correctly and
errors are detected accurately. If this is don@gnly, the outputs are expected to match

those given by the normal Viterbi Decoder.

However, this improved performance comes with axlitemhal cost. The Simple
Decoder will now be used for only a shorter portdrime. Since the Simple Decoder is
the part that is expected to bring energy saviitgs, expected that the overall energy
savings will be lesser as compared with the fiestirsg.

In order to see exactly how effective the Switchagporithm is, it is necessary to look at
how often the Simple Decoder is being used and wleatentage of bits are being
decoded by each decoder at each SNR. This analjsaso help us determine whether
there were too many ineffective calls to the Simpkcoder where in effect it could
decode no additional bits. The following graphg-igure 7.6 and Figure 7.7 show the
percentage of decoding that was done by the Simptoder and the Adapted Viterbi
decoder respectively.

H Simple Decoder M Adapted Viterbi Decoder
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A 900
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Figure 7.6: Percentage of Decoding done by eachddeen the Switching Decoder.
Decoding switched to Simple Decoder when theranarkit-errors for 7 consecutive

slots
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Figure 7.7 Percentage of Decoding done by eachdeéedo the Switching Decoder.
Decoding switched to Simple Decoder when therenarkit-errors for 21 consecutive

slots

From Figure 7.6, it is observed that even at 1.5ati®ut 1% of decoding is being done
by the Simple Decoder. This increases to 16% & 4t reach 46% by 6 dB. By 9 dB
more than 90% of the decoding is being done bysihgle Decoder. From these results,

it seems likely that there will be considerablerggesavings.

Comparing these results with Figure 7.7 it is obsérthat at lower dB’s the percentage
contribution of the Simple Decoder is lesser. 1%detoding is done by the Simple
Decoder at 4 dB. This increases to 26% at 6 dBraadhes 46% at 7dB. By 9.5 dB it
crosses 90%. Despite the slightly lower contrimutithese results still seem promising
since it provides a BEP performance that matche¥iterbi decoder.

On the basis of these results it is also proposessé this counter setting of the Adapted
Viterbi Decoder as a variable to optimize operaiotepending on the specific
application, the importance of data accuracy veenergy savings and the expected
SNR range in which the decoder will operate.
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Using the collected data, the average number sfthat were being decoded between
switches from the Simple Decoder to the Viterbiatlsr and vice-versa is calculated.
This helps in understanding how effective the dwitg mechanisms are. Figure 7.8
shows the results of the analysis done using teedetting (7) for the Adapted Viterbi

decoder. Above 9 dB, only few bit-errors occurredhe channel. Therefore very few
switches took place between the two decoders andsalall decoding was done by the
Simple Decoder. Hence, the number of bits deco@ddden switches was very high for
the Simple Decoder above 9 dB and it was diffitolscale onto the graph. Since what

happens at lower SNR is of more concern, the gimghawn only up to 9 dB.

From the results tabulated in Appendix D Sectia (iit is observed that the Adapted
Viterbi decoder decodes approximately the same eurobbits between switches at all
SNR values. This is not ideal. The Simple Decodsr.expected decodes fewer bits
between switches at lower dB. Rounding off to aegder value, at 4 dB four bits are
efffectively decoded before a switch to the Simpkcoder. At 6 dB this value reaches
fifteen bits between switches and crosses to Gftg-bits between switches at 7.5 dB.

m Simple Decoder M Viterbi Decoder
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o5 1 15 2 25 3 35 4 45 5 55 & 65 7 75 8 85 9
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Figure 7.8: Average number of bits being decodsdcpll to each decoder. Decoding
switched to Simple Decoder when there are no bareifor 7 consecutive slots
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From these observations it is also clear that wetdSNR, a lot of switches are taking
place since both the Simple Decoder as well ag\tfapted Viterbi decoder decode less
than 35 bits per call. As SNR increases above 7th8,situation improves and the
Simple Decoder is able to decode a much larger euwitbits before it encounters a bit-

error.

Now an analysis is made for the second settin@ftdapted Viterbi decoder, i.e. with
waiting for 21 slots with no bit-errors before svhiing to the Simple Decoder. Figure 7.9
shows a striking difference from the earlier gragpid has many points of interest.
Firstly, attention is drawn to the Y axis of theagih. Unit distances are now 250 bits
instead of 20 bits as in the earlier graph. Slrtayay it is observed that at lower dB the
Adapted Viterbi decoder is able to decode a mucbelanumber of bits between
switches. As the SNR improves, decoding switchethéoSimple Decoder more often
and therefore number of bits decoded by the Adaytextbi decoder between switches
decreases. From the results tabulated in Appendigebtion (iii) that at 4 dB the
Adapted Viterbi decoder decodes an average of @7bleitween switches and this value
decreases to 42 by 7.5 dB.
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Figure 7.9: Average number of bits being decodercpk to each decoder. Decoding

switched to Simple Decoder when there are no bargifor 21 consecutive slots
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The most interesting observation was that SimpleoDer still decoded almost the same
number of bits between switches. Rounding off tanéeger value, at 4 dB three bits are
efffectively decoded per call to the Simple Decodér6 dB this value reaches fifteen
bits between switches and reaches forty-eight bésveen switches at 7.5 dB.This
analysis shows that with the second setting itassgble to reduce a large number of

unnecessary switches especially at lower SNR.

7.2.2.Packet Loss Rate

In wireless communications most data is sent akgiac At the receiver, a check

(usually a CRC check) is used to see whether tloedde was able to correct all bit-

errors in the packet. If there is even one bit+eimdhe packet, the packet is discarded. A
new packet maybe requested as described in Seztioand 2.2. In this case, slight

variations BEP performance will not matter. Whettier packet contained 1 bit-error or

10, the packet will still be discarded.

Packet loss rate may differ from BEP depending ow [tlose the bit-errors occur.
Multiple bit-errors occurring within a single pa¢kaill result in only 1 packet loss. If
these bit-errors are spread out into different ptgkthe packet loss rate increases
considerably. In order to estimate the packet tats 100 packets of 1000 data bits each
were transmitted and the number of packets thake weceived without error after
decoding using the three decoders was countedatepyarMeasurements were taken at
each 0.25 dB going from 5 to 7.5 dB. The resukstabulated in Appendix E and plotted
in Figure 7.10.

The results show that both the Switching Decoder‘®ly Viterbi’ decoder give exactly

the same packet loss rate at each data point.réimforces the fact that the Switching
Decoder does not degrade performance of the Viteboder. On comparing with the
MATLAB Viterbi decoder, there are slight variatioims packet loss rate at some points

though in several cases the packet loss rate satine.

