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Abstract 

This project is concerned with bit-error control mechanisms that are used in mobile 

telephone and wireless computer networks today. The use of Forward Error Correction 

(FEC) techniques using convolutional codes is studied along with the Viterbi Algorithm 

for decoding convolutional codes.  Due to its computational complexity, a major portion 

of the energy consumption at a wireless digital receiver results from the Viterbi decoder. 

This project investigates a new energy saving strategy that may enable receivers to 

decode convolutionally coded transmissions with lower energy utilization.   

In practical applications, there can be large variations in the bit-error rate encountered at 

a mobile receiver. These variations will be more pronounced when the receiver is in 

motion between access-points. The energy saving strategy is to switch to a simpler 

decoding mechanism when it is ascertained that bit-errors are not occurring. When the 

presence of bit-errors is detected by the simple decoder it switches back to the Viterbi 

decoder to try and correct the bit-errors.  On switching from the simple decoder to the 

Viterbi decoder, the Viterbi decoder must be accurately initialized with the current state 

of the simple decoder. Similarly, on switching from the Viterbi decoder to the simple 

decoder, the simple decoder must be accurately initialized with the current state of the 

Viterbi Decoder.  While it is easy for the simple decoder to detect the occurrence of bit-

errors, getting the Viterbi decoder to determine when there are no bit-errors and switch 

back to the simple decoder presents a harder problem.  These issues are addressed and a 

working solution is presented.   

Results obtained by MATLAB® simulation demonstrate that, with appropriate settings, 

no increase in bit-error probability appears to be introduced by the new method. The 

packet loss rate was observed to be identical for all values of signal to noise ratio 

(Eb/N0).  Evaluating the energy saving capability of the new technique requires the 

profiling of its energy consumption in comparison to that of a standard Viterbi decoder. 

To do this accurately for a true VLSI implementation would require resources beyond 

the scope of the project. However, MATLAB® provides some profiling facilities based 

on execution times and these can give some idea of the likely relationship between the 

energy consumption of these particular algorithms. Since they perform the same types of 

operation, they are likely to be equally affected by interpretation efficiency and the 
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effects of caching. For a message length of 10,000 bits and constant AWGN noise levels, 

the MATLAB processing time shows that, in comparison to that obtained with a standard 

Viterbi decoder, the new method requires about the same execution time for SNR values 

(as measured by Eb/N0) below 5 dB and always less for values above 5 dB.   If Eb/N0 is 

increased beyond 5 dB, the difference in execution time between the two methods 

becomes steadily greater.  At Eb/N0 = 7, 8, 9 and 10 dB, the execution time for the new 

method becomes about 50 %, 35 %, 18 %, and 8 % respectively of that taken by the 

standard Viterbi decoder.  We believe that these profiling measurements indicate that 

improved energy efficiency is a strong possibility for the new decoder.   
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Chapter 1 

INTRODUCTION 

 

 
This chapter gives an outline of the main motivations and ideas that underpin this 

project. The main objectives are then presented along with the scope of the investigation 

and an overview of the report organization. 

 

1.1 Motivation 

 
Unlike wired digital networks, wireless digital networks are much more prone to bit-

errors. Packets of bits that are received are more likely to be damaged and considered 

unusable in a packetized system. Error detection and correction mechanisms are vital 

and numerous techniques exist for reducing the effect of bit-errors and trying to ensure 

that the receiver eventually gets an error free version of the packet. The major 

techniques used are error detection with Automatic Repeat Request (ARQ) [4], Forward 

Error Correction (FEC) [11] and hybrid forms of ARQ and FEC (H-ARQ) [8, 9]. This 

project focuses on FEC techniques. 

 

Forward Error Correction (FEC) is the method of transmitting error correction 

information along with the message. At the receiver, this error correction information is 

used to correct any bit-errors that may have occurred during transmission. The 

improved performance comes at the cost of introducing a considerable amount of 

redundancy in the transmitted code. There are various FEC codes in use today for the 

purpose of error correction. Most codes fall into either of two major categories: block 

codes [11] and convolutional codes [6]. Block codes work with fixed length blocks of 

code. Convolutional codes deal with data sequentially (i.e. taken a few bits at a time) 

with the output depending on both the present input as well as previous inputs.  
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In terms of implementation, block codes become very complex as their length increases 

and are therefore harder to implement. Convolutional codes, in comparison to block 

codes, are less complex and therefore easier to implement. In packetized digital 

networks convolutionally coded data would still be transmitted as packets or blocks. 

However these blocks would be much larger in comparison to those used by block 

codes. The fact that convolutional codes are easier to implement, coupled with the 

emergence of a very efficient convolutional decoding algorithm, known as Viterbi 

Algorithm [1], is one of the reasons for convolutional codes becoming the preferred 

method for real time communication technologies. This project studies the use of 

various error detection and correction techniques for mobile networks with a focus on 

non-recursive convolutional coding and the Viterbi Algorithm. 

 

 The constraint length of a non-recursive convolutional code results from the number of 

stages present in the combinatorial logic of the encoder. The error correction power of a 

convolutional code increases with its constraint length. However, decoding complexity 

increases exponentially as the constraint length increases. Fortunately, the efficiency of 

the Viterbi algorithm allows the use of convolutional coding with quite reasonable 

constraint lengths in many applications. Due to its high accuracy in finding the most 

likely sequence of states, the Viterbi algorithm is used in many applications ranging 

from communication networks [27, 30, 31], optical character recognition [26] and even 

DNA sequence analysis. Recently, interest has grown in the use of certain error 

correction codes that provide much superior performance. Two of these codes are Low 

Density Parity Check codes [19] and Turbo Codes [16]. The ideas presented in this 

thesis are likely to be relevant to these more advanced codes as well as non-recursive 

convolutional codes, but this thesis will concentrate on convolutional codes. 

 

Since preservation of battery energy is a major concern for mobile devices, it is 

desirable that the error detection and correction mechanism take the minimum amount 

of energy to execute. This project explores the possibility of improving the energy 

efficiency of the Viterbi decoder and develops an algorithm to achieve this.  
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1.2 Outline and Context of the Report 

 
This project focuses on the use of Viterbi Algorithm for forward error correction in 

mobile networks.  It is desirable to keep energy consumption at a minimum in order to 

optimize use of available battery energy. In order to get good error correcting 

capabilities, the constraint length must be kept high and since the complexity of a 

convolutional decoder increases exponentially with its constraint length, optimizing the 

decoding mechanism with respect to energy consumption becomes a worthwhile goal. 

 

The growing need for improved energy efficiency of decoders has resulted in several 

approaches being explored [20, 34].  The main focus of the project is to explore an idea, 

proposed by Barry Cheetham [2] which is to switch off the Viterbi decoder and use a 

simpler decoder when no bit-errors are occurring. It is possible that by doing this, a 

significant amount of energy could be saved. When bit-errors are detected, the Viterbi 

decoder can be switched back on to take advantage of its error correction functionality. 

This process at the receiver depends on having a memory of previous bits received. 

Correctly maintaining and using this previous memory (previous history) when 

switching between the two decoders is one of the main technical challenges in the 

project. 

 

The energy saving mechanism proposed by Barry Cheetham [2] is based on an earlier 

idea published by Wei Shao [3], though it is hoped that the new approach will be easier 

to implement.  This algorithm can be developed using MATLAB ® though it will require 

a custom designed version of the Viterbi algorithm to be developed from scratch, and 

then adapted to the new energy saving idea [2]. Possible problems that may affect the 

accuracy and energy saving capabilities of the algorithm must be analyzed and solutions 

to these problems must be developed. The performance of the resulting algorithm must 

be studied in terms of bit-error performance, packet loss rates and processing time. 

 

 In principle, evaluating the performance of the new technique requires profiling of the 

energy consumption of the two algorithms involved. To do this accurately would 

require resources beyond the scope of the project. MATLAB ®, provides some profiling 

facilities. But relating information obtained to energy consumption as would be 
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observed in a VLSI implementation of the code is a complex issue. Nevertheless, it is 

believed that the execution times of particular parts of the algorithms can give some 

idea of the likely relationship between the energy consumption of these particular parts. 

Hence, in place of quoting estimations of the likely energy consumption of different 

techniques, execution times will be quoted with an implicit assumption that this gives a 

first order approximation to the likely energy consumption.  By comparison with the 

standard Viterbi decoder available in MATLAB®, an analysis will be made of whether 

this method provides a significant improvement over existing mechanisms.  

 

1.3 Main Objectives 

 
The main objectives of this project are as follows 

i. An understanding of the background literature relevant to error detection and error 

control mechanisms as currently used in packetized digital communication 

networks. 

ii.  A detailed understanding of the concept of convolutional coding, and decoding using 

the Viterbi algorithm. 

iii. An implementation of the Viterbi algorithm in MATLAB ® to obtain a ‘custom 

designed’ version called ‘My Viterbi’ and check that it is working correctly by 

comparing its performance with that of the Viterbi decoder function (vitdec.m) 

provided by MATLAB® (A custom designed Viterbi decoder is needed because 

MATLAB ® does not provide access to the code for vitdec.m).   

iv. A resolution of questions that still need to be answered about the new algorithm [2] 

including the correct initialization of component decoders and the stability of the 

feedback mechanism  

v.  An implementation in MATLAB® of the new algorithm [2] as a modification of the 

custom designed Viterbi algorithm. 

vi. An evaluation of the new algorithm [2] in terms of its accuracy and capacity for 

achieving energy saving tAnalysis will be performed on the basis of bit-error 

performance, packet loss rates and execution time (considered to provide a first 

order approximation to energy consumption). 
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1.4 Scope of the Project 

 
This project is intended to further develop and implement the energy saving decoding 

algorithm developed by Barry Cheetham [2]. Solutions to some issues that still 

remained to be resolved at the beginning of this project. The main focus of this project 

is to provide a working demonstration of the algorithm by implementation in 

MATLAB ® and to analyze its performance by comparison with the standard Viterbi 

decoder available in MATLAB®. The system will be developed using a hard decision 

Viterbi decoder but may be extended to using a soft decision decoder. The project does 

not consider the circuit level design of the algorithm but uses a high level approach to 

test the proposed algorithm. This may be considered in future work if it is found that 

this algorithm promises considerable benefits over existing mechanisms. 

 

1.5 Overview of the Report 

 
Chapter 2 provides the background literature relevant to Error Detection and Control 

Mechanisms and describes convolutional codes in detail. Chapter 3 is devoted to a study 

of the Viterbi algorithm and in particular the Viterbi Decoder. Chapter 4 introduces the 

new energy saving strategy proposed by Barry [2] and explains the basic principles that 

drive the mechanism. Chapter 5 describes the research methodology that will be 

followed to guide the structure of the project. Design and implementation details of the 

system to be developed are detailed in Chapter 6.  Chapter 7 provides a summary of the 

results obtained through testing and provides a detailed analysis of the results. Chapters 

8 and 9 describe the conclusions that were made at the end of the project and provide 

suggestions for further investigations on the developed algorithm. 

 

1.6 Summary 

 
This chapter has described the motivations behind this project and has defined its main 

objectives and scope. The following chapter describes the major classifications of error 

detection and correction mechanisms, their advantages and drawbacks. 
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Chapter 2 

ERROR DETECTION AND CORRECTION 

TECHNIQUES 

 

 

This section describes common methods of error detection and error correction as used in 

wireless networks. The methods described include Forward Error Correction (FEC) , 

Automatic Repeat Request (ARQ) and Hybrid- ARQ (H-ARQ) 

 

2.1 Forward Error Correction (FEC) 

 
Forward Error Correction is a method used to improve channel capacity by introducing 

redundant data into the message [8]. This redundant data allows the receiver to detect 

and correct errors without the need for retransmission of the message. Forward Error 

Correction proves advantageous in noisy channels when a large number of 

retransmissions would normally be required before a packet is received without error. It 

is also used in cases where no backward channel exists from the receiver to the 

transmitter. A complex algorithm or function is used to encode the message with 

redundant data. The process of adding redundant data to the message is called channel 

coding. This encoded message may or may not contain the original information in an 

unmodified form. Systematic codes are those that have a portion of the output directly 

resembling the input. Non-systematic codes are those that do not. 

 

It was earlier believed that as some degree of noise was present in all communication 

channels, it would not be possible to have error free communications. This belief was 

proved wrong by Claude Shannon in 1948. In his paper [9] titled “A Mathematical 

Theory of Communication”, Shannon proved that channel noise limits transmission rate 

and not the error probability. According to his theory, every communication channel has 

a capacity C (measured in bits per second), and as long as the transmission rate, R 
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(measured in bits per second), is less than C, it is possible to design an error-free 

communications system using error control codes. The now famous Shannon-Hartley 

theorem, describes how this channel capacity can be calculated. However, Shannon did 

not describe how such codes may be developed. This led to a wide spread effort to 

develop codes that would produce the very small error probability as predicted by 

Shannon. It was only in the 1960’s that these codes were finally discovered [10]. There 

were two major classes of codes that were developed, namely block codes and 

convolutional codes. 

 

2.2 Block Codes 

 
As described by Proakis [11], linear block codes consist of fixed length vectors called 

code words. Block codes are described using two integers k and n, and a generator 

matrix or polynomial [6]. The integer k is the number of data bits in the input to the 

block encoder. The integer n is the total number of bits in the generated codeword. Also, 

each n bit codeword is uniquely determined by the k bit input data.  

 

Another parameter used to describe is its weight. This is defined as the number of non 

zero elements in the code word. In general, each code word has its own weight. If all the 

M code words have equal weight it is said to be fixed-weight code [11].  

Hamming Codes and Cyclic Redundancy Checks are two widely used examples of block 

codes. They are described below. 

 

2.2.1. Hamming Codes 

A commonly known linear Block Code is the Hamming code. Hamming codes can 

detect and correct a single bit-error in a block of data. In these codes, every bit is 

included in a unique set of parity bits [12].  The presence and location of a single parity 

bit-error can be determined by analyzing parities of combinations of received bits to 

produce a table of parities each of which corresponds to a particular bit-error 

combination. This table of errors is known as the error syndrome. If all the parities are 

correct according to this pattern, it can be concluded that there is not a single bit-error in 

the message (there may be multiple bit-errors). If there are errors in the parities caused 
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by a single bit-error, the erroneous data bit can be found by adding up the positions of 

the erroneous parities. The reference [12] provides the general algorithm used for 

creating Hamming codes and is presented in Appendix B.  

 

While Hamming codes are easy to implement, a problem arises if more than one bit in 

the received message is erroneous. In some cases, the error may be detected but cannot 

be corrected. In other cases, the error may go undetected resulting in an incorrect 

interpretation of transmitted information. Hence, there is a need for more robust error 

detection and correction schemes that can detect and correct multiple errors in a 

transmitted message.  

 

2.2.2 Cyclic codes and Cyclic Redundancy Checks (CRC) 

 Cyclic Codes are linear block codes that can be expressed by the following 

mathematical property.  If C = [c n-1 cn-2 … c1 c0] is a code word of a cyclic code, then [c n-2 

cn-3 … c0 cn-1], which is obtained by cyclically shifting all the elements to the left, is also a 

code word [11]. In other words, every cyclic shift of a codeword results in another 

codeword. This cyclic structure is very useful in encoding and decoding operations 

because it is very easy to implement in hardware. 

 

A cyclic redundancy check or CRC is a very common form of cyclic code which is used 

for error detection purposes in communication systems. At the transmitter, a function is 

used to calculate a value for the CRC check bits based on the data to be transmitted. 

These check bits are transmitted along with the data to the receiver. The receiver 

performs the same calculation on the received data and compares it with the CRC check 

bits that it has received. If they match, it is considered that no bit-errors have occurred 

during transmission. While it is possible for certain patterns of error to go undetected, a 

careful selection of the generator function will minimize this possibility. 

 

Using different kinds of generator polynomials, it is possible to use CRC’s to detect 

different kinds of errors such as all single bit-errors, all double bit errors, any odd 

number of errors, or any burst error of length less than a particular value.  The specific 

types of generator polynomials for detecting these errors are listed in Appendix C. Due 
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to these properties, the CRC check is a very useful form of error detection. The IEEE 

802.11 standard for CRC check polynomial is the CRC-32 [13].  

 

2.3 Convolutional Codes 

 
Convolutional codes are codes that are generated sequentially by passing the information 

sequence through a linear finite-state shift register. A convolutional code is described 

using three parameters k, n and K. The integer k represents the number of input bits for 

each shift of the register. The integer n represents the number of output bits generated at 

each shift of the register.  K is an integer known as constraint length, which represents 

the number of k bit stages present in the encoding shift register [6]. Each possible 

combination of shift registers together forms a possible state of the encoder. For a code 

of constraint length K, there exist 2K-1 possible states. 

 

Since convolutional codes are processed sequentially, the encoding process can start 

producing encoded bits as soon as a few bits have been processed and then carry on 

producing bits for as long as required. Similarly, the decoding process can start as soon 

as a few bits have been received. In other words, this means is that it is not necessary to 

wait for the entire data to be received before decoding is started. This makes it ideal in 

situations where the data to be transmitted is very long and possibly even endless! e.g.: 

phone conversations. 

 

 In packetized digital networks, even convolutional codes are sent as packets of data. 

However, these packet lengths are usually considerably longer than what would be 

practical for block codes. Additionally, in block codes, all the blocks or packets would be 

of the same length. In convolutional codes the packets may have varying lengths. 

 

There are alternative ways of describing a convolutional code. It can be expressed as a 

tree diagram, a trellis diagram or a state diagram. For the purpose of this project, trellis 

and state diagrams are used. These two diagrams are explained below. 
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2.3.1 State Diagram  

The state of the encoder (or decoder) refers to a possible combination of register values 

in the array of shift registers that the encoder (or decoder) is comprised of. A state-

diagram shows all possible present states of the encoder as well all the possible state 

transitions that may occur. In order to create the state diagram, a state transition table 

may first be made, showing the next state for each possible combination of the present 

state and input to the decoder. The following tables and figures show how a state 

diagram is drawn for a convolutional encoder. For the purpose of illustration a 3 stage 

encoder with rate ½ has been shown. In the project, the standard rate ½, 7stage encoder 

will be used.  

 

Figure 2.1 shows a convolutional encoder with a rate ½ and K =3, (7, 5). Rate ½ is used 

to denote the fact that for each bit of input the encoder a two bit output. K, the constraint 

length of the encoder being three, establishes that the input persists for 3 clock cycles 

[11]. The constraint length can be calculated as one more than the number of serially 

connected shift registers in the encoder.  Octal numbers seven and five when converted 

to binary form represent the generator polynomials signify the shift register connections 

to the upper and lower modulo-two adders respectively. 7(8) in binary form is 111. Hence 

direct input, output of first shift register and output of second shift register are connected 

to the fist modulo-two adder (A in Figure 2.1). Similarly, 5(8) in binary form is 101. 

Hence direct input and output of second shift register are connected to the second 

modulo-two adder (B in the Figure 2.1) 

Figure 2.1: ½, K=3 Convolutional Encoder 
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By looking at the transition of shift registers (also known as Flip Flops) FF1 and FF2, the 

State transition table is created for each combination of Input and Current State. This is 

shown in Table 2.1 

 

Current State 
(FF1 FF2) 

Next State if 

Input =0 Input=1 

00 00 10 

01 00 10 

10 01 11 

11 01 11 

Table 2.1: State Transition Table 

 

Another table can be created to demonstrate the change in output for each combination 

of input and previous output. This is called the Output Table and is shown in Table 2.2 

 

Current Output Output Symbols if 
Input = 0 Input= 1 

00 00 11 

01 11 00 

10 10 01 

11 01 10 

Table 2.2: Output Table 

 

Finally, using the information from Table 2.1 and Table 2.2, the state diagram is created 

as shown in Figure 2.2. The values inside the circles indicate the state of the flip flops. 

The values on the arrows indicate the output of the encoder.  
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Figure 2.2: State Diagram 

 

2.3.2. Trellis Diagram 

In a trellis diagram the mappings from current state to next state are done in a slightly 

different manner as shown in Figure 2.3. Additionally, the diagram is extended to 

represent all the time instances until the whole message is decoded. In the following 

Figure 2.3, a trellis diagram is drawn for the above mentioned convolutional encoder. 

The complete trellis diagram will replicate this figure for each time instance that is to be 

considered. 

 

 

Figure 2.3: Trellis Diagram for a 1/2, K=3,(7,5) convolutional encoder 

 

The solid lines in Figure 2.3 represent transitions when the input is 1. The dashed lines 

represent transitions when input is 0. From this diagram it can be observed that each state 

has two possible successor states depending on whether the input bit was 1 or 0. The 

diagram also shows that each state has two possible predecessor states.  
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The most common convolutional code used in communication systems has a symbol rate 

of ½ and constraint length K = 7. The most widely used method for decoding 

convolutional codes has been the Viterbi Algorithm .Chapter 4 is devoted towards a 

detailed description of the algorithm. Prior to that, some recent developments in this area 

are described below. 

 

2.4 Recent Developments 

 
Since its discovery, the Viterbi algorithm has been the most widely used method for 

decoding convolutional codes. However, more complex codes are now increasingly 

being used to provide superior performance. While understanding these complex codes 

in a short amount of time is difficult, an attempt has been made to provide a basic 

description of two of these codes, namely Low Density Parity Check Codes and Turbo 

Codes. 

 

2.4.1 Low Density Parity Check Codes or LDPC Codes 

LDPC codes were first introduced by Gallager in his PhD thesis in 1963[18].  However, 

it was a long time before interest grew in these codes.  As described by Shokrollahi [19], 

LDPC codes are linear block codes obtained from sparse bipartite graphs. A sparse 

bipartite graph is a graph with ‘n’ left nodes known as message nodes and ‘r’ right nodes 

known as check nodes. The graph creates a linear code of block length n and dimension 

at least ‘n – r’ as described below: The n coordinates of the codewords are associated 

with the n message nodes. The codewords are those vectors (c1, . . . , cn ) such that for 

all check nodes the sum of the neighboring positions among the message nodes is zero. 

Shokrollahi provides this example [19] shown in Figure 2.7 to illustrate this concept. 
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Figure 2.4: Example of an LDPC Code. Reproduced from [19] 

 

LDPC codes can be mathematically defined in the following way [19]. 

 “Let H be a binary r x n matrix where entry (i, j) is 1 if and only if the ith check node is 

connected to the jth message node in the graph. Then the LDPC code may be defined by 

the graph as the set of vectors c = (c 1 , . . . , cn ) such that H · cT = 0. Matrix H defined 

in this manner is known as the parity check matrix for the code.” 

 

LDPC Codes are not particularly advantageous as compared to other codes in terms of 

probability of decoding errors for a particular block length. Also, the maximum rate at 

which LDPC Codes can be used is limited below channel capacity. The biggest 

advantage of LDPC Codes, as explained by Gallager [18] is that they allow the use of a 

simple decoding scheme and this outweighs its drawbacks.  

 

One of the simpler decoding schemes that may be used for Binary Symmetric Channels 

is done by calculating all of the parity checks for the code and then reversing the digit 

that is contained in more than a certain number of unsatisfied parity check equations. 

This process is repeated many times until all the parity checks are satisfied. This 

decoding scheme is not optimal. Better schemes which use a posteriori probabilities at 

the channel output to decode data are described by Gallager [18]. 
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2.4.2. Turbo Codes  

Concatenated coding schemes combine two or more relatively simple component codes 

as a means of achieving large coding gains. Such concatenated codes have the error-

correction capability of much longer codes while at the same time permitting relatively 

easy to moderately complex decoding. [6] Turbo codes, first introduced by Berrou, 

Glavieux and Thitimajshima, [15] are a modification of the concatenated encoding 

structure with an iterative algorithm for decoding the associated sequence. Serial and 

parallel concatenated Turbo codes are in fact a type of LDPC codes. 

 

2.4.2.1 Encoder  

In most communication links, bit-errors are introduced into the message as short bursts 

due to some sudden disturbance in the medium. When many bit-errors occur adjacent to 

each other, it is more difficult to correct them. Turbo Codes try to reduce the effect of 

such bursts of error by spreading out adjacent information bits. The encoder as shown in 

Figure 2.4 and described by Ryan [16], consists of three individual components  

i. The Recursive Systematic Encoders, 

ii.   Permuter or N-bit interleaver 

iii.  Puncturer (optional).  

 

 

Figure 2.5: Schematic Diagram of a Turbo Encoder with two identical Recursive 

Systematic Encoders, an N-bit Interleaver and Puncturer. Reproduced from [16] 

 

As shown in the figure, the two Recursive Systematic Encoders are separated by an N-

bit interleaver or permuter. However instead of cascading the two encoders serially, as 

is the convention for concatenation, the encoders are arranged to facilitate parallel 

concatenation [16]. A conventional interleaver arranges data in a pseudo random order. 
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The permuter differs from this in that it takes a block of N bits of data and rearranges 

them in a pseudo random manner. It is hence also called an N-bit interleaver. This 

rearranged code is then passed to the second encoder.  

The advantage is that any bursts of errors that occur will now be spread over a wider 

range bits. As the bit-errors are now farther apart there is a higher probability that the 

bit-errors may be corrected at the decoder. This method is advantageous when the 

medium is known to produce burst errors. There is also a probability that this type of 

code adversely affects the outcome. This may happen if bit-errors which would have 

been far apart are adjacent to each other as a result of the rearrangement operations.  

 

2.4.2.2 Decoder  

Using a maximum likelihood sequence for the decoder would prove too difficult since 

the data has been rearranged in a pseudo random fashion. Instead an iterative decoding 

algorithm is used to provide similar performance. In order to make full use of this 

method, the decoders must produce soft decision outputs as hard decisions will 

severely limit its error correcting capability. The decoding algorithm used by Berrou, et 

al [15], is based on the symbol-by-symbol maximum a posteriori (MAP) algorithm of 

Bahl, et al [17]. In this algorithm, the decoder sets the data input uk as 1 if P( uk = 1| y) 

is greater than P(uk = -1 | y ), where y is the received message with bit-errors. In other 

words the decision of the value of uk equals sign [L(uk)] which is the log a posteriori 

probability (LAPP) ratio given by  

L(uk) = log [ (P(uk = +1 | y) / (P(uk = -1 | y )]      ---- (Eq.1) 

The following figure, Figure 2.5, described by Ryan [16], demonstrates how an 

iterative decoder is built using component MAP decoders. The N-bit interleavers and 

de-interleavers are used to arrange information in the right sequence for each decoder. 

 

 

 

 

 

 

 Figure 2.6 Schematic Diagram of Turbo Decoder. Reproduced from [16]  
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Berrou, Glavieux and Thitimajshima conducted simulations using parallel concatenation 

of Recursive Systematic Encoders and feedback decoding [15]. The results showed a 

marked improvement in error correction capabilities as the number of iterations 

performed was increased. For binary modulation, a bit error probability of 10-5 and Eb/N0 

= 0.2 dB is often used as a practical Shannon limit reference for a rate ½ code. The error 

performance of this turbo code at bit error probability 10-5 is within 0.5 dB of the 

pragmatic Shannon limit. 