According to the ITU Recommendations (ITU-R M.1()9{44], a packet loss rate

(PLR) of less than 3% is acceptable for real timei@ communications. For video
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communications, PLR must be less than 1% and aatancinications require a PLR of
0%. From the graph in Figure 7.10, it is obsentet ibove 5.75 dB packet loss rate is

below 2%. When ENy drops below this value, packet loss rate increesgasdly.
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Figure 7.10: Packet Loss Rate. Decoding switchegirtgple Decoder when there are no

bit-errors 21 consecutive slots

7.2.3 Predicting Packet Loss

Keeping the goal of minimizing energy consumption mind, it would be very
advantageous if there was a way of predicting dha@cket was likely to fail. Processing
that packet could then be stopped and a retransmisequest sent. An interesting
method of determining a reliability estimate foetecoded data, suitable for use in
Type | HARQ protocols, was described by Harvery @idker in their papers [45, 46].
The Yamamoto-Iltoh algorithm that they describe [$€éfforms a comparison of the
surviving path and the best non-surviving path athestate and at every stage of the
decoding process. If the difference in path mdbietween the two paths falls below a
certain threshold value, the survivor is considareceliable. If all paths are found to be
unreliable before the end of decoding, a retrarsiomsrequest is sent. The reliability of
this repeat request technique in combination wittedi decoding was found to be
asymptotically twice that of the normal decodingagithm [47]. This mechanism may
also be incorporated in the Switching Decoder &vent it from attempting to decode a

packet that is likely to fail, thus saving energy.
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Type 1l HARQ protocols, mentioned in Section 2.6seudata from multiple
retransmissions to correctly decode data. This aeslunumber of retransmissions
required and hence delay incurred in receivingraect packet. Different mechanisms of
combining data from such retransmissions have be@stigated by Harvey and Wicker
in another paper on Packet combining systems basélde Viterbi decoder. [48].0ne of
the techniques used, called the averaged divarsitbiner (ADC), combines packets bit
by bit by averaging their soft decision values.isTroduced results that matched those
of the interleaved code combining technique [49)neathod of interleaving symbols

received from multiple copies of a packet to forsiragle packet at the receiver.

7.2.4 Measurements of Processing Time

In absolute terms, the execution times taken byMA& LAB ® implementations of the
two decoders depend on the configuration of theprder used and its processor. These
specifications of the laptop used for this projac provided in Section 5.2, its main
features being a Microsoft® Windows Vista™ Ultima&s, Intel(R) Core(TM)2 CPU
T7200 @ 2.00GHz, 2000 MHz Processor and 2 GB RBEhchmarking using the
MATLAB function ‘bench’ was used to measure thefpenance of the MATLAE
version R2007b on the laptop. Since these tests gnay a variation of up to 10%
between successive readings, the tests were repEatiemes. On average, it took 0.189
seconds to perform standard operations in datatstes and M files. The graph of
relative speed for each of the 10 runs as comparsthndard values for other machines
is reproduced in Figure 7.11. These figures arergior the convenience of researchers
wishing to reproduce the results presented in tiésis. As may be noted, on most

occasions its speed matched that of a Linux (32oial 2.6 GHz Opteron.
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Figure 7.11: Results of Benchmarking on MATLAB

One of the other concerns was how the use of largeys would affect the memory
requirements and timing of code execution. Accaydio MATLAB® Documentation
[50], if an array is expanded beyond the availafmatiguous memory of its original
location, MATLAB® has to make a copy of the array in a new locatiueh then set this
array to its new value. This operation may not aelpult in the program running out of
memory (due to a temporary doubling in the sizenemory required), but also create a
variation in the time required to execute the cdderder to solve both these problems,
sizes have been pre-allocated to all the arrays usthe code. This means allocation of
memory spaces occurs at the beginning of prograsaution. The code does not expand
or reduce the size of the array at any other paitthe program but only modifies the

values contained in the memory spaces.

As described in Section 7.1, timing measuremergsiaed to compare the likely energy
consumption of the two decoders. To a first degrfegpproximation, it is expected that

energy consumption will be proportional to the exem time.

Using a data length of 10000, the decoders weraising the MATLAB® Profiler tool.
Data for the profiler was collected for single petsk each containing 10000 bits, when

bit-errors result from constant AWGN channel noiSanulations were run for Eb/No
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varying from 1 to 12 dB. For each run the valu&gNy remained constant. The results

are presented in Appendix F and plotted in Figui@.7
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Figure 7.12: Timing Measurements

It is found that while the conventional Viterbi @eler requires a fixed execution time of
about 48 seconds at all values gfNp, the time taken by the Switching Decoder is
dependent on #No. At higher E/Ng values, where a large portion of the decoding is
being done by the simple decoding part, less tsnequired to complete the decoding.
As the E/Np value decreases, a greater portion of decodingme dy the Adapted
Viterbi decoding part. Therefore the time requitedomplete the decoding increases. It
is observed that when/l, equals 5 dB, the time requirement of the Switctiegoder

is almost equal to that of the standard Viterbiodies.Below 5 dB the time requirements
for the Switching Decoder and standard Viterbi diecoremain more or less constant
and equal.

When there are no bit-errors, the Switching Decasl@bout 44.5 times faster than the

Viterbi Decoder i.e. the Switching Decoder takesuh?2.2 % of the execution time
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required by the standard Viterbi decoder. The lyrsipows that at 5 dB approximately
11% of the decoding is being done by the Simpleodec Therefore, it can be estimated
that as long as at least 11% of the decoding isgbdone by the Simple Decoder, the
Switching Decoder is likely to be advantageousmmits of energy consumption.

Another implication of these results is that whitee conventional Viterbi decoder
requires a fixed decoding time, the Switching Dexrdths a variable decoding time. This
could potentially make hardware implementationhaf tlecoder more difficult. In order
to produce a steady stream of output bits, adegledteys and synchronization between

the two components of the Switching Decoder wilheeessary.

7.3 Summary

This chapter has demonstrated by analysis of éssits in terms of BEP and packet loss
rates, that appropriate settings allow the Switghecoder to give exactly the same
results as the standard Viterbi decoder. It wae demonstrated that for/B, values
above 5 dB, the Switching Decoder takes considglabs execution time in MATLAB
than the standard Viterbi decoder while for valbelw 5 dB, execution time remained

roughly constant and equal to that of the stan¥aetbi decoder.
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Chapter 8
CONCLUSIONS AND FUTURE WORK

This chapter summarizes the conclusions and infesermade from the project and

recommends points that require further investigatio

8.1 Conclusions

The main objective of this project was to furthavelop the work started by Barry
Cheetham and investigate an energy efficient mettooddecoding convolutionally

encoded messages transmitted in a wireless envaot@and received by energy limited
devices such as mobiles. One of the major taskkeoproject involved understanding
and building the code for the Viterbi Algorithm. i§lcode was then modified and used
as an Adapted Viterbi decoder that could pick upodeng when the Simple Decoder
detected bit-errors. Similarly control is transéetrback to the Simple Decoder once

errors stop occurring.