 

2.5 Automatic Repeat Request (ARQ)   

 
Automatic Repeat request or ARQ is a method in which the receiver sends back a 

positive acknowledgement if no errors are detected in the received message. In order to 

do this, the transmitter sends a Cyclic Redundancy Check or CRC along with the 

message. This has been described in Section 2.2.1 The CRC check bits are calculated 

based on the data to be transmitted.  At the receiver, the CRC is calculated again using 

the received bits. If the calculated CRC bits match those received, the data received is 

considered accurate and an acknowledgement is sent back to the transmitter. 

 

The sender waits for this acknowledgement. If it does not receive an acknowledgement 

(ACK) within a predefined time, or if it receives a negative acknowledgement (NAK), it 

retransmits the message [4].This retransmission is done either until it receives an ACK or 

until it exceeds a specified number of retransmissions.  

 

This method has a number of drawbacks. Firstly, transmission of a whole message takes 

much longer as the sender has to keep waiting for acknowledgements from the receiver. 

Secondly, due to this delay, it is not possible to have practical, real-time, two-way 

communications. There are a few simple variations to the standard Stop-and-Wait ARQ 

such as Go-back-N ARQ, selective repeat ARQ. These are described below. 

 

2.5.1 ‘Stop and Wait’ ARQ 

In this method, the transmitter sends a packet and waits for a positive acknowledgement. 

Only once it receives this ACK does it proceed to send the next packet [5].This method 

results in a lot of delays as the transmitter has to wait for an acknowledgement. It is also 
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prone to attacks where a malicious user keeps sending NAK messages continuously. As 

a result the transmitter keeps retransmitting the same packet and the communication 

channel breaks down. 

 

2.5.2 ‘Continuous’ ARQ 

In this method, the transmitter transmits packets continuously until it receives a NAK. A 

sequence number is assigned to each transmitted packet so that it may be properly 

referenced by the NAK. There are two ways a NAK is processed.  

 

2.5.2.1 ‘Go-back-N’ ARQ  

 In ‘Go-back-N’ ARQ, the packet that was received in error is retransmitted along with 

all the packets that followed after it until the NAK was received. N refers to the number 

of packets that have to be traced back to reach the packet that was received in error. In 

some cases this value is determined using the sequence number referenced in the NAK. 

In others, it is calculated using roundtrip delay [5].The disadvantage of this method is 

that even though subsequent packages may have been received without error, they have 

to be discarded and retransmitted again resulting in loss of efficiency. This disadvantage 

is overcome by using Selective-repeat ARQ. 

 

2.5.2.2 ‘Selective-repeat’ ARQ  

In Selective-repeat ARQ, only the packet that was received in error needs to be 

retransmitted when an NAK is received. The other packets that have already been sent in 

the meantime are stored in a buffer and can be used once the packet in error is 

retransmitted correctly [5]. The transmissions then pick up from where they left off.  

 

Continuous ARQ requires a higher memory capacity as compared to Stop and Wait 

ARQ. However it reduces delay and increases information throughput [5].  

 

The main advantage of ARQ is that as it detects errors (using CRC check bits) but makes 

no attempt to correct them, it requires much simpler decoding equipment and much less 

redundancy as compared to Forward Error Correction techniques which are described 

below. The huge drawback however, is that the ARQ method may require a large 
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number of retransmissions to get the correct packet [6], especially if the medium is 

noisy. Hence the delay in getting messages across maybe excessive.   

 

2.6  Hybrid Automatic Repeat Request (H-ARQ)   

 
Hybrid Automatic Repeat Request or H-ARQ is another variation of the ARQ method. In 

this technique, error correction information is also transmitted along with the code. This 

gives a better performance especially when there are a lot of errors occurring. On the flip 

side, it introduces a larger amount of redundancy in the information sent and therefore 

reduces the rate at which the actual information can be transmitted. There are two 

different kinds of H-ARQ, namely Type I HARQ and Type II HARQ [7].  

 

Type I-HARQ is very similar to ARQ except that in this case both error detection as well 

as forward error correction (FEC) bits are added to the information before transmission. 

At the receiver, error correction information is used to correct any errors that occurred 

during transmission. The error detection information is then used to check whether all 

errors were corrected. If the transmission channel was poor and many bit-errors 

occurred, errors may be present even after the error correction process. In this case, when 

all errors have not been corrected, the packet is discarded and a new packet is requested. 

 

In Type II-HARQ, the first transmission is sent with only error detection information.  If 

this transmission is not received error free, the second transmission is sent along with 

error correction information. If the second transmission is also not error free, information 

from the first and second packet can be combined to eliminate the error.  

 

Transmitting FEC information can double or triple the message length. Error detection 

information on the other hand requires fewer numbers of additional bits [7]. The 

advantage of Type II HARQ therefore, is that it increases the efficiency of the code to 

that of simple ARQ when channel conditions are good and provides the efficiency of 

Type I HARQ when channel conditions are bad.  
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2.7 Summary 

 
This chapter has given a review of background literature pertaining to different error 

detection and error control techniques. Some of the more recent approaches including 

LDPC codes and Turbo codes are briefly described. In FEC, convolutional codes are 

preferred to block codes since they are less complex to decode. The encoding process has 

been described in this chapter. The next chapter is devoted to a detailed description of 

the Viterbi Algorithm which is one of the most popular algorithms for decoding 

convolutional code. Related energy saving techniques that have previously been 

investigated to optimize its energy consumption are also described. 
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Chapter 3 

THE VITERBI ALGORITHM  

 

 

The Viterbi Algorithm was developed by Andrew J. Viterbi and first published in the 

IEEE transactions journal on Information theory in 1967 [1]. It is a maximum likelihood 

decoding algorithm for convolutional codes. This algorithm provides a method of finding 

the branch in the trellis diagram that has the highest probability of matching the actual 

transmitted sequence of bits. Since being discovered, it has become one of the most 

popular algorithms in use for convolutional decoding. Apart from being an efficient and 

robust error detection code, it has the advantage of having a fixed decoding time. This 

makes it suitable for hardware implementation. 

 

3.1 Encoding Mechanism 

 
Data is coded by using a convolutional encoder, as described in Section 2.3.2. It consists 

of a series of shift registers and an associated combinatorial logic. The combinatorial 

logic is usually a series of exclusive-or gates. The conventional encoder ½ K=7, 

(171,133) is used for the purpose of this project. The octal numbers 171 and 133 when 

represented in binary form correspond to the connection of the shift registers to the upper 

and lower exclusive-or gates respectively. Figure 3.1 represents this convolutional 

encoder that will be used for the project. 
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Figure 3.1: Rate = ½ K = 7, (171,133) Convolutional Encoder 

 

3.2 Decoding Mechanism 

 
There are two main mechanisms by which Viterbi decoding may be carried out namely, 

the Register Exchange mechanism and the Traceback mechanism.  

 

Register exchange mechanisms, as explained by Ranpara and Sam Ha [20] store the 

partially decoded output sequence along the path. The advantage of this approach is that 

it eliminates the need for traceback and hence reduces latency. However at each stage, 

the contents of each register needs to be copied to the next stage. This makes the 

hardware complex and more energy consuming than the traceback mechanism. 

 

Traceback mechanisms use a single bit to indicate whether the survivor branch came 

from the upper or lower path. This information is used to traceback the surviving path 

from the final state to the initial state. This path can then be used to obtain the decoded 

sequence. Traceback mechanisms prove to be less energy consuming and will hence be 

the approach followed in this project. 

 

Decoding may be done using either hard decision inputs or soft decision inputs. Inputs 

that arrive at the receiver may not be exactly zero or one. Having been affected by noise, 

they will have values in between and even higher or lower than zero and one. The values 

may also be complex in nature.  In the hard decision Viterbi decoder, each input that 

arrives at the receiver is converted into a binary value (either 0 or 1). In the soft decision 
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Viterbi decoder, several levels are created and the arriving input is categorized into a 

level that is closest to its value.  If the possible values are split into 8 decision levels, 

these levels may be represented by 3 bits and this is known as a 3 bit Soft decision. This 

project uses a hard decision Viterbi decoder for the purpose of developing and verifying 

the new energy saving algorithm. Once the algorithm is verified, a soft decision Viterbi 

decoder may be used in place of the hard decision decoder. 

 

Figure 3.2 shows the various stages required to decode data using the Viterbi Algorithm. 

The decoding mechanism comprises of three major stages namely the Branch Metric 

Computation Unit, the Path Metric Computation and Add-Compare-Select (ACS) Unit 

and the Traceback Unit. A schematic representation of the decoder is described below. 

 

Figure 3.2: Schematic representation of the Viterbi decoding block 

 

Block 1. Branch Metric Computation (BMC) 

For each state, the Hamming distance between the received bits and the expected bits is 

calculated. Hamming distance between two symbols of the same length is calculated as 

the number of bits that are different between them. These branch metric values are 

passed to Block 2. If soft decision inputs were to be used, branch metric would be 

calculated as the squared Euclidean distance between the received symbols [21].  The 

squared Euclidean distance is given as (a1-b1)
2 + (a2-b2)

2 + (a3-b3)
2 where a1, a2, a3 and 

b1, b2, b3 are the three soft decision bits of the received and expected bits respectively. 

 

Block 2. Path Metric Computation and Add-Compare-Select (ACS) 

Unit  

The path metric or error probability for each transition state at a particular time instant is 

measured as the sum of the path metric for its preceding state and the branch metric 
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between the previous state and the present state. The initial path metric at the first time 

instant is infinity for all states except state 0. 

 

For each state, there are two possible predecessors. The mechanism of calculating the 

predecessors (and successors) is described below in Section 3.2.1 and Section 3.2.2. The 

path metrics from both these predecessors are compared and the one with the smallest 

path metric is selected. This is the most probable transition that occurred in the original 

message. In addition, a single bit is also stored for each state which specifies whether the 

lower or upper predecessor was selected. In cases where both paths result in the same 

path metric to the state, either the higher or lower state may consistently be chosen as the 

surviving predecessor. For the purpose of this project the higher state is consistently 

chosen as the surviving predecessor.  

 

Finally, the state with the least accumulated path metric at the current time instant is 

located. This state is called the global winner and is the state from which traceback 

operation will begin. This method of starting the traceback operation from the global 

winner instead of an arbitrary state was described by Linda Brackenbury [22] in her 

design of an asynchronous Viterbi decoder. This greatly improves probability of finding 

the correct traceback path quicker and hence reduces the amount of history information 

that needs to be maintained. It also reduces the number of updates required to the 

surviving path. Both these measures result in improved energy savings. The values for 

the surviving predecessors (also called local winners) and the global winner are passed to 

Block 3. 

 

Block 3. Traceback Unit 

 The global winner for the current state is received from Block 2. Its predecessor is 

selected in the manner described in Section 3.2.2. In this way, working backwards 

through the trellis, the path with the minimum accumulated path metric is selected. This 

path is known as the traceback path.  A diagrammatic description will help visualize this 

process. Figure 3.3 describes the trellis diagram for a ½ K=3 (7, 5) coder with sample 

input taken as the received data.   
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Transition when Input = 0 

Transition when Input = 1 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Selected minimum error path for a ½ K = 3 (7, 5) coder 

 

The state having minimum accumulated error at the last time instant is State 10 and 

traceback is started here. Moving backwards through the trellis, the minimum error path 

out of the two possible predecessors from that state is selected. This path is marked in 

blue. The actual received data is described at the bottom while the expected data written 

in blue along the selected path. It is observed that at time slot three there was an error in 

received data (11). This was corrected to (10) by the decoder.  

 

Local winner information must be stored for five times the constraint length. For a K =7 

decoder, this results in storing history for 7 x 5 = 35 time slots. The state of the decoder 

at the time instant 35 time slots prior can then be accurately determined. This state value 

is passed to Block 4. At the next time slot, all the trellis values are shifted left to the 

previous time slot. The path metric for the last received data and compute the minimum 

error path is then calculated. If the global winner at this stage is not a child of the 

previous global winner, the traceback path has to be updated accordingly until the 

traceback state is a child of the previous state [22].  

 

Multiple traceback paths are possible and it may be thought that traceback up to the first 

bit is necessary to correctly determine the surviving path. However, it was found that all 

possible paths converge within a certain distance or depth of traceback [23][24]. This 

information is useful as it allows the setting of a certain traceback depth beyond which it 

is neither necessary nor advantageous to store path metric and other information. This 
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greatly reduces memory storage requirements and hence energy consumption of the 

decoder. Empirical observations showed that a depth of five times the constraint length 

was sufficient to ensure merging of paths [8, 25]. Therefore, local winner information is 

stored for 35 slots (five times seven) in the decoder used for this project.  

 

Block 4. Data Input Determination  

Now going forwards through the traceback path, the state transitions at successive time 

intervals are studies and the data bit that would have caused this transition (using the 

method described in Section 3.2.1) is determined. This represents the decoded output. 

 

3.2.1 Determining Successors to a particular State 

Each state is represented by 6 shift registers (in the case of a K=7 encoder or decoder). 

The next state can therefore be obtained by a right shift of the values of the shift 

registers. The first shift register is given a value of 0. The resulting state represents the 

next state of the coder if the input bit was 0. By adding 32 (1x25) to this value, the next 

state of the coder if the input bit was 1 is derived. 

 

3.2.2 Determining Predecessors to a particular State 

In a similar way, the first predecessor can be calculated this time by a left shift of the 

values of the shift registers. By adding one (1x20) to this value, the value of the second 

predecessor to the state is derived. 

 

3.3. Applications 

 
The Viterbi algorithm has a wide range of applications ranging from satellite and space 

communications, DNA sequence analysis and Optical Character Recognition.  

 

An attempt to perform optical character recognition of text was investigated by Neuhoff 

[26]. The initial approach considered was to create a dictionary which simulated 

vocabularies. Each time a character was read by the optical reader, it would search the 

dictionary for the most likely estimate. The huge amount of computational and storage 

requirements required under this approach made it impractical. However, another 

approach makes use of statistical information about the language such as relative 
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frequency of letter pairs. A maximum a priori probability (MAP) of a word is determined 

based on its probability as the output of the source model. The Viterbi algorithm may 

then be used to perform this MAP sequence estimation. 

 

An interesting application discussed by Metzner [27] investigated among others, the use 

of Viterbi decoding with soft decision to increase the probability of successfully 

transmitting a data packet during a meteor burst. Since meteor trails are made up of 

ionized material, these can be used for reliable communications. Some characteristics of 

such meteor burst communication and descriptions of its practical applications are 

detailed in [28, 29].  Metzner showed that convolutional codes with soft decision were 

considerably better for meteor burst applications as compared to Reed-Solomon codes. 

 

Low power applications of the Viterbi decoder are particularly relevant to many digital 

communication and recording systems today. As described by Kawokgy and Salama [30] 

systems like these are increasingly being used in wireless applications which being 

battery operated, require low power consumption. In addition, these systems also require 

processing speeds of over 100Mbps to allow multimedia transmission. Following this 

trend, many papers have been written on designing low power Viterbi decoding 

algorithms targeted for next generation wireless applications, particularly CDMA 

systems [31, 32, 33].  Some of these energy saving ideas that have been investigated are 

described in the next section. 

  

3.4 Related Work 

 
In mobile networks, decoding capabilities are limited by the receiver which is a mobile 

handset. As such, it has limited resources of energy and computation power. Another 

factor that affects wireless communication is that bandwidth is expensive. Therefore, 

there is a high demand for codes that can correct errors very efficiently while at the same 

time utilizing minimum energy. Hence, a lot of the past research has been focused on 

how this may be achieved.  

 

The fixed T-algorithm algorithm is an optimization of the Viterbi algorithm which 

applies a pruning threshold to the accumulated path metrics of the Viterbi decoder. 
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Instead of storing all the survivor paths for all 2K-1 states, only some of the most-likely 

paths are kept at every trellis stage. This results in fewer paths being found and stored.  

The following Figure 3.4 demonstrates the result of an experiment conducted by 

Henning and Chakrabarti [34] which compares normalized energy estimates for the 

Viterbi and the fixed T-algorithm decoders as it varies with signal to noise ratio (Eb/No) 

and code rate.  

 

 

Figure 3.4: Normalized energy estimates for the Viterbi and fixed T-algorithm (Tf) 

decoders as code rate and signal to noise ratio (Eb/No) vary. Reproduced from [34]. 

 

From the graph, it is estimated that a 33% to 83 % reduction in energy consumption can 

be achieved when the signal to noise ratio is between 2.1 and 4 dB. 

 

One of the other approaches taken has been to develop an adaptive T-algorithm which 

adjusts parameters of the decoder based on real-time variations in signal to noise ratio 

(SNR), code rate and maximum acceptable bit-error rate. The parameters adjusted are 

truncation length and pruning threshold of the T-algorithm along with trace-back 

memory management. Henning and Chakrabarti demonstrate in their paper [34] how this 

can achieve a potential energy reduction of 70% to 97.5% as compared to Viterbi 

decoding. Truncation length refers to the number of bits a path is followed back before a 

decision is made on the bit that was encoded. By reducing the truncation length more bits 

can be decoded per traceback. Similarly, lowering the pruning threshold means fewer 

paths need to be found and stored. Both of these measures can reduce the number of 

memory accesses required by the decoder and hence reduce energy consumption. 
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However, these measures may cause significant reduction in the error correcting 

capability of the decoder. 

 

Nevertheless, adjusting these parameters based on real-time changes in the channel can 

optimize energy consumption. The following figure, Figure 3.5 demonstrates the results 

of an experiment conducted by Henning and Chakrabarti [34] in which pruning threshold 

and truncation length are adapted to maintain bit-error rate below 0.0037. From the 

graph, it is estimated that an energy consumption reduction of 70 to 97.5 % compared to 

the Viterbi decoder can be achieved when the signal to noise ratio is between 2.1 and 4 

dB.  

 

However, the adaptive T-algorithm does require an additional overhead in terms of 

monitoring the real-time variations and choosing the appropriate truncation and threshold 

parameters from a lookup table. Since these operations are not complex it is assumed that 

their energy consumption is negligible. 

 

 

Figure 3.5: Normalized energy estimates for the Viterbi and adaptive T-algorithm (Ta) 

decoders as code rate and signal to noise ratio (Eb/No) vary while maintaining bit-error 

rate below 0.0037. Reproduced from [34]. 

 

Yet another approach that was put forward by Jie Jin and Chi-Ying Tsui in the 2006 

International Symposium on Low Power Electronics and Design, [35] was to integrate 

the T-algorithm with a Scarce-State–Transition (SST) decoder structure [36]. The SST 
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structure first pre-decodes the received data (Rx) by performing an inverse operation of 

the encoder. The pre-decoded signal will contain the original message along with bit-

errors (Pre-Dec). This message Pre-Dec is re-encoded and XOR’ed with Rx, the original 

received data. The operation results in an output which consists of mainly 0’s and the 

errors in the message. This output is then fed to the Viterbi decoder and the errors are 

corrected. In the end, the pre-decoded data (Pre-Dec) is added to the decoded output of 

the Viterbi decoder using modulo-2 addition.  When channel bit-errors are low, most of 

the Viterbi decoder output bits are zero and thus reduces switching activity.  

 

The SST structure was used to reduce the switching activities of the decoder and 

combined with the T-algorithm to reduce the average number of Add-Compare Select 

calculations. In their experiments, Jie Jin and Chi-Ying Tsui achieved a 30%-76% 

reduction in power consumption over the traditional Viterbi design for a range of SNR 

values varying from 4 dB to 12 dB. 

 

A different approach investigated by Sherif Welsen Shaker, Salwa Hussein Elramly and 

Khaled Ali Shehata [37] at a Telecommunications forum held in Belgrade last year 

(2009) was to use the traceback approach with clock gating. In clock gating, the clock of 

each register is enabled only when the register updates it survivor path information. This 

reduces power dissipation. Their simulations showed a 30% reduction in dynamic power 

dissipation which gives a good indication of power reduction on implementation.  

 

A similar approach investigated by Ranpara and Sam Ha [20] and presented in the 

International ASIC conference at Washington in 1999 was the use of clock gating in 

combination with a concept known as toggle filtering. Signals may arrive at the inputs of 

a combinational block at different times and this causes the block to go through several 

intermediate transitions before it stabilizes. By blocking early signals, the number of 

intermediate transitions can be reduced and hence power disspation can be minimized. 

This mechanism of blocking early signals until all input signals arrive, called toggle 

filtering, was used by Ranpara, et al, [20] to reduce energy consumption of the Viterbi 

decoder. 
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Recently a new approach, targeted towards wireless applications has been introduced 

[38] and involves a pre-traceback architecture for the survivor path memory unit. The 

start state of decoding is obtained directly through a pointer register pointing to the target 

traceback state instead of estimating the start state through a recursive traceback 

operation. This approach makes use of the similarity between bit write and decode 

traceback operation to introduce the pre-traceback operation.  Effectively resulting in a 

trace forward type of operation, it results in a 50% reduction in survivor memory read 

operations. Apart from improving latency by 25%, implementation results predict up to 

11.9% better energy efficiency when compared to conventional traceback architecture 

for typical wireless applications. 

 

3.5 Summary  

 
This chapter has explained the decoding mechanism of the Viterbi decoder in detail and 

described a few of its applications. A number of energy saving techniques that have been 

investigated in the past has been discussed. The next chapter gives a detailed description 

of the proposed energy saving algorithm that will be used in this project. 
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Chapter 4 

AN ALTERNATIVE ENERGY SAVING 

STRATEGY 

 

 

Much previous research has been focused on making the Viterbi decoder less energy 

consuming (e.g. [20, 34, 35, 36, 37, 38] ).  One possible approach is to try to minimize 

the amount of time which the Viterbi decoder needs to be switched on.  Conventionally, 

the decoder is on all the time, even when there are few or no bit-errors.  In practice the 

bit-error rate with mobile equipment can be very variable especially when the receiver 

is moving relative to access-points. Switching off the Viterbi decoder when there are no 

bit-errors seems a promising strategy. 

 

Two different ways of doing this have been investigated previously at the University of 

Manchester. One method proposed by Wei Shao [3],  involves a method of pre-

decoding and identifying no-error code word sequences using an ‘inverse circuit’ [35]. 

An alternative method, proposed by Barry Cheetham [2], makes use of simple 

properties of the Exclusive-Or (XOR) operation in combination with a simple feedback 

mechanism for detecting the presence of bit-errors.  

 

An adaptive algorithm is proposed to directly use such pre-decoded data as the decoded 

output without the Viterbi decoder having to process them. This makes it possible to 

switch on the Viterbi decoder only when bit-errors occur. In this project, the second 

approach to reduce energy consumption at the receiver will be investigated. 

 

4.1 Principle 

 
The underlying principle proposed by Barry [2], for the switch off mechanism can be 

described in the following way. Taking the case of the ½ K=7,  (171, 133) convolutional 
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encoder, it is known that each input bit is XOR’ed with flip flops 1,2 , 3 and 6 for the 

lower output bit and flip flops 2 ,3 ,5 and 6 for the upper output bit. The lower and 

upper bit are then interleaved and transmitted as was shown in Figure 3.1. 

 

Exclusive-Or (XOR) has the property that ((A XOR B) XOR B) = A. This property has 

enormous implications and will prove very helpful in our analysis. To understand its 

importance, let us take the following example. Consider A to be the information bit that 

must be transmitted and B to be the result of the combinatorial logic of the 

convolutional encoder before it is XOR’ed with the information bit.  A XOR B gives Y, 

i.e. the transmitted message.  Now it is clear from the above property that Y XOR B 

gives A which was the original information bit. In other words, XORing the transmitted 

message with the same combinatorial logic result that was used in the encoder gives 

back the original information bit. As long as there are no bit-errors, the message can be 

decoded this way and the Viterbi decoder need not be switched on. 

 

In the conventional ½ rate encoder, each input bit is XOR’ed with 2 different 

combinations of flip flops (FF1, FF2,FF 3 and FF6 for lower bits and FF2, FF3, FF5 

and FF6 for upper bits) to produce two output bits. These bits are then interleaved and 

transmitted. This is the structure described in Figure 3.1.  At the receiver, XORing 

alternate arriving bits with the corresponding set of flip flops (FF1, FF2, FF3 and FF6 

for lower bits and FF2, FF3, FF5 and FF6 for upper bits), gives back the original 

message bit.  

 

It is also understood that each upper received bit and each corresponding lower received 

bit were produced, at the transmitter, by the same original information bits.  Assume 

that a correct copy of all previous information bits is available at the receiver. This 

assumption is bound to be correct at the beginning of a packet transmission, since all 

previous bits, at both the transmitter and receiver, are assumed to be zero.    XORing the 

upper received bit with the 'appropriate' correct copies (as held at the receiver) of the 

previous information bits should produce the current original information bit.   The term 

'appropriate' refers to the information bits that were taken into account in the upper part 

of the convolutional encoder i.e. the 2nd, 3rd, 5th and 6th bit in this example.   
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Similarly, XORing the lower received bit with the 'appropriate' correct receiver copies 

of the previous information bits should also produce the same correct information bit.  If 

there is no bit-error the same correct value for both the upper and lower decoded bits 

will be obtained at the receiver.  Clearly, in this case, the process can then continue with 

the next received upper and lower bits.  The diagram for the proposed design is 

provided in Figure 4.1. 

 

 

Figure 4.1: Proposed Simple Decoder 

 

If the upper and lower received bits are found to be different at any stage, it can be 

concluded that a single bit-error has just occurred, either in the upper transmission or in 

the lower one.   

 

On the other hand, if they are found to be equal, it cannot be concluded that there was 

no bit-error introduced in transmission. There may be two bit-errors, one in the upper 

transmission and one in the lower transmission. Therefore the occurrence of multiple 

bit-errors may not be detected straight away, and it is indeed possible for some bit-error 

patterns to pass completely undetected.  As will be shown in the following chapters, it is 

expected that in these rare cases not even the Viterbi algorithm would be able detect the 

presence of bit-errors. 

 

However, in most cases, the occurrence of a bit-error pattern, containing one, two, three 

or more bit-errors would create a difference between the upper and lower decoded bits.  
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When such a difference is observed, it may be concluded that there has been at least one 

bit-error recently (within in the last 14 bits i.e. 7 time slots). However, it is not known 

exactly where and how many.  When this happens, the current proposal is to go back 14 

bits, start up the Viterbi decoder and proceed conventionally. This principle lies at the 

heart of the attempt to reduce energy consumption of the Viterbi decoder.  

 

Since this method involves going back 14 bits when an error is detected, it will require 

the last 14 received data bits to be stored.  When a bit-error occurs, the Viterbi decoder 

will be switched on and the 14th previous data bit (that was stored) will be taken as the 

next input. 