Two significant issues in the development of th&awing algorithm were resolved. The
first issue was the problem of switching betwees tiio decoders without introducing
errors. This was solved by correctly initializingetstarting states of the decoder based
on the last known state passed by the other decdter initialization was a significant
step towards the success of the algorithm as itittded switching between to the two
decoders without any loss of information and hethege was no deterioration in the

output.

The second issue was to accurately determine wit@nrbrs have stopped occurring so
that a switch from the Viterbi Decoder to the Sienplecoder could be initiated. This
issue was solved by using the path metric of tbéajlwinner at each time slot to check

if errors had occurred. If the path metric remaigedstant for a predetermined number
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of slots, it was fairly certain that bit-errors hatbpped occurring. It was found that if
this predetermined number was set at 21, switclwogurred without causing any
deterioration in the BEP performance. Resultsinbthalso indicate that this setting
may be varied to optimize performance based omeitpeired data accuracy and expected

SNR in the application.

It was also possible to determine the exact ereguences where the Simple Decoder
would fail to detect the presence of errors an@rmdene the probability of these errors
occurring. A strong argument was given to suppoet helief that the standard Viterbi

decoder would fail to correct these sequences too.

Packet loss rate analysis confirmed the accuradhieoBwitching algorithm as both the
Switching Decoder and ‘My Viterbi’ decoder gave etkathe same packet loss rate in
all test cases. This shows that switching had mmghon the error correcting capability

of the decoder.

Measurements on the execution time of the code ghatvabove 5 dB the Switching
Decoder takes lesser time to execute as compar@dyt¥iterbi’ decoder. When there
are no errors, the Switching Decoder takes 44.64ias many CPU seconds as does ‘My
Viterbi’ decoder. Below 5 dB, the time taken by ®Bwitching Decoder remains roughly
constant and at the same level as that of ‘My Yitetecoder. These results give a good
indication that there will be substantial energyisgs above 5 dB. Added to this is the
previous observation that there is no degradatiodBEP performance. Combining these
factors, there is strong evidence that the Switglidecoder provides an energy efficient

method of decoding convolutional codes.

8.2 Future Work

The results thus far have been very encouragingatiter investigations would help in
fine tuning the decoder to bring maximum benefit.wlould be very worthwhile

investigating the use of soft decision input Viiebcoding in place of hard decision in
the Adapted Viterbi Decoder. Studies have showh $iwdt decision inputs quantized to
three or four precision bits provide a 2 dB impnoeait in BEP performance of the
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Viterbi code [14]. It is expected that soft decrsimput will further improve the BEP
performance of the new algorithm. This algorithnuldoalso be used in conjunction with

some of the approaches outlined in Section 3.4rtbér increase energy efficiency.

In order to accurately measure energy consumptibnthe new system, VLSI
implementations need to built and tested. This irequa detailed knowledge of the
circuitry involved and synchronization of both tthecoders. This analysis will be crucial
in determining the commercial viability of the nesystem. An important factor that
needs to be investigated is how a variable decotimg will affect implementation

complexity of the algorithm.

Based on the strong argument given in Sectionibwould also be helpful to build a
conclusive proof to establish that the standardeisit decoder would not be able to

correct any bit-errors that the Simple Decoder dusgietect.
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Appendix A — Gantt Chart
Referred to in Section 5.3

1 BACKGROUND RESEARCH 69 days| 10-Feb-10| 14-May-10

1.1| Study of Papers & Other Literature 59 days10-Feb-10] 30-Apr-10
Familiarization with Software Tool

1.2 (MATLAB ®) 14 days| 24-Mar-10| 12-Apr-10

1.3| Preparation of Background Report 25 daysl2-Apr-10| 14-May-10

2 | DESIGN AND IMPLEMENTATION | 65 days 12'Ma1y(; 6-Aug-10

2.1| Study Viterbi Algorithm 6 days 12"\"3‘138 18-May-10

2.2 | Break for Exams 14 days 19_Miy0- 7-Jun-10
Implement code to perform simple

2:3 decoding using Viterbi Algorithm 6 days 8-Jun-10)  15-Jun-10

54 De§|gn algorithm to perform decpder 7 days| 16-Jun-10,  24-Jun-10
switch on/ off operation appropriately

55 Implement code for switch on/off 7days| 16-Jun-10|  24-Jun-10
operation

26 Design glgorlthm to gonvolutlonally 7 days| 25-Jun-10 5-3ul-10
encode input data & introduce errors

27 Implement codg to convolutionally 7 days 1-Jul-10 9-Jul-10
encode data & introduce errors

2.8| Design algorithm to estimate energy use 7 days10-Jul-10 19-Jul-10

2.9 Design s'|mu'lat|on of enFlre o 14 days| 20-Jul-10| 6-Aug-10
communication system in Simulink

3 EXPERIMENTATION &ANALYSIS 7 days 9-Aug-10| 17-Aug-10

4 PREPARATION OF REPORT 64 days| 8-Jun-10 1-Sep-10

4.1 | Chapter 1: Introduction 6 days 22-Jul-10 29-Jul-10

4.2 | Chapter 2: Background 10 days 30-Jul-10| 12-Aug-10

4.3 | Chapter 3: FEC in mobile networks 7 days 8-Jun-10| 16-Jun-10

4.4 Chaptgr 4: Design & Implementation of 40 days| 17-Jun-10, 10-Aug-10
Experiment

45 Chapter 5:.Results & Analysis, Chapter 6 days| 13-Aug-10| 20-Aug-10
6: Conclusion

46 Abstract, References & Formatting of 6 days| 21-Aug-10| 27-Aug-10
Report

4.7| Review & Correction of Report 3 days 30-Aug-10 1-Sep-10

Table A.1: Gantt Chart Task List
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Appendix B: General Algorithm for Hamming Codes

The general algorithm used to construct hammingesab stated in [12] has been reproduced
below.

S.No: Algorithm Example
1 The bits are numbered starting from 1 E't 12,34
5 The binary representation of the bit positionsvarigten 1010 11, 100,
Parity Bits: These are all the bits whose positiamber is Bit1 2 4. 816
power of 2. They will have only 1 bit having vallién their e
3 binary representation
Data Bits: These are all the remaining bits hgimo or Bit 3,5.6.7.9 ...