 

4.2 Summary 

 
This chapter gives only a description of the basic concepts that motivated this approach. 

There still remain many issues that have to be addressed in this algorithm such as the 

mechanism of switching and determining the initial state of the decoder. These are 

described in Section 5.4 as ‘Likely Issues’ and addressed in the Chapter 6. The next 

chapter describes the research methods that will be adopted to structure the project.  
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Chapter 5 

RESEARCH METHODS 

 

 

The core objectives of the project were discussed in Chapter 1 and in this Chapter the 

research methodologies that were adopted to achieve project goals are described. Based 

on the strategy described in Chapter 4, the key deliverables and software tools that will 

be used are identified. A project plan for the research project has been developed and 

summarized with the help of a Gantt chart. The likely issues that may be faced during the 

design and implementation of the algorithm are also discussed. 

 

5.1 Research Approach 

 
As discussed in Chapter 1, the main aim of this project is to develop a more energy 

efficient method of decoding convolutionally encoded data. Towards this end, the new 

algorithm described in Section 4 is developed and tested. A structured research approach 

is essential in obtaining reliable results and ensuring that all aspects of the problem to be 

solved are addressed. A major portion of this research will require observation and 

evaluation of performance of the new algorithm in comparison with conventional 

systems. Hence, this project will follow an empirical approach [39, 40].  Some of the 

main objectives of this approach are to learn from collective experience of the field and 

to identify, explore, confirm and advance theoretical concepts. An emphasis will be laid 

on utilizing the appropriate test cases, data collection and analysis techniques.  

 

The project also uses a constructive research methodology. A constructive research 

approach is defined as “A research procedure for producing innovative constructions, 

intended to solve problems faced in the real world and, by that means, to make a 

contribution to the theory of the discipline in which it is applied.” [41]. A construction as 

described by the author, may be a new theory, algorithm, model, framework or method. 

In this project, the construction is a new algorithm for an energy efficient technique of 
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decoding convolutional codes. Some of the fundamental focus points in this type of 

research are listed and answered here. 

5.1.1 Definition of the research problem. 

As described in Section 1.2, with the sudden growth of wireless applications, there is an 

inherent need for efficient and less energy consuming decoders. Conventional decoders 

such as the Viterbi decoder are computationally expensive and hence consume a lot of 

energy. This project seeks to provide a more energy efficient solution that will prolong 

battery life of the receiving device. 

 

5.1.2 A general and comprehensive understanding of the topic.  

Sections 2.1 -2.5 were devoted to a detailed description of the background surrounding 

Error Detection and Forward Error Correction mechanisms and recent developments in 

the area. 

 

5.1.3 Construct a solution idea. 

The basic solution idea based on the work done by Barry Cheetham [2] has been 

described in Section 2.6. Some key issues remain to be solved and these will be pursued 

in the following stages. Chapter 4 gives a comprehensive description of the design and 

implementation features of the solution. Some of the key deliverables for the project are 

 

i. A MATLAB ® Implementation of the algorithm to turn the Viterbi decoder on/off at the 

appropriate time  

ii. A mechanism to detect when errors have started/stopped occurring 

iii. A communication channel that simulates the effects of AWGN noise over a range of 

bit-error rates 

iv. A fully functional decoder unit based on the new algorithm and implemented in 

MATLAB ® 

 

5.1.4. Demonstrate that the solution works. 

Chapter 5 is devoted towards testing and analysis of the designed system. In order to 

demonstrate that the proposed system works as expected, it is compared at every stage 

with the MATLAB® Viterbi decoder. The criteria that will be used to evaluate the system 
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include Bit-Error Probability (BEP) Performance, Packet Loss Rate and Measurement of 

Processing Time. Actual design components of the new system need to be defined in 

order to explain exactly how this system will be evaluated. Therefore a detailed 

statement of evaluation criteria has been deferred to Section 7.1 

 

5.2 Implementation Tools 

 
The configuration of the computer used affects the processing time required by 

MATLAB ® to execute its commands. The code was implemented using a DELL Inspiron 

6400 Laptop with the following specifications.  

 

Operating System (OS) Name: Microsoft® Windows Vista™ Ultimate 

Processor: Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz, 2000 MHz, 2 Core(s), 2 

Logical Processor(s) 

Random Access Memory (RAM): 2 GB 

Total Physical Memory:                2.00 GB 

Total Virtual Memory:                  4.23 GB 

Available Physical Memory:         810 MB 

Available Virtual Memory:           2.16 GB 

Implementation of the algorithm was done using MATLAB® Version 7.5.0.342 

(R2007b), a product of MathWorks. The main toolboxes that were used include the 

Signal Processing Toolbox and the Communications Toolbox.  

 

There was an initial consideration to use Simulink, another product of Mathworks to 

build a simulation of the system. This would involve building a circuit level 

implementation of the Viterbi decoder and then adapting it to meet the requirements of 

the new system. We were unable to acquire the detailed knowledge required to do this. 

The fact that Embedded MATLAB® Functions do not support variable sized arrays in 

MATLAB ® Version R2007b created further complications in using Simulink. It was then 

decided to leave this pursuit as a future direction for research. 
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5.3 Research Plan 

The project has been categorized into four main tasks namely Background Research, 

Design and Implementation of the Code, Experimentation with Data and Analysis of 

Results and Preparation of Dissertation report. Work on the dissertation report was done 

in parallel with the corresponding sections of the project in order to ensure sufficient 

time for refinement of the report. A detailed description of the sub-tasks and the expected 

timeline is provided in Appendix A Section (i) and (ii). 

 

Reviewing this plan at the end of the project showed that most of the project went on 

track as planned. Tasks 2.4 and 2.8 took slightly longer than planned. However this time 

was recovered by the time allocated to Task 2.9 which was not implemented. It was also 

found that doing parallel work on the report helped in clarifying thoughts and 

continuously improving analysis methods. Task 3 therefore, was carried out in 

conjunction with the report writing process. Reviewing of the report, Task 4.7 took 

slightly longer than expected. However this was completed with remaining time 

available before submission. 

 

5.4 Likely Issues 

 
The issues that needed to be addressed in the proposed method are explained below. It 

seems easy to detect when bit-errors start occurring. Therefore, switching on the Viterbi 

decoder at the appropriate time will not be difficult.  However, the initial state of the 

decoder must also be known. In a conventional decoder, the initial state is set to 0 before 

decoding begins. In this algorithm however, switching to the Viterbi decoder may take 

place at any time in the middle of the decoding operation. Therefore, the initial state 

must be figured out. 

 

Once switching to the Viterbi decoder is carried out, the question of determining when to 

switch off the decoder i.e. determining when errors stop occurring, presents a tougher 

problem. Finding a solution to this issue will be a major focus of this project. If it is 

possible to detect that bit-errors have stopped occurring, the control must be switched to 
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the Simple Decoder. This also requires initializing the Simple Decoder to the correct 

state. This presents the next issue that must be taken care of.  

 

Another concern that needs to be tackled is whether the decoder will go into an unstable 

state when errors start occurring. Since the decoder employs a feedback mechanism, 

there is a possibility that when an error occurs, this error will be propagated through the 

system and result in the registers moving to an incorrect state. If this happens, it will not 

be possible to decode subsequent bits correctly.  

 

It also remains to be discovered whether this new technique is in fact capable of 

providing adequate energy savings. Careful experimentation and analysis of data is 

required before this can be ascertained. The Simple Decoder does not need to store state 

history and path metrics as the Viterbi decoder does. Therefore it requires far less storage 

units and state transitions. It is hence reasonable to expect the Simple Decoder to 

consume much less energy. Nevertheless, it is possible that the overheads involved in the 

process of switching between the Simple Decoder and the Viterbi decoder is energy 

expensive. As a result, there may be an SNR limit below which using the switching 

technique is not advantageous. 

 

Of even more importance is an analysis of whether the switching mechanism results in a 

considerable degradation of bit-error probability performance. The performance of the 

new strategy will depend on how accurately errors can be detected and the corresponding 

decoders initialized during switching. Even if the above method does save energy, a poor 

BEP performance will severely limit its relevance to applications. 

 

 5.5 Summary 

 
This chapter has described the research approach and plan that will be followed along 

with the implementation tools that will be used. A description of issues that still remain 

to be solved has also been detailed in this chapter. The next chapter describes the design 

of the system and its implementation in MATLAB®. 
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Chapter 6 

DESIGN AND IMPLEMENTATION 

 

 
This section gives a comprehensive description of the various components of the 

developed system and explains how these components are implemented in MATLAB®. 

Finally, a flowchart is drawn to provide a visual representation of flow of control through 

the significant sections of the system. Appendix G contains the MATLAB® code for all 

the modules of the system. 

 

 

6.1 The Transmitter Block 

 
The transmitter block is designed with the following components  

 

6.1.1 A Data Generating Source 

Random binary data is generated using the ‘randsrc’ function. Six ‘0’ bits are appended 

to the randomly generated data. These act as zero buffers. Since there are 6 shift registers 

in the convolutional encoder, it is necessary to run the encoder for an additional 6 time 

slots after the last data input for the last data bit to appear at the output of the encoder.   

For this reason, zero buffers are appended to the end of the data bits. 

 

6.1.2. A Convolutional Encoder 

A ½ K=7 (171 133) convolutional encoder is used. The six shift registers are initialized 

to 0. At each time slot a new data bit is accepted and XOR’ed with values of the 

corresponding shift registers as was shown in the Figure 4.1. These connections 

represent (171)8 and (133)8 in binary form. In this way the value for the upper encoded 

bit and lower encoded bit is determined. The values of all registers are then shifted to the 

register on the right. The 2:1 multiplexer outputs the upper encoded bit and lower 

encoded bit in alternating sequences. 
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6.1.3 A QPSK Modulator  

Before transmitting the signal it is modulated into QPSK signals with Gray encoding. 

This is implemented via predefined functions available in MATLAB®. An oversampling 

rate of 4 is used which results in 4 pulses for each data bit. 

 

 

6.2 The Communications Channel 

 
In order to simulate the effects of the communication channel Additive White Gaussian 

noise is added to the transmitted signal. The signal to noise ratio is reduced by 

10×log10(4) in to account for oversampling. It is further reduced by 10×log10(1/code rate) 

so that the noise power is scaled to match coded symbol rate. The symbol to noise ratio 

is varied over different iterations.   

 

 

6.3 The Receiver Block 

 
The receiver block contains the following components 

 

6.3.1 A QPSK Demodulator 

The demodulator accepts the received signals and demodulates them. The demodulated 

signals are then passed to the Simple Decoder. 

 

6.3.2 The Switching Decoder 

The Switching Decoder is made up of two components: A Simple Decoder which will be 

used when there are no bit-errors and an Adapted Viterbi decoder which will be used 

when bit-errors start occurring. The two components are described in detail below. 
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Part 1. The Simple Decoder 

As shown in Figure 6.1 below, a 1:2 demultiplexer is used to separate alternate arriving 

bits into the upper and lower combination of XOR’s. Initially all the flip flops are set to 

0. This mirrors the initial state of the transmitter flip flops at start of transition. Therefore 

the result of the XOR operations is the correct decoded output as explained by the 

principle in Section 4. The result of the upper XOR operation is compared with the result 

of the lower XOR operation.  

Figure 6.1: Proposed Simple Decoder that will be used when there are no bit-errors 

 

If both bits are equal, Error Flag is set to 0. Either one of the outputs, in this case the 

lower branch output, is taken as the decoded output and appended to the decoded output 

array. The decoded output is also fed back to the first flip flop. This ensures that the set 

of flip flops still mirror the state of the encoder when the next bit arrives.  

 

If the two bits are different, an error has occurred either in the upper or lower branch. 

There may also have been a double, triple or a complex combination of errors in the 

previous bits which could have resulted in giving the same bit at the output. In order to 

reduce the possibility that such errors go undetected, once an error is detected, the input 

is retraced by 14 bits, the Error Flag set to 1 and control switched to the Viterbi decoder. 

Since a ½ rate encoder is used, going back 14 input bits stops at the 7th previous output.  

 

During the operation of the Simple Decoder, an array of length 7 is also maintained 

which contains values of the 7 previous states of the encoder. When errors occur and 
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decoding is switched to the Viterbi decoder, the accumulated error metric of the 7th 

previous state is set as 0 for the first time slot of the Viterbi decoder. Since a 14 input bit 

traceback occurs before starting the Viterbi decoder, the above operation will ensure that 

the Viterbi decoder starts from the correct state. If an error occurs before 7 bits are 

decoded during a particular function call, the initial state of the Viterbi decoder is set to 

the traceback state that gave the last decoded bit. 

 

Part 2.  Adapted Viterbi Decoder 

A traceback Viterbi decoder with a traceback depth of 35, i.e. five times the constraint 

length is used. Instead of setting the accumulated error for the first state to 0 as is the 

convention, the accumulated error for 7th previous state of the Simple Decoder is set to 0 

for the first time slot.  The reasoning behind this is described in Section 6.3 (ii - a).After 

this slight adjustment, the conventional procedure is followed. 

 

Two major issues needed to be resolved here. The first problem was to establish when 

bit-errors have stopped occurring. The second was to accurately determine the initial 

state of the flip flops while switching from the Viterbi decoder to the Simple Decoder. 

The following solutions are proposed. 

 

 Once data for 35 time slots have been built up using Block 1 and Block 2 as described in 

Section 3.2, traceback operations can begin. When this traceback begins, a counter is 

also maintained. This counts the number of consecutive time slots for which the 

accumulated path metric of the global winner has remained constant. If this path metric 

has remained constant for 7 consecutive slots it is fairly certain that bit errors have 

stopped occurring. The Viterbi decoder is then stopped and the last traceback state 

passed to the Simple Decoder.  The Simple Decoder can then resume operations 

accurately.  