4 | more 1 bits in their binary representation

Each data bit is included in a unique set of twanore
5 parity bits, as determined by its binary represéna

Each parity bit covers all bits where the binalyA\of the
6 parity position and the bit position is non-zero.

Table B.1: General algorithm for Hamming Codes [12]

The parity bits and the corresponding bits thay ttteeck are listed below as .

Parity Bit Data Bits Covered
Paritv Bit 1 Covers all bit positions which have the leastbit 1 (the parity bit
y significant bit set itself), 3,5,7,9, 11...
Parity Bit 2 Covers all bit positions which have the secart 2 (the parity bit
y least significant bit set itself), 3, 6, 7, 10, 11...
N Covers all bit positions which have the third bits 4—7, 12-15, 20—
Parity Bit 3 - i
least significant bit set 23...
N Covers all bit positions which have the fourthbits 815, 24-31, 40—
Parity Bit 4 N .
least significant bit set 47...

Table B.2: Table describing the bits covered byhgaarity bit [12]

A diagrammatic representation of the result is showFigure B.1 and helps in understanding
the algorithm better.

Bit Position 1(2/3 (4|56 |7 8|9 10{11|12|13|14|15|16
Encoded
message bits

P1|P2 D3|P4|D5|D6|D7|P8|D9|D10D11D12/D13|D14|D15|P16

P1| X X X X X X X X
Parity Bit | P2 X | X X | X X | X X | X
Coverage P4 X | X[ X | X X | X | X | X

P8 X[ X[ X[ X[ X | X[ X|X[X

Figure: B.1: Visual representation of Parity andeDaits
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Appendix C: CRC Generator Polynomials

CRC Check Codes have some properties that make thew@ble for use in error
detection. The fact that CRC checks are simplengglement has also resulted in CRC
checks being widely used as an error detection amsim in all forms of
communications.

There are different kinds of generator polynomedsh of which are used for detecting
different types of errors.

As elaborated in the article [51], three kinds wbes and their detection mechanisms are
briefly described below.

When we divided the received codeword polynomiali®gygenerator polynomial, a non-
zero remainder indicates that an error has occurred

1. Single errors

These errors can be detected using a generatonguolgl G(x) that has atleast two
terms X and 1 where n is the degree of the codeword patyalo

2. Double errors

These errors can be detected by using a generatgmgmial G(x) such that G(x)
does not divide X+ 1 for any value of p <N-1

3. Any odd number of errors

These errors may be detected if the generator polial G(x) has a factor 1+X
4. Any error bust having length < n

A generator polynomial of degree n can detect eor &urst of length <n

The most commonly used CRC codes are CRC-16 and-GRC
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BEP Performance Test Results and Statiss.
Referred to in Section 7.1

Appendix D
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iii. Comparison of average number of bits

settings. Referred to in Section 7.1.

decoded between switches with both

Setting 1 - Switch after 7 consecutive Setting 1 - Switch after 21 consecutive
error free slots error free slots
Avg number of
SNR | Avg number of bits | bits decoded per | Avg number of bits | Avg number of bits
decoded per call call to normal decoded per call to | decoded per call to
to Simple Decoder | decoder Simple Decoder normal decoder
0.5 0.28 35.43 1.17 2083.42
1 0.37 31.34 0.46 1351.70
1.5 0.70 28.82 0.44 847.53
2 0.90 25.83 0.51 555.38
2.5 1.26 23.00 1.01 323.86
3 1.90 21.57 2.04 205.55
3.5 2.54 19.92 2.31 148.84
4 3.56 18.77 3.32 100.26
4.5 5.23 18.18 5.53 74.78
5 7.37 17.46 7.14 60.56
5.5 10.71 16.94 10.56 50.91
6 14.83 16.75 15.06 44.01
6.5 21.48 16.39 22.11 39.28
7 31.37 16.19 32.94 36.84
7.5 50.93 16.04 47.97 35.42
8 72.10 16.13 70.72 32.86
8.5 111.50 16.13 119.60 31.54
9 186.50 16.05 182.53 31.27
9.5 328.57 16.46 357.05 30.78
10 571.78 16.81 572.49 30.28
10.5 1232.58 18.18 913.45 30.51
11 1905.12 19.12 1822.04 30.93
11.5 3825.15 23.31 5526.11 32.78
12 6225.88 27.88 7111.71 35.43
12.5 8306.50 31.83 9971.00 35.00
13 9971.00 35.00 9971.00 35.00
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Appendix E: Packet Loss Rate Calculations
Referred to in Section 7.2.2

Percentage Packet Loss

Eb/No MATLAB ‘My Viterbi’ Switching

Decoder Decoder Decoder
5.0 14.0 16.0 16.0
5.25 7.0 7.0 7.0
5.5 5.0 3.0 3.0
5.75 1.0 1.0 1.0
6.0 1.0 2.0 2.0
6.25 1.0 1.0 1.0
6.5 0.0 1.0 1.0
6.75 0.0 1.0 1.0
7.0 0.0 0.0 0.0
7.25 0.0 0.0 0.0
7.5 0.0 0.0 0.0
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Measurements

iming

T

Appendix F

Referred to in Section 7.2.4
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Appendix G: MATLAB © code

1. encoder.m

function Y =encoder(NB,ZInp)

X1=0;X2=0;X3=0;X4=0;X5=0;X6=0; % the input at the 6 stages of the
% encoder

Y =repmat(-1, 2*NB,1);

for n=1:NB

X=ZInp(n); % the nth input to the encoder

YL = xor( xor(X2,X1), xor(X6, X3));

YL = xor(YL,X); %(171)

YU = xor( xor(X3,X2), xor(X6,X5));

YU = xor(YU,X); %(133)

Y(2*n-1) = YL, %171 Lower output stored at index 2n-1

Y(2*n)=YU; %133 Upper output stored at index 2n

X6=X5; X5=X4; X4=X3; X3=X2; X2=X1; X1=X; % All the flip flops
% move to the next state. First flip flop gets value of input
end;

% disp(sprintf('Output after Conv. encoding: \t");
% disp(sprintf(\b %d ',Y));

2. modulate.m

function  [msg_tx, grayencod] = modulate(Y,M,Nsamp)
k= log2(M);

msg_enc = bi2de(reshape(Y,
size(Y,2)*k,size(Y,1) / k)");
grayencod = bitxor(0:M-1, floor((0:M-1)/2));
msg_gr_enc = grayencod(msg_enc+1);
msg_tx = modulate(modem.pskmod(M, pi/4), msg_gr_enc );
msg_tx = rectpulse(msg_tx, Nsamp);