 

On switching from the Viterbi decoder to the Simple Decoder (when errors stop 

occurring), the initial state of the flip flops is set to the binary value representation of the 

traceback state that gave the last decoded bit. This ensures that the initial state of the 

Simple Decoder is correct and therefore it gives correct outputs.  
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A check is also maintained on whether less than 35 time slots are remaining for end of 

data. If this condition is satisfied no switch is made to the Simple Decoder even if errors 

have stopped occurring. This ensures that if errors do occur shortly afterwards, a 

sufficient traceback depth still exists to accurately decode remaining data. However this 

check can be performed only if data length is known beforehand. 

 

 In order to develop the Adapted Viterbi Decoder, the code for a normal Viterbi decoder 

is developed that would function just as the MATLAB® Viterbi decoder would. 

Henceforth, this is called ‘My Viterbi’ Decoder. This decoder was then modified into 

what will be called an Adapted Viterbi Decoder to enable switching. The flowcharts in 

Figure 6.2a and 6.2b will help in summarizing the overall flow of control through the 

entire Switching Decoder.  

 

Figure 6.2a: Flowchart for the Switching Decoder: Part A  
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Figure 6.2b: Flowchart for the Switching Decoder: Part B 
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6.4 Analysis of Failure Cases for Simple Decoder 

 
There are certain cases when the Simple Decoder will fail to detect a particular sequence 

of bit-errors in the received bit-stream. An analysis of why these sequences exist and 

their probabilities of occurrence are provided below.  The impact of these cases on the 

behaviour of the energy saving decoder [2] is then considered.  In all cases, the 

convolutional encoder referred to is the ½ K=7,  (171, 133) convolutional coder. 

 

6.4.1 Logical evaluation 

The presence of bit-errors in the input bit-stream is not detected by the Simple Decoder 

until its upper and lower branches give different outputs. With an isolated single bit 

error, this will occur straight away, but two consecutive bit-errors can clearly cause the 

upper and lower branches to remain equal even though they are both wrong.  Hence this 

double error will not be detected straight away, though it may be detected when the next 

pair of input bits arrives.  Extrapolating from this very simple case, it is not difficult to 

see that further bit-errors may delay the error detection until the third pair of input bits 

arrive, or even the fourth, fifth, sixth or seventh pair.  Therefore, if the upper and lower 

branches become different at any stage, the bit-errors causing this may occur within the 

current pair of input bits or any of the previous six pairs.  In any of these cases, the 

detection of a difference between upper and lower outputs will cause a switch to the 

standard Viterbi decoder with a seven slot trace-back  The seven slot trace-back ensures 

that the standard Viterbi decoder has the best possible chance of correcting the bit-errors 

that have occurred. In fact it has exactly the same chance that a standard Viterbi decoder 

would have without the Simple Decoder’s switching mechanism.  It may fail, but nothing 

is lost by using the Simple Decoder first.   

 

Going back to the Simple Decoder, it is straightforward to invent an input sequence 

which causes the presence of bit-errors to remain undetected by the Simple Decoder until 

the seventh pair of bits arrives.  It is also straightforward to extend such a sequence to 8, 

9 pairs or even to infinity.  In this case, the switch to standard Viterbi will occur too late, 

since we only wind back by 7 pairs, or the switch may never occur at all.  So the Simple 

Decoder will definitely produce a wrong output which the standard Viterbi Decoder will 
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not have any chance to correct.  The question arises whether we may now have lost 

decoding power by not switching early enough. 

The answer is that no decoding power is lost since it can be shown and it is demonstrated 

below that a sequence of 8 pairs for which the upper and lower outputs of a Simple 

Decoder are identical cannot be corrected by a standard Viterbi decoder because the 

inputs will be compatible with a different (incorrect) message bit-stream when it is 

received without bit-errors.  The incorrect message is that generated by the Simple 

Decoder which is guaranteed to produce smaller accumulated distances than the true 

message.  Looking at this another way, for a constraint length 7 convolutional coder, the 

minimum free distance is about 10, and there will be many more than 4 bit-errors in the 

sequence. 

 

This argument also shows that there is no point in ‘winding back’ by more than 7 input 

pairs when switching from the Simple Decoder (SD) to the standard Viterbi Decoder 

(VD).  This means that a latency of only 7 message bits is imposed by the SD to VD 

switching mechanism. 

 

We must also ask if problems could occur when switching back to the Simple Decoder 

from the standard Viterbi decoder.   The switching occurs when no changes occur to the 

minimum accumulated distance for a suitable number of input pairs, since this is taken as 

an indication that there are no bit-errors.   But it is possible to invent an input sequence 

of pairs, of any desired length,  for which there are many bit errors, but yet the minimum 

accumulated distance does not change despite the output generated being totally 

incorrect.  In this case an inappropriate switch to the Simple Decoder may be made.  

However, again nothing is lost by this inappropriate switch since the Viterbi Decoder is 

failing to correct the bit-errors, so we just replace one incorrect output by another. 

 

6.4.2 Evidence through practical examples 

The following examples that were developed manually by logically applying the ‘odd 

number of bit inversions to invert output’ rule for 8 consecutive time slots. These 

examples demonstrate how certain input sequences delay the detection of bit-errors by 

the  Simple Decoder. The message bit obtained from the decoder will be incorrect if the 

output of BOTH the upper and lower branches have been inverted and thus give the same 
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output. Since the output of each branch is the ‘exclusive-or’ of a current input bit and 

several previous ones, this inversion occurs when there have been an odd number of bit 

inversions (bit-errors) in each branch (a property of XOR). If there is an even number of 

bit inversions, the output remains correct. Using this principle, examples of sequences 

that delay the bit-error detection of the Simple Decoder may be generated as shown 

below.  We assume that a pair of input bits are received from the channel at time slot T1, 

another pair at time-slot T2, and so on. 

 

Example Sequence 1: Output Bit-Error at slot T1 

Message bits: 1 1 1 0 1 0 1 0 

Transmitted sequence: 1 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 

Received sequence:     0 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1       (Bit-errors are shown in red) 

 

At the Simple Decoder, the following operations take place: 

Lower branch Output = Rx(L) xor FF1 xor FF2 xor FF3 xor FF6  

Upper branch Output = Rx(U) xor FF2 xor FF3 xor FF5 xor FF6 

where Rx(U) represents the input to the upper branch, Rx(L) represents the input to the 

lower branch and FF1 to FF6 are the shift register outputs. The output of the decoder is 

fed back to FF1. 

 

Time 

Slot 
Rx(L)  Rx(U) FF1 FF2 FF3 FF4 FF5 FF6 

Output 

(L) 

Output 

(R) 

T1 0 0       0 0 

T2 1 1 0      1 1 

T3 0 1 1 0     1 1 

T4 0 1 1 1 0    0 0 

T5 1 1 0 1 1 0   1 1 

T6 0 1 1 0 1 1 0  0 0 

T7 0 0 0 1 0 1 1 0 1 1 

T8 1 1 1 0 1 0 1 1 0 0 

Table 6.1: Operation of Simple Decoder under Example Sequence 1 

 

In Table 6.1, we see that the outputs of both branches are identical in all cases despite the 

presence of nine bit-errors in the input bit-stream.  Hence the two bit-errors in the inputs 
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at slot T1 are not detected, and neither are any of the others. This was confirmed by 

simulation in MATLAB® and the same sequence, embedded within a longer sequence of 

zeros, was also applied the conventional Viterbi decoder.  Again as expected, the Viterbi 

decoder could not correct the bit-errors. This implies that even if the Simple Decoder had 

been able to detect the bit-errors and switch earlier to the Viterbi decoder, the bit-errors 

would still not be corrected. 

It can now be explained more clearly why, if the Simple Decoder does not detect a 

sequence of bit-errors, neither will the Viterbi decoder. Since convolutional codes are 

linear, the number of bit-errors in the output depends only on the error sequence in the 

input and not on the actual message bits.  It is possible to calculate which bit-error 

sequences can produce errors in the output of the Simple Decoder. 

It is known that the ‘free distance’, the minimum hamming distance (dfree) between any 

two possible code sequences, is 10 for a rate ½, constraint length 7 convolutional code 

[42]. The number of close proximity errors that can be corrected is calculated as a 

function of the code’s free distance. It is given by t = (dfree – 1) / 2 [43]. The Viterbi 

Decoder can therefore correct a maximum of 4 errors occurring relatively near each 

other.  

If it is true that the minimum number of bit-errors required for the Simple Decoder to 

give an incorrect output is greater than 4, this implies that any bit-error that the Simple 

Decoder cannot detect will not be corrected even by the conventional Viterbi Decoder.  

The Error Sequence producing Table 6.1 is E = [1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 0] where 1’s 

represent the positions at which bit-errors occur. There are 9 bit-errors in the input to the 

decoder within a space of 16 bits. As shown in Example Sequence 1, this results in a 

single bit-error in the output at slot T1. There are also sequences which cause more than 

one bit-error to occur in the output.  Examples are given below 

Example Sequence 2: Output Bit-Error at T1 and T3 

Decoding of an input stream with the error sequence E = [1 1 1 0 0 0 0 1 1 1 1 0 1 1 0 1]  

is represented in Table 6.2. ‘e’  represents a bit inversion (bit-error). 
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Time Rx(L) Rx(U) FF1 FF2 FF3 FF4 FF5 FF6 Output 

T1 e e       e 

T2 e  e       

T3    e     e 

T4  e e  e     

T5 e e  e  e    

T6 e    e  e   

T7 e e    e  e  

T8  e     e   

Table 6.2 Operation of Simple Decoder under Example Sequence 2 

 

Taking into consideration the 7 slot (14 bit) trace-back, once an error is detected, the 

final output of the decoder will have at least one error at T1 after which it switches to the 

Viterbi decoder. This example requires 10 bit-errors in the input sequence in a space of 

16 bits.  

Testing in MATLAB® confirmed that both the Switching Decoder and the Viterbi 

decoder had 2 bit-errors in their output. Therefore, even the Viterbi decoder could not 

correct these errors as expected. 

Example Sequence 3: Output Bit-Error at T1 T2 T3 T4 T5 T6 T7 T8 

Decoding of error sequence E = [1 1 0 1 1 0 0 1 0 1 0 0 1 1 1 1] is represented in Table 

6.3 

Time Rx(L) Rx(U) FF1 FF2 FF3 FF4 FF5 FF6 Output 

T1 e e       e 

T2  e e      e 

T3 e  e e     e 

T4  e e e e    e 

T5  e e e e e   e 

T6   e e e e e  e 

T7 e e e e e e e e e 

T8 e e e e e e e e e 

Table 6.3: Operation of Simple Decoder under Example Sequence 3 
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Taking into consideration the 7 slot (14 bit) trace-back once a bit-error is detected, the 

final output of the decoder will have at least one error at T1 after which it switches to the 

Viterbi decoder. This example also requires 10 bit-errors in the input sequence in a space 

of 16 bits.  

Testing in MATLAB® confirmed that both the Switching Decoder and the Viterbi 

decoder had 8 bit-errors in their output. Therefore, even the Viterbi decoder could not 

correct these errors as expected. 

In all the above examples the number of bit-errors required in the input sequence is 9 or 

10 and exceeds the number that can be corrected by the conventional Viterbi Decoder 

which is 4. Therefore even if the Viterbi Decoder was used conventionally, i.e. without a 

Simple Decoder, these bit-errors would not be corrected. 

 

The conclusion is that there has to be an odd number of bit-inversions in BOTH the two 

branches for a bit-error not to be detected. The error sequence must be at least 16 bits 

long to ensure that at least one bit-error is propagated to the output after the 7 slot (14 

bit) trace-back.  

 

Since there is only one input to each of the branches at each slot, there is only one 

possible error sequence that can result in a particular combination of errors at the output. 

Therefore, by calculating the number of such error combinations, the number of input 

error sequences that will not be detected by the Simple Decoder can be calculated. 

 

The number of such error combinations can be calculated in the following way. 

Accounting for the 7-bit trace-back, at least one output bit-error goes undetected only if 

an error occurs in slot T1 (or Tn) and an error is not detected until after slot T8 (or Tn+8). 

There is only one 16-bit error sequence that goes undetected AND results in a single bit-

error at the output (as in the Example Sequence 1 described above).  The number of 

sequences with double bit-errors having one of the bit-errors at slot T1 (or Tn) is 7C1 (as 

in Example sequence 2). The number of sequences with triple bit-errors having one of 

the bit-errors at slot T1 is 7C2.  Proceeding in a similar fashion, it is found that the total 

number of error sequences that go undetected is calculated as  
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 Number of sequences = 1 + 7C1+
7C2+

7C3+
7C4+

7C5+
7C6+

7C7  

                                    = 128 possible 16 bit sequences. 

 

There are 216 possible 16-bit sequences. Among these, only one of them is correct for a 

given sequence of message bits, and the rest contain bit-errors. Therefore out of a 

possible 216-1 error sequences, only 128 of them go undetected by the Simple Decoder. 

The probability of the errors not being detected is therefore 1.95 x 10 -3.  It has been 

argued that the Viterbi Decoder will not be able to correct ANY of these error sequences, 

and the failure has been illustrated by the examples given above [Example Sequence 1, 2 

& 3].  

 

6.5 Summary 

 
This chapter has described the flow of control and data processing that takes place in the 

system.  Solutions to some of the unresolved questions have been proposed. The next 

chapter details how the system will be tested and provides an analysis of the results 

obtained. 
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Chapter 7 

TESTING AND ANALYSIS  

 

 
Now that the system has been developed, adequate testing is required to ensure it works 

as expected and also evaluate its performance. This section describes testing and 

evaluation criteria for the developed system and provides an analysis of the results 

obtained.  

 

7.1 Overview of Testing 

 
In order to ensure that the new algorithm works accurately the following checkpoints are 

used. 

 

i. The MATLAB® code for the customized (‘My Viterbi’) decoder, written from 

scratch, for any input data the same output as that of a MATLAB® implemented 

conventional Viterbi decoder (vitdec.m). 

 

ii. The Simple Decoder should produce correct outputs when no bit-errors occur  

 

iii. With no errors introduced, the switching mechanism from the Simple Decoder to the 

Adapted Viterbi Decoder and vice versa should produce no error in the output. For this 

test case, switches are forced at equal intervals of 7 in the Simple Decoder. The Adapted 

Viterbi decoder automatically switches to the Simple Decoder when the path metric 

remains constant for the predetermined number of consecutive bits. 

 

iv. With errors introduced in certain sections of the signal, the Switching Decoder should 

produce the same output as that of the MATAB Viterbi decoder. This is done in the 

following way. Transmit data at zero bit-error rate. After a short period increase bit-error 
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rate to 10 -2 and then bring it back to zero subsequently. This sequence will allow us to 

monitor the following cases  

a. No bit-errors occur and the Simple Decoder is switched on 

b. Bit-errors start occurring and the receiver must switch to the Viterbi decoder 

c. Bit errors stop occurring and the receiver must switch to the Simple Decoder 

 

v. Finally, with AWGN added to the signal, the output produced by the Switching 

Decoder should closely match the output produced by the ‘My Viterbi’ decoder. This 

must be tested over a range of SNR varying from 0.5 to 13 dB. 

 

vi. Estimating energy consumption of the decoder requires detailed knowledge of the 

circuitry at transistor level. For the purpose of this project however, a simpler technique 

is used as described below. Though this method gives a very rough estimate of the 

energy used, it is useful in loosely predicting the conditions at which the Switching 

Decoder is likely to give better energy efficiency as compared to the conventional 

Viterbi decoder. 

 

The profiler tool available in MATLAB® is used to run the simulation, first with no 

errors introduced and then varying SNR from 7 to 4 dB. For each case the simulation is 

run 10 times. After each simulation the profiler gives a description of the number of 

times a particular function was called and the total CPU time taken to execute that 

function for all its function calls. In addition to this information, the number of bits 

decoded by each decoder (the Simple Decoder and the adapted Viterbi decoder) is also 

displayed by inserting appropriate statements in the code. Using this information, the 

total time required by each decoder to decode the bits at different SNR’s can be 

calculated.  

 

7.2 Results and Analysis 

 
Once the code for ‘My Viterbi’ decoder was written, it was tested against the MATLAB® 

Viterbi Decoder as described in Section 7.1 (i). Multiple tests showed that it followed the 

MATLAB ® Viterbi decoder excepting for minor variations. These may have arisen due 

to the fact that the way in which MATLAB’s Viterbi decoder selects paths when their 
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path metric is equal is not known. In this algorithm, the higher state is consistently 

chosen as the surviving state.  However, MATLAB® may choose the lower state or even 

choose the upper or lower state in a random fashion. Sample graphs are produced and 

explained in Section 7.2.1 -7.2.3 

 

The Simple Decoder was then tested without introducing bit-errors as mentioned in 

Section 7.1 (ii). In all cases, the decoded output matched transmitted data. 

 

In order to ensure that Switching does not introduce errors in the output, switches were 

between the Simple Decoder and the Adapted Viterbi decoder as explained is Section 7.1 

(iii). In all 10 tested cases, no errors occurred in the decoded output. This confirmed that 

the initialization of states on both decoders was correct. 

 

The process mentioned in Section 7.1(iv) was carried out by separating the transmitted 

message a 1000 bit long into 3 parts and introducing errors only to the middle part. Once 

errors were introduced the message was concatenated to form a single array. The results 

showed that the switching operations occurred at the appropriate places. With one-third 

of the message bits subjected to BEP of 10-2, about 44% of the bits were decoded by the 

Simple Decoder. The number of resulting errors was the same for the Switching Decoder 

and ‘My Viterbi’ Decoder, though the MATLAB® decoder had 3 more errors which 

could be accounted for by the explanation in the first paragraph. 

 

The following sections give detailed description and analysis of the test cases described 

in Section 7.1 (i), (v) and (vi). 

 

7.2.1 Bit-Error Probability (BEP) Performance 

In order to test the performance of the Switching Decoder, the following measures were 

adopted.  Random data was generated, encoded, modulated and transmitted. Uncoded 

data was also modulated and transmitted. Depending on the desired Eb/N0, the 

appropriate Additive White Gaussian Noise(AWGN) was added to the signal. At the 

receiver, data was demodulated. The encoded data was decoded by the three decoders, 

MATLAB ® Viterbi decoder, ‘My Viterbi’ Decoder and the Switching Decoder.  

The following parameters are given to the  MATLAB® Viterbi Decoder. 
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trellis = poly2trellis(7,[171 133]);    
tblen = 35; 
matdecodedHard = vitdec(Rx,trellis,tblen, 'term' , 'hard' ); 
%Rx = Received Data 

 

As with the other two decoders, the traceback depth is set to 35. The parameter ‘term’ is 

used since the convolutional encoder appends 6 flushing bits at the end of the data bits. 

The parameter ‘hard’ is used so that the Viterbi Decoder uses hard decisions in decoding. 

Now the MATLAB® Viterbi Hard Decision decoder can be compared with ‘My Viterbi’ 

decoder algorithm and subsequently with the Switching Decoder. 

 

The tests were conducted with a data length of 10,000 bits. Eb/N0 was varied from 0.5dB 

to 13 dB with an increment of 0.5 dB at each test. The tests were repeated 5 times and 

finally the results of the three decoders were compared and analyzed. In order to find the 

optimum settings for the Switching Decoder, tests were conducted with three different 

settings on the Adapted Viterbi Decoder. In the first round of tests, decoding was 

switched to the Simple Decoder if the accumulated path metric for the global winner 

remained constant for 7 consecutive slots. In the second round of tests, this value was 

increased to 35 which is five times the constraint length and the maximum amount of 

state history maintained in the table. In the third round, this value is brought down to 21 

which is three times the constraint length. The fact that the accumulated path metric of 

the global winner has remained constant for a particular number of slots is taken to mean 

that there have been no errors during those slots. 

 

The tabulated results and calculations tables are provided in Appendix D.  A couple of 

sample graphs are provided below. Since BEP fell to 0 after 6 dB, these data points are 

not visible on the log-scale graph. The graph is cropped to show values only up to 10 dB 

instead of 13 dB. 
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Matlab Decoder 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Data Length = 10,000, Switched to Simple Decoder when no errors for 7 

consecutive slots  

 

Figure 7.1 shows that below 2 dB, the uncoded message performs better than the 

encoded messages. This is expected since the very high error rates cause the Viterbi 

decoder to follow an incorrect path. Above 2 dB, it is observed that the MATLAB® 

decoder and ‘My Viterbi’ Decoder both follow each other closely with only minor 

variations. As the SNR increases to 5 dB very few bit-errors occur, less than 10 in the 

10,000 bits. This makes the result more unreliable at higher SNR. Also, though the graph 

appears to show a larger difference in values at 5dB, this is not true. As the data moves 

to lower BEP, the log-scale increases the gap between two consecutive lines from 10-3 to 

10-4. This causes the gap between the two lines to appear larger even though difference 

in values remains the same. 

  

Comparing the Switching Decoder and ‘My Viterbi’ decoder, both of them follow each 

other closely, though there is a slight variation between 3 and 4 dB. Comparison of the 

average values over 5 tests show there are differences between 0.5 and 5 dB.  The values 

are tabulated in Appendix D and plotted in Figure 7.2.  
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Figure 7.2: Average Fractional Difference in number of errors between Switching 

Decoder and ‘My Viterbi’ Decoder. Switched to Simple Decoder when no errors for 7 

consecutive slots 

 

These differences in values show that the presence or absence of errors has not been 

accurately detected.  The Simple Decoder may have missed the presence of certain 

combinations of errors and passed an incorrect initial state to the Viterbi. These 

deductions were verified by the fact that at lower SNR, there were a few cases when the 

bits decoded by the Simple Decoder were incorrect. 

 

Therefore, the tests are performed with another setting for the Adapted Viterbi decoder. 

Since state history is maintained for 35 slots, switching to the Simple Decoder is now 

done only after 35 consecutive slots of constant path metric for the global winner. Doing 

this causes the switch to the Simple Decoder only if bit-errors haven’t occurred for a 

longer period. This means that at lower dB the Simple Decoder will be called much less 

frequently and thus reduce the possibility of error. It was found that in this case the 

output of the Switching Decoder perfectly matched that of ‘My Viterbi’ decoder. A 

sample graph is shown below in Figure 7.3.  
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Figure 7.3: Data Length = 10,000. Decoding switched to Simple Decoder when there are 

no bit-errors for 35 consecutive slots 

 

However, it may not be necessary to wait for 35 slots. In the third case, Switching to the 

Simple Decoder is done when no errors have occurred for more than 21 consecutive 

slots. The graph in Figure 7.4 shows the BEP performance with this third setting. It is 

observed that the red line for ‘My Viterbi’ Decoder is still not visible as it lies exactly 

beneath the green lone for the Switching Decoder. These results seem promising.  

 

As before, the actual fractional difference in errors between the two lines using average 

values from 5 tests is studied. Plotted in Figure 7.5, it is observed that the improvement 

is remarkable. There is almost no difference between the Switching Decoder and ‘My 

Viterbi’ decoder. It was observed that now none of the bits decoded by the Simple 

Decoder had errors. This shows that the presence of errors has been detected accurately 

and the correct initial state passed to the Viterbi Decoder. Interestingly, at one point the 

Switching Decoder has a slightly lesser number errors than ‘My Viterbi’ decoder. 
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Figure 7.4: Data Length = 10,000. Decoding switched to Simple Decoder when there are 

no bit-errors for 21 consecutive slots 

 

 

Figure 7.5: Average Fractional difference in errors between the Switching decoder and 

‘My Viterbi’ decoder. Decoding switched to Simple Decoder when there are no bit-

errors 21 consecutive slots 

 

Another important observation is that at these settings, the Switching Decoder causes no 

deterioration in performance compared to the normal Viterbi decoder. This can also be 

explained theoretically due to the fact that during switching no relevant state history is 
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lost. The only requirement is that the initial state in both decoders is set correctly and 

errors are detected accurately. If this is done properly, the outputs are expected to match 

those given by the normal Viterbi Decoder. 

 

However, this improved performance comes with an additional cost. The Simple 

Decoder will now be used for only a shorter portion of time. Since the Simple Decoder is 

the part that is expected to bring energy savings, it is expected that the overall energy 

savings will be lesser as compared with the first setting. 

 

In order to see exactly how effective the Switching algorithm is, it is necessary to look at 

how often the Simple Decoder is being used and what percentage of bits are being 

decoded by each decoder at each SNR. This analysis will also help us determine whether 

there were too many ineffective calls to the Simple Decoder where in effect it could 

decode no additional bits. The following graphs in Figure 7.6 and Figure 7.7 show the 

percentage of decoding that was done by the Simple Decoder and the Adapted Viterbi 

decoder respectively.  

 

Figure 7.6: Percentage of Decoding done by each decoder in the Switching Decoder. 

Decoding switched to Simple Decoder when there are no bit-errors for 7 consecutive 

slots 
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Figure 7.7 Percentage of Decoding done by each decoder in the Switching Decoder. 

Decoding switched to Simple Decoder when there are no bit-errors for 21 consecutive 

slots 

 

From Figure 7.6, it is observed that even at 1.5 dB, about 1% of decoding is being done 

by the Simple Decoder. This increases to 16% at 4 dB and reach 46% by 6 dB. By 9 dB 

more than 90% of the decoding is being done by the Simple Decoder. From these results, 

it seems likely that there will be considerable energy savings. 

 

Comparing these results with Figure 7.7 it is observed that at lower dB’s the percentage 

contribution of the Simple Decoder is lesser. 1% of decoding is done by the Simple 

Decoder at 4 dB. This increases to 26% at 6 dB and reaches 46% at 7dB. By 9.5 dB it 

crosses 90%.  Despite the slightly lower contribution, these results still seem promising 

since it provides a BEP performance that matches the Viterbi decoder.   

 

On the basis of these results it is also proposed to use this counter setting of the Adapted 

Viterbi Decoder as a variable to optimize operations depending on the specific 

application, the importance of data accuracy versus energy savings and the expected 

SNR range in which the decoder will operate. 
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Using the collected data, the average number of bits that were being decoded between 

switches from the Simple Decoder to the Viterbi decoder and vice-versa is calculated.  

This helps in understanding how effective the switching mechanisms are. Figure 7.8 

shows the results of the analysis done using the first setting (7) for the Adapted  Viterbi 

decoder. Above 9 dB, only few bit-errors occurred in the channel. Therefore very few 

switches took place between the two decoders and almost all decoding was done by the 

Simple Decoder. Hence, the number of bits decoded between switches was very high for 

the Simple Decoder above 9 dB and it was difficult to scale onto the graph. Since what 

happens at lower SNR is of more concern, the graph is drawn only up to 9 dB. 