3. demodulate.m

function  comp_Rx = demodulate(msg_rx,M,Nsamp,grayencod)

k=log2(M);

msg_rx_int = intdump(msg_rx, Nsamp);

msg_gr_demod = demodulate(modem.pskdemod(M, pi/4), msg_rx_int);
[dummy graydecod] = sort(grayencod); graydecod = gr aydecod - 1;

msg_demod = graydecod(msg_gr_demod+1)’;
comp_Rx = de2bi(msg_demod,k)'’; comp_Rx = comp_Rx(:) ;
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4. simpleDecoder.m

function simpleDecoder(NB, Rx,begState)
global pState decoded ErrorFlag fLen numCalls_A ACount de cFlag

numCalls_A=numCalls_A+1;

FF = bitget(uint8(begState), 6:-1:1); % initialize flip flops to binary
% value of state

t=fLen; % store last index of output array

index=fLen+2; %index for output array when there are no errors

for i=index:NB

lowerlnput = Rx(2*i-3);
upperinput = Rx(2*i-2);

lowerOutput = xor(xor(xor(FF(2),FF(1)), xor(FF( 6),FF(3))),
lowerlnput);

upperOutput = xor(xor(xor(FF(3),FF(2)), xor(FF( 6),FF(5))),
upperinput);

if ((lowerOutput ~=upperOutput )||(fLen > NB-35+6))
% Conventional viterbi needs traceback depth of atl east 5 times
% constraint length
fLen=fLen-7;
if (fLen <=0)
fLen=0;
for p=1.7
pState(p)=0;
end
end
break ;

elseif  (lowerOutput==upperOutput) % No error in received bits

fLen=fLen+1;
decoded(fLen)=lowerQutput;

for p=7:-1.2
pState(p)=pState(p-1);
end
sum=0;
for bit=6:-1:1
sum=sum + FF(bit)*(2"(6-bit));
end

pState(1)=sum;

for j=6:-1:2 % shift all the flipflop values to the right

FF()=FF(-1);
end
FF(1)=lowerOutput; % first flipflop value is the last
% received output
end

end
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if (fLen <=1)

fLen=t;

pState(7)= begState; %if error occurs before 6 bits are
% decoded return flipflops to state before Simple D ecoder was
% switched on
end

ACount=ACount + fLen-t;
for i=t+1:fLen
decFlag(i)=1;
end
ErrorFlag = 1; % Error has occurred or end of array has been
% reached

5. adapVitDec.m (Adapted Viterbi Decoder)

function [currState | = adapVitDec(NB,Rx)
global pState fLen decoded ErrorFlag numCalls_N NCount;
global decFlag;

accError = repmat (Inf,[64,35]); % initiaize error metric values to

% infinity
predecessor = zeros (64,35); % initialize state history table
tracebackPath=ones(1, 35); % initialize traceback path
numcCalls_N=numcCalls_N+1;
% Initial value of error metric is taken as the sta te of the Simple

Decoder % 6 slots prior

accError(pState(7)+1,1)=0;

RxT=fLen+1,; % index for data array containing received signal

oldLowest=Inf; % previous lowest error metric value

noChangeCount=0; % count for the number of slots that error metric
% has remained constant

beginPt=fLen;

ErrorFlag=0;

endpoint = min(35,NB+1-fLen);

% —_— e
% Create Previous State Table

% —_— e
% create 64 states

% STATES ARE NUMBERED FROM 1 to 64 THOUGH ACTUALLY 0 to 63

prevState = ones(64,6); % initialize array representing states of
% flipflops
for i=1:64
for j=1:6

%convert to 6 bit binary representation of 0 to 63
% which is the state of flipflops
prevState(i,j)=bitget(uint8(i-1),7-j);
end
end
% — e

for t=2:endpoint

RXT=RxT+1,; %index for received signal
for i=1:64
lowerBitXOR = xor(xor(prevState(i,1),prevSt ate(i,2)),

xor(prevState(i,3),prevState(i,6)));
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lowerOutput_IP0 = xor(lowerBitXOR,0);
% Lower output if inputis 0

lowerOutput_IP1 = xor(lowerBitXOR,1);
% Lower output if inputis 1

upperBitXOR = xor(xor(prevState(i,2),prevSt ate(i,3)),
xor(prevState(i,5),prevState(i,6)));
upperOutput_IP0 = xor(upperBitXOR,0);
% Upper output if input is 0
upperOutput_IP1 = xor(upperBitXOR,1);
% Upper output if inputis 1

% - ——
% BRANCH METRICS: Calculate Hamming Distances
% - —_— s

HD_IP0= xor(lowerOutput_IP0,Rx(2*RxT-3))+
xor(upperOutput_IP0O,Rx(2*RXT-2));
% add hamming distance of each bit if input is O
HD_IP1= xor(lowerOutput_IP1,Rx(2*RxT-3))+
xor(upperOutput_IP1,Rx(2*RXT-2));
% add hamming distance of each bit if input is 1

% - —_— e
% Calculate next state
% - —_— e

s=i-1; %i=1 implies state 0 and so on
nextState IPO = bitshift(s,-1,6); % next state if input
% is 0. divide i by 2 and round it off
nextState_IP1 = nextState IPO + 32;
% next state if input is 1.

% - ——
% ADD, COMPARE, SELECT : Update Accumalated Error M etric Table and %
Surviving State table

% - —

if (accError(1+nextState IPO,t)>(accError(i,t-1)+ HD_| P0))
if (accError(1+nextState IPO,t)==Inf)
predecessor(1+nextState |P0,t)=0; %lower branch
else predecessor(1+nextState IPO,t)=1; % upper branch
end
accError(1+nextState IP0,t)=(accError(i ,t-1)+ HD_IPO0);

elseif  (accError(1+nextState IPO,t)==(accError(i,t-1)+
HD_IP0)&&(predecessor(1+nextState IP0,t)< i))
% consistently choose the higher state in cases of

% equality
predecessor(1+nextState_IPO,t)=1;
end
if (accError(1+nextState IP1,t)>(accError(i,t-1)+ HD_| P1))
if (accError(1+nextState IP1,t)==Inf)
predecessor(1l+nextState IP1,t)=0; % lower branch
else predecessor(1+nextState IP1,t)=1; % upper branch
end
accError(1+nextState IP1,t)=(accError(i 1)+ HD_IP1);
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elseif (accError(1+nextState IP1,t)==(accError(i,t-1)+ HD_
(predecessor(1+nextState IP1,t)<i))
% consistently choose the higher state in cases of

% equality
predecessor(1+nextState_IP1,t)=1;
end
end
end
oy S— - - — s
% SURVIVOR PATH DECODING: Traceback Operation Beg ins

0p------- - - —— e

[value state]=min(accError(:,t));
tracebackPath(t)=state;

for tr=t-1:-1:1
state=tracebackPath(tr+1);
temp=bitshift(state-1,1,6);
tracebackPath(tr)= temp + predecessor(state,tr+ 1)+1;

end

nextState IPO = bitshift(tracebackPath(1)-1,-1,6);
nextState_IP1 = nextState_IPO + 32;

if (tracebackPath(2)==nextState_IP0+1)
decoded(fLen+1)=0;

elseif  (tracebackPath(2)==nextState_IP1+1)
decoded(fLen+1)=1;

end

decFlag(fLen+1)=0;

fLen = fLen+1;
tb_index=fLen;
endVal=max(0,NB+1-35);
newLowest=0;
oldLowest=0;
t=35;
while (tb_index<= endVal)
for j=1:34
for i=1:64
accError(i,j)=accError(i,j+1);
predecessor(i,j)=predecessor(i,j+1);
end
tracebackPath(j)=tracebackPath(j+1);
end
for i=1:64
accError(i,35)=Inf;
predecessor(i,35)=0;
end

RxT=RxT+1; %index for received signal

for i=1:64

IP1)&&
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lowerBitXOR = xor(xor(prevState(i,1),prevSt ate(i,2)),
xor(prevState(i,3),prevState(i,6)));

lowerOutput_IP0 = xor(lowerBitXOR,0); % Lower output if
% inputis 0

lowerOutput_IP1 = xor(lowerBitXOR,1); % Lower output if
%input is 1

upperBitXOR = xor(xor(prevState(i,2),prevSt ate(i,3)),

xor(prevState(i,5),prevState(i,6)));

upperOutput_IP0 = xor(upperBitXOR,0); % Upper output if
% inputis 0

upperOutput_IP1 = xor(upperBitXOR,1); % Upper output if
% inputis 1

% - ——— e
BRANCH METRICS : Calculate Hamming Distances

% e e

HD_IP0= xor(lowerOQutput_IP0O,Rx(2*RxT-3))+
xor(upperOutput_IPO,Rx(2*RXT-2)); % add hamming distance of each
% bit if input is 0
HD_IP1= xor(lowerOutput_IP1,Rx(2*RxT-3))+
xor(upperOutput_IP1,Rx(2*RXT-2)); % add hamming distance of each
% bit if input is 1

% - —_— e
% Calculate next state
% - —_— e

s=i-1; %i=1 implies state 0 and so on
nextState IPO = bitshift(s,-1,6); % next state if input
% is 0. divide i by 2 and round it off
nextState_IP1 = nextState_IPO + 32; % next state if input
% is 1.
% - —_— s
% ADD, COMPARE, SELECT : Update Accumalated Error M etric Table and %
Surviving State table
% - — e
if (accError(1+nextState IPO,t)>(accError(i,t-1)+ HD_| P0))
if (accError(1+nextState IP0,t)==Inf)
predecessor(1+nextState |P0,t)=0; %lower branch

else predecessor(l+nextState IPO,t)= 1;
% upper branch

end
accError(1+nextState IPO,t)=(accError(i 1)+ HD_IPO0);
elseif  (accError(1+nextState IPO,t)==(accError(i,t-1)+ HD_ IP0O))
% consistently choose the higher state in cases of
% equality
predecessor(1+nextState IPO,t)=1;
end
if (accError(1+nextState IP1,t)>(accError(i,t-1)+ HD_| P1))
if (accError(1+nextState IP1,t)==Inf)
predecessor(1l+nextState |P1,t)=0; % lower branch
else predecessor(1+nextState IP1,t)=1; % upper branch
end
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accError(1+nextState IP1,t)=(accError(i 1)+ HD_IP1);

elseif  (accError(1+nextState IP1,t)==(accError(i,t-1)+ HD_ IP1))

% consistently choose the higher state in cases of equality
predecessor(1+nextState_IP1,t)=1;

end

end

[value state]=min(accError(:,t));
tracebackPath(t)=state;

for tr=t-1:-1:1
state=tracebackPath(tr+1);
temp=bitshift(state-1,1,6);
if (tracebackPath(tr)==temp + predecessor(state,tr+1) +1)
break ;
else tracebackPath(tr)=temp+predecessor(state,tr+1)+1;
end

end

nextState IPO = bitshift(tracebackPath(1)-1,-1, 6);
nextState IP1 = nextState_IPO + 32;

tb_index=tb_index+1;
if (tracebackPath(2)==nextState_IP0+1)
decoded(tb_index)=0;

elseif  (tracebackPath(2)==nextState_IP1+1)
decoded(tb_index)=1;

end

decFlag(tb_index)=0;

newlLowest = accError(tracebackPath(1));

if (newLowest ==oldLowest)
noChangeCount=noChangeCount+1;
else

noChangeCount=0;

end

oldLowest = newLowest;
if ( (noChangeCount >=21 )&&(tb_index <(NB-35-6)) )

% Switch Back to Simple Decoder
%%0/0::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
ErrorFlag=1;
break ;
end
end
fLen=tb_index;
currState= tracebackPath(2);

if (ErrorFlag~=1)
ep=min(34,NB);
for i=2:ep
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nextState IPO = bitshift(tracebackPath(i)-1
nextState_IP1 = nextState IPO + 32;

tb_index=tb_index+1;
if (tracebackPath(i+1)==nextState IP0+1)
decoded(tb_index)=0;

elseif  (tracebackPath(i+1)==nextState IP1+1)
decoded(tb_index)=1;
end
decFlag(tb_index)=0;
end
fLen=tb_index;
currState=tracebackPath(i+1);
end

ErrorFlag=0;
NCount=NCount+fLen-beginPt;

-1,6);

6. MAINFILE.m

clear all ;clc;

global decoded pState fLen ErrorFlag ;
global numCalls_A numCalls_N numCalls_C;
global ACount NCount CCount;

global decFlag

NB =10000; % Number of orig bits for testing.
Inp = randsrc(NB, 1, 0:1);
end.

oy — - - -
%Convolutional coderl/2 K=7 (171,133)
oy — - - S

% ______ - - ———
% Coded signal Y. Modulate signal QPSK. Store tran

YA : - -

M=4;k=log2(M);Nsamp=4;

[msg_tx grayencod]=modulate(Y,M,Nsamp);
[msg_tx_uncoded grayencod]=modulate(ZInp,M,Nsamp);
%------ - - —_——

%Initialize matrices

EbNO = zeros(1,26);

nErrs_A =zeros(1,26);
nErrs_matHard = zeros(1,26);
nErrs_Conv = zeros(1,5);
nErrs_uncoded = zeros(1,26);
nErrs_channel=zeros(1,26);
BER_A=zeros(1,26);

Zinp=[Inp; 0; 0; 0; O; 0; 0]; NB=NB+6; %Add 6 extra zeros to flush at
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BER_matSoft = zeros(1,26);
BER_matHard=zeros(1,26);
BER_Conv = zeros(1,26);
BER_uncoded=zeros(1,26);
BER_channel=zeros(1,26);

for runs=1:26

%

ErrorFlag=0;
decoded = repmat(-1,[NB,1]);
decFlag=repmat(-1,[NB,1]);

pState = zeros(7,1);
fLen=0;

numCalls_A=0;
numCalls_N=0;
numCalls_C=0;

ACount=0;
NCount=0;
CCount=0;
EbNO(runs)=runs/2 ;

EsNO = EbNO(runs) + 10*1og10(2);

% Set Error Flag to 0

% initialize decoded output array

% Flag to check which bits were
% decoded by Simple Decoder

% intitalize last 7 states of the

% decoder
% initialize last index of
% decoded output

% Modulated signal msg_tx. Introduce bit-errors. S
msg_rx

%

10*log10(Nsamp));

msg_rx = awgn(msg_tx, EsN0-10*log10(2)-10*log10
NOISE to Encoded Signal
msg_rx_uncoded = awgn(msg_tx_uncoded,EsN0-10*lo

%

%AWGN Noise to Uncoded Signal

% Introduce bit errors to certain parts of the

%

% msg_rx=msg_tx; % no noise added

% msg_tx_PART1 = msg_tx (1:NB);

% msg_tx_PART2=msg_tx(NB+1:2*NB);

% msg_tx_PART3 = msg_tx(2*NB+1:3*NB);
% msg_tx_PART4=msg_tx(3*NB+1:4*NB);

%

% msg_rx_PART1=msg_tx_PART1,

% msg_rx_PART2=awgn(msg_tx_PART2, EsSN0-10*log10(2)-
10*log10(Nsamp));
% msg_rx_PART3=awgn(msg_tx PART3, EsN0-10*log10(2)-
10*log10(Nsamp));
% msg_rx_PART4=msg_tx_PART4,

%
%

msg_rx=cat(2,msg_rx_PART1,msg_rx PART2,msg_rx_PART3

%

% Demodulate signal received .Store in comp_RXx

%

comp_Rx = demodulate(msg_rx,M,Nsamp,grayencod);

(Nsamp)); % AWGN %

910(2)-

message

,msg_rx_PART4);
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comp_Rx_uncoded = demodulate(msg_rx_uncoded,M,N samp,grayencod);
Rx= double((comp_Rx > 0.5)); % hard decision, round off

% Apply MATLAB Viterbi decoder for checking later:-
% —_— s

trellis = poly2trellis(7,[171 133]); % IEEE802.11

tblen = 35; delay = tblen; % Traceback length

matdecodedHard = vitdec(Rx,trellis,tblen, ‘term' , ‘hard'" ); % Hard
decision

% e ——
% Switching Decoder
% — e
currState=1; % Set initial current state to 1
while (fLen < NB)
if (ErrorFlag==0)
% e —
% Start Simple Decoding Method
% —— s
simpleDecoder(NB, Rx,currState-1); % Perform simple
% decoding

elseif (ErrorFlag==1)

% —_—
% Start Adapted Viterbi Decoder 1/2 K= 7 (171,133)

% —_—

[currState | = adapVitDec(NB,Rx); % Perform normal
% Viterbi decoding
end
end
% e % ‘My
Viterbi’ Decoder Run from Beginning to End
% — e

CON_decoded = conVitDec2(NB,Rx);

% —_— s
countA(runs)=0;
for i=1:NB
if (xor(ZInp(i),decoded(i)) && (decFlag(i)==1))
countA(runs)=countA(runs)+1;

end
end
[nErrs_A(runs) BER_A(runs)] = biterr(ZInp, deco ded);
[nErrs_matHard(runs) BER_matHard(runs)] = biter r(ZInp,
matdecodedHard);
[nErrs_Conv(runs) BER_Conv(runs)] = biterr(ZInp , CON_decoded);

[nErrs_uncoded(runs) BER_uncoded(runs)] =
biterr(ZInp,comp_Rx_uncoded);

[nErrs_channel(runs) BER_channel(runs)]=biterr( Y,comp_RX);
disp(sprintf( 'Eb/No: %0.1f ,EbNO(runs)));
disp(sprintf( 'Channel Bit-error rate = %d' ,NErrs_channel(runs)));
disp(sprintf( 'Number of biterrors (Matlab Viterbi Decoder) =

%d' ,nErrs_matHard(runs)));
disp(sprintf( 'Number of biterrors (‘My Viterbi’ Decoder) =

%d' ,nErrs_Conv(runs)));
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disp(sprintf( 'Number of bit-errors (Switching Decoder) =
%d' ,nErrs_A(runs)));

disp(sprintf( 'NumCalls Simple Decoder : %d' ,numCalls_A));
disp(sprintf( 'NumCalls Adapted Viterbi Decoder : %d' ,numCalls_N));
disp(sprintf( ‘NumCalls Normal Viterbi decoder(‘My Viterbi’ dec.)
%d", numcCalls_C));
disp(sprintf( 'NumBitsDecoded A: %d' ,/ACount));
disp(sprintf( 'NumBitsDecoded N: %d' ,NCount));
disp(sprintf( 'NumBitsDecoded C: %d' ,CCount));
disp(sprintf( 'No. errors in simple decoded bits:
%d' ,countA(runs)));
disp(sprintf( ' -
————————————————————— ' )i
end
figure(1);

semilogy(EbNO,BER_matHard, -xb" , EbNO,BER_Conv, '-dr' ,EbNO,BER_A, '-
og' ,EbNO,BER_uncoded, '+r' ); %,EbNO,BER_matSoft,'-Xm");

grid on; title( 'Bit-error prob against EB/No' );
xlabel( 'Eb/No (dB)' ); ylabel( 'Bit error prob’ ); legend(  'Matlab
Viterbi' , 'MyViterbiDecoder' , 'Switching Decoder’ , 'Uncoded' );

grid on; title( 'Bit-error prob against Eb/No'

xlabel(

);
'Eb/No (dB)' ); ylabel( 'Bit error prob' );

7. Portion of conVitDec2.m (‘My Viterbi’ Decoder )

function [decoded t ] = conVitDec2(NB,Rx)

global numCalls_C CCount;

numcCalls_C=numcCalls_C+1;

accError = repmat (Inf,[64,35]); % initiaize error metric to undefined
value.

predecessor = zeros (64,35); %initialize state history table

prevState = ones(64,6);
decoded = repmat (-1,[NB,1]);

The rest of the code remains largely the same asAttapted Viterbi Decoder, the
difference being that we don’t maintain a countar determing that bit-errors have
stopped occurring. As expected, decoding is coatinwithout any switches to the
Simple Decoder.

8. MAINFILE_PacketLoss.m (Modified Main File to Measure Packet LosS)

clear

all ; clc;
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global decoded pState fLen ErrorFlag ;
global numCalls_A numCalls_N numCalls_C;
global ACount NCount CCount;

global decFlag

packetA Count=0;
packetConv_Count=0;
packetMat_Count=0;
packetUncoded_Count=0;
for packet=1:100
NB =1000; % Number of orig bits for testing.
Inp = randsrc(NB, 1, 0:1);
ZInp=[Inp; O; O; 0; 0; 0; 0]; NB=NB+6; %Add 6 extra zeros to
flush at end.

% - -
% Convolutional coder 1/2 K=7 (171,133)
% - —_— e

Y = encoder(NB,ZInp);

% - -
% Coded signal Y. Modulate signal QPSK. Store tran smitted signal as
msg_tx

%

M=4;k= log2(M);Nsamp=4;
[msg_tx grayencod]=modulate(Y,M,Nsamp);
[msg_tx_uncoded grayencod]=modulate(ZInp,M,Nsam p);
% - — e
%Initialize matrices
snr = zeros(1,1);
nErrs_A =zeros(1,1);
nErrs_matSoft = zeros(1,1);
nErrs_matHard = zeros(1,1);
nErrs_Conv = zeros(1,1);
nErrs_uncoded = zeros(1,1);
nErrs_channel=zeros(1,1);
BER_A=zeros(1,1);
BER_matSoft = zeros(1,1);
BER_matHard=zeros(1,1);
BER_Conv = zeros(1,1);
BER_uncoded=zeros(1,1);
BER_channel=zeros(1,1);

for runs=1:1

ErrorFlag=0; % Set Error Flagto 0
decoded = repmat(-1,[NB,1]);

% initialize decoded output array
decFlag=repmat(-1,[NB,1]);

% Flag to check which bits were decoded by Simple D ecoder
pState = zeros(7,1); % intitalize last 7 states of the
% decoder
fLen=0; % initialize last index of decoded output

numCalls_A=0;
numcCalls_N=0;
numcCalls_C=0;

ACount=0;
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NCount=0;
CCount=0;

snr(runs)= 6.5; %Set snr to a fixed value for all 50 packets

EsNO = snr(runs) + 10*log10(k);
%
% Modulated signal msg_tx. Introduce bit-errors. S
% Receiver is msg_rx
%

msg_rx = awgn(msg_tx, EsN0-10*log10(2)-10*I
% AWGN NOISE
msg_rx_uncoded = awgn(msg_tx_uncoded,ESNO-1
10*log10(Nsamp)); %Uncoded Signal
% msg_rx=msg_tx; % no noise added

%
% Demodulate signal received .Store in comp_Rx
%

comp_Rx = demodulate(msg_rx,M,Nsamp,grayenc
comp_Rx_uncoded = demodulate(msg_rx_uncoded
%

0g10(Nsamp));

0*log10(2)-

od);
,M,Nsamp,grayencod);

Rx= double((comp_Rx > 0.5)); % hard decision, round off

%
% Apply MATLAB Viterbi decoder for checking later:-
%

trellis = poly2trellis(7,[171 133]);

% IEEE802.11

tblen = 35; delay = tblen; % Traceback length % NB length
% has 6 zero's appended

matdecodedHard = vitdec(Rx,trellis,tblen,
% Hard decision

%
% Switching Decoder
%

currState=1; % Set initial current state to 1
while (fLen < NB)
if (ErrorFlag==0)
%
% Start Simple Decoding Method
%

simpleDecoder(NB, Rx,currState-1);
% Perform simple decoding

elseif  (ErrorFlag==1)

%
% Start Adapted Viterbi Decoder 1/2 K= 7 (171,13
%

[currState | = adapVitDec(NB,Rx);

‘term' , ‘hard" );

% Perform normal

% Viterbi decoding

end

end
%
% ‘My Viterbi’ Decoder Run from Beginning to End
%

CON_decoded = conVitDec2(NB,Rx); % ‘My Viterbi’ decoder run
% from beginning to end

%
countA(runs)=0;
for i=1:NB
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if (xor(ZInp(i),decoded(i)) && (decFlag(i)==1))
countA(runs)=countA(runs)+1;

end
end
[nErrs_A(runs) BER_A(runs)] = biterr(ZInp, decoded);
[nErrs_matHard(runs) BER_matHard(runs)] = b iterr(ZInp,
matdecodedHard);
[nErrs_Conv(runs) BER_Conv(runs)] = biterr( ZIlnp, CON_decoded);

[nErrs_uncoded(runs) BER_uncoded(runs)] =
biterr(ZInp,comp_Rx_uncoded);

[nErrs_channel(runs) BER_channel(runs)]=bit err(Y,comp_Rx);
disp(sprintf( 'Channel Bit-error rate =
%d' ,nErrs_channel(runs)));
disp(sprintf( ‘Number of biterrors (matHard-Decoded) =
%d' ,nErrs_matHard(runs)));
disp(sprintf( 'Number of biterrors (ConvBitDec2) =
%d',nErrs_Conv(runs)));
disp(sprintf( 'Number of bit-errors (Decoded With Switching) =

%d" ,nErrs_A(runs)));

if nErrs_A(runs) ==
packetA_ Count=packetA Count+1;

end

if nErrs_matHard(runs) ==
packetMat_Count=packetMat_Count+1;

end

if nErrs_Conv(runs) ==
packetConv_Count=packetConv_Count+1;

end
if nErrs_uncoded(runs) ==0
packetUncoded_Count=packetUncoded_Count +1;
end
disp(sprintf( 'NumBitsDecoded A: %d' ,/ACount));
disp(sprintf( 'NumBitsDecoded N: %d' ,NCount));
disp(sprintf( 'NumBitsDecoded C: %d' ,CCount));
disp(sprintf( '‘No. errors in simple decoded bits:
%d' ,countA(runs)));
disp(sprintf( ' - - --
------------------------- ' ));
% - - —— e
end
end
disp(sprintf( 'Successful Packets - Matlab Viterbi Decoder:
%d',packetMat_Count));
disp(sprintf( 'Successful Packets - ‘My Viterbi’ Decoder:
%(d',packetConv_Count));
disp(sprintf( 'Successful Packets - Switching decoder

%d',packetA_Count));
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