 

From the results tabulated in Appendix D Section (iii) , it is observed that the Adapted 

Viterbi decoder decodes approximately the same number of bits between switches at all 

SNR values. This is not ideal. The Simple Decoder, as expected decodes fewer bits 

between switches at lower dB. Rounding off to an integer value, at 4 dB four bits are 

efffectively decoded before a switch to the Simple Decoder. At 6 dB this value reaches 

fifteen bits between switches and crosses to fifty-one bits between switches at 7.5 dB. 

 

Figure 7.8:  Average number of bits being decoded per call to each decoder.  Decoding 

switched to Simple Decoder when there are no bit-errors for 7 consecutive slots 
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From these observations it is also clear that at lower SNR, a lot of switches are taking 

place since both the Simple Decoder as well as the Adapted Viterbi decoder decode less 

than 35 bits per call. As SNR increases above 7 dB, the situation improves and the 

Simple Decoder is able to decode a much larger number of bits before it encounters a bit-

error. 

 

Now an analysis is made for the second setting of the Adapted Viterbi decoder, i.e. with 

waiting for 21 slots with no bit-errors before switching to the Simple Decoder. Figure 7.9 

shows a striking difference from the earlier graph and has many points of interest. 

Firstly, attention is drawn to the Y axis of the graph. Unit distances are now 250 bits 

instead of 20 bits as in the earlier graph.  Straightaway it is observed that at lower dB the 

Adapted Viterbi decoder is able to decode a much larger number of bits between 

switches. As the SNR improves, decoding switches to the Simple Decoder more often 

and therefore number of bits decoded by the Adapted Viterbi decoder between switches 

decreases. From the results tabulated in Appendix D Section (iii) that at 4 dB the 

Adapted Viterbi decoder decodes an average of 97 bits between switches and this value 

decreases to 42 by 7.5 dB.  

 

 

Figure 7.9: Average number of bits being decoder per call to each decoder. Decoding 

switched to Simple Decoder when there are no bit-errors for 21 consecutive slots 
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The most interesting observation was that Simple Decoder still decoded almost the same 

number of bits between switches. Rounding off to an integer value, at 4 dB three bits are 

efffectively decoded per call to the Simple Decoder. At 6 dB this value reaches fifteen 

bits between switches and reaches forty-eight bits between switches at 7.5 dB.This 

analysis shows that with the second setting it is possible to reduce a large number of 

unnecessary switches especially at lower SNR.  

 

7.2.2. Packet Loss Rate 

In wireless communications most data is sent as packets. At the receiver, a check 

(usually a CRC check) is used to see whether the decoder was able to correct all bit-

errors in the packet. If there is even one bit-error in the packet, the packet is discarded. A 

new packet maybe requested as described in Section 2.1 and 2.2. In this case, slight 

variations BEP performance will not matter. Whether the packet contained 1 bit-error or 

10, the packet will still be discarded. 

 

Packet loss rate may differ from BEP depending on how close the bit-errors occur. 

Multiple bit-errors occurring within a single packet will result in only 1 packet loss. If 

these bit-errors are spread out into different packets, the packet loss rate increases 

considerably. In order to estimate the packet loss rate, 100 packets of 1000 data bits each 

were transmitted and the number of packets that were received without error after 

decoding using the three decoders was counted separately. Measurements were taken at 

each 0.25 dB going from 5 to 7.5 dB. The results are tabulated in Appendix E and plotted 

in Figure 7.10. 

 

The results show that both the Switching Decoder and ‘My Viterbi’ decoder give exactly 

the same packet loss rate at each data point. This reinforces the fact that the Switching 

Decoder does not degrade performance of the Viterbi decoder.  On comparing with the 

MATLAB Viterbi decoder, there are slight variations in packet loss rate at some points 

though in several cases the packet loss rate is the same. 

 

According to the ITU Recommendations (ITU-R M.1079-2) [44], a packet loss rate 

(PLR) of less than 3% is acceptable for real time audio communications. For video 
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communications, PLR must be less than 1% and data communications require a PLR of 

0%. From the graph in Figure 7.10, it is observed that above 5.75 dB packet loss rate is 

below 2%. When Eb/N0 drops below this value, packet loss rate increases rapidly.  

 

 

Figure 7.10: Packet Loss Rate. Decoding switched to Simple Decoder when there are no 

bit-errors 21 consecutive slots 

 

 7.2.3 Predicting Packet Loss 

Keeping the goal of minimizing energy consumption in mind, it would be very 

advantageous if there was a way of predicting that a packet was likely to fail. Processing 

that packet could then be stopped and a retransmission request sent. An interesting 

method of determining a reliability estimate for the decoded data, suitable for use in 

Type I HARQ protocols, was described by Harvery and Wicker in their papers [45, 46]. 

The Yamamoto-Itoh algorithm that they describe [47] performs a comparison of the 

surviving path and the best non-surviving path at each state and at every stage of the 

decoding process. If the difference in path metric between the two paths falls below a 

certain threshold value, the survivor is considered unreliable.  If all paths are found to be 

unreliable before the end of decoding, a retransmission request is sent. The reliability of 

this repeat request technique in combination with Viterbi decoding was found to be 

asymptotically twice that of the normal decoding algorithm [47]. This mechanism may 

also be incorporated in the Switching Decoder to prevent it from attempting to decode a 

packet that is likely to fail, thus saving energy. 
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Type II HARQ protocols, mentioned in Section 2.6, use data from multiple 

retransmissions to correctly decode data. This reduces number of retransmissions 

required and hence delay incurred in receiving a correct packet. Different mechanisms of 

combining data from such retransmissions have been investigated by Harvey and Wicker 

in another paper on Packet combining systems based on the Viterbi decoder. [48].One of 

the techniques used, called the averaged diversity combiner (ADC), combines packets bit 

by bit by averaging their soft decision values.  This produced results that matched those 

of the interleaved code combining technique [49], a method of interleaving symbols 

received from multiple copies of a packet to form a single packet at the receiver. 

 

7.2.4 Measurements of Processing Time 

In absolute terms, the execution times taken by the MATLAB ® implementations of the 

two decoders depend on the configuration of the computer used and its processor. These 

specifications of the laptop used for this project are provided in Section 5.2, its main 

features being a Microsoft® Windows Vista™ Ultimate OS, Intel(R) Core(TM)2 CPU 

T7200  @ 2.00GHz, 2000 MHz  Processor and 2 GB RAM. Benchmarking using the 

MATLAB function ‘bench’ was used to measure the performance of the MATLAB® 

version R2007b on the laptop. Since these tests may give a variation of up to 10% 

between successive readings, the tests were repeated 10 times. On average, it took 0.189 

seconds to perform standard operations in data structures and M files. The graph of 

relative speed for each of the 10 runs as compared to standard values for other machines 

is reproduced in Figure 7.11. These figures are given for the convenience of researchers 

wishing to reproduce the results presented in this thesis. As may be noted, on most 

occasions its speed matched that of a Linux (32 bit) dual 2.6 GHz Opteron. 
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Figure 7.11: Results of Benchmarking on MATLAB®  

 

One of the other concerns was how the use of large arrays would affect the memory 

requirements and timing of code execution. According to MATLAB® Documentation 

[50], if an array is expanded beyond the available contiguous memory of its original 

location, MATLAB® has to make a copy of the array in a new location and then set this 

array to its new value. This operation may not only result in the program running out of 

memory (due to a temporary doubling in the size of memory required), but also create a 

variation in the time required to execute the code. In order to solve both these problems, 

sizes have been pre-allocated to all the arrays used in the code. This means allocation of 

memory spaces occurs at the beginning of program execution. The code does not expand 

or reduce the size of the array at any other point in the program but only modifies the 

values contained in the memory spaces. 

 

As described in Section 7.1, timing measurements are used to compare the likely energy 

consumption of the two decoders. To a first degree of approximation, it is expected that 

energy consumption will be proportional to the execution time. 

 

Using a data length of 10000, the decoders were run using the MATLAB® Profiler tool.  

Data for the profiler was collected for single packets, each containing 10000 bits, when 

bit-errors result from constant AWGN channel noise. Simulations were run for Eb/No 
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varying from 1 to 12 dB. For each run the value of Eb/N0 remained constant. The results 

are presented in Appendix F and plotted in Figure 7.12. 

 

Figure 7.12: Timing Measurements 

 

It is found that while the conventional Viterbi decoder requires a fixed execution time of 

about 48 seconds at all values of Eb/N0, the time taken by the Switching Decoder is 

dependent on Eb/N0. At higher Eb/N0 values, where a large portion of the decoding is 

being done by the simple decoding part, less time is required to complete the decoding. 

As the Eb/N0 value decreases, a greater portion of decoding is done by the Adapted 

Viterbi decoding part. Therefore the time required to complete the decoding increases. It 

is observed that when Eb/N0 equals 5 dB, the time requirement of the Switching Decoder 

is almost equal to that of the standard Viterbi decoder. Below 5 dB the time requirements 

for the Switching Decoder and standard Viterbi decoder remain more or less constant 

and equal.   

 

 When there are no bit-errors, the Switching Decoder is about 44.5 times faster than the 

Viterbi Decoder i.e. the Switching Decoder takes about 2.2 % of the execution time 
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required by the standard Viterbi decoder.  The graph shows that at 5 dB approximately 

11% of the decoding is being done by the Simple Decoder. Therefore, it can be estimated 

that as long as at least 11% of the decoding is being done by the Simple Decoder, the 

Switching Decoder is likely to be advantageous in terms of energy consumption.  

 

Another implication of these results is that whilst the conventional Viterbi decoder 

requires a fixed decoding time, the Switching Decoder has a variable decoding time. This 

could potentially make hardware implementation of the decoder more difficult. In order 

to produce a steady stream of output bits, adequate delays and synchronization between 

the two components of the Switching Decoder will be necessary. 

 

7.3 Summary 

 
This chapter has demonstrated by analysis of test results in terms of BEP and packet loss 

rates, that appropriate settings allow the Switching Decoder to give exactly the same 

results as the standard Viterbi decoder.  It was also demonstrated that for Eb/N0 values 

above 5 dB, the Switching Decoder takes considerably less execution time in MATLAB® 

than the standard Viterbi decoder while for values below 5 dB, execution time remained 

roughly constant and equal to that of the standard Viterbi decoder.  
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Chapter 8 

CONCLUSIONS AND FUTURE WORK 
 

 

 

This chapter summarizes the conclusions and inferences made from the project and 

recommends points that require further investigation. 

 

8.1 Conclusions 

 
The main objective of this project was to further develop the work started by Barry 

Cheetham and investigate an energy efficient method for decoding convolutionally 

encoded messages transmitted in a wireless environment, and received by energy limited 

devices such as mobiles. One of the major tasks of the project involved understanding 

and building the code for the Viterbi Algorithm. This code was then modified and used 

as an Adapted Viterbi decoder that could pick up decoding when the Simple Decoder 

detected bit-errors. Similarly control is transferred back to the Simple Decoder once 

errors stop occurring. 

 

Two significant issues in the development of the switching algorithm were resolved. The 

first issue was the problem of switching between the two decoders without introducing 

errors. This was solved by correctly initializing the starting states of the decoder based 

on the last known state passed by the other decoder. This initialization was a significant 

step towards the success of the algorithm as it facilitated switching between to the two 

decoders without any loss of information and hence there was no deterioration in the 

output.  

 

The second issue was to accurately determine when bit-errors have stopped occurring so 

that a switch from the Viterbi Decoder to the Simple Decoder could be initiated. This 

issue was solved by using the path metric of the global winner at each time slot to check 

if errors had occurred. If the path metric remained constant for a predetermined number 
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of slots, it was fairly certain that bit-errors had stopped occurring. It was found that if 

this predetermined number was set at 21, switching occurred without causing any 

deterioration in the BEP performance.  Results obtained also indicate that this setting 

may be varied to optimize performance based on the required data accuracy and expected 

SNR in the application.  

 

It was also possible to determine the exact error sequences where the Simple Decoder 

would fail to detect the presence of errors and determine the probability of these errors 

occurring. A strong argument was given to support the belief that the standard Viterbi 

decoder would fail to correct these sequences too.  

 

Packet loss rate analysis confirmed the accuracy of the Switching algorithm as both the 

Switching Decoder and ‘My Viterbi’ decoder gave exactly the same packet loss rate in 

all test cases. This shows that switching had no impact on the error correcting capability 

of the decoder. 

 

Measurements on the execution time of the code show that above 5 dB the Switching 

Decoder takes lesser time to execute as compared to ‘My Viterbi’ decoder. When there 

are no errors, the Switching Decoder takes 44.5 times as many CPU seconds as does ‘My 

Viterbi’ decoder. Below 5 dB, the time taken by the Switching Decoder remains roughly 

constant and at the same level as that of ‘My Viterbi’ decoder. These results give a good 

indication that there will be substantial energy savings above 5 dB. Added to this is the 

previous observation that there is no degradation in BEP performance. Combining these 

factors, there is strong evidence that the Switching Decoder provides an energy efficient 

method of decoding convolutional codes.  

 

8.2 Future Work 

 
The results thus far have been very encouraging and further investigations would help in 

fine tuning the decoder to bring maximum benefit. It would be very worthwhile 

investigating the use of soft decision input Viterbi decoding in place of hard decision in 

the Adapted Viterbi Decoder. Studies have shown that Soft decision inputs quantized to 

three or four precision bits provide a 2 dB improvement in BEP performance of the 
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Viterbi code [14]. It is expected that soft decision input will further improve the BEP 

performance of the new algorithm. This algorithm could also be used in conjunction with 

some of the approaches outlined in Section 3.4 to further increase energy efficiency. 

 

In order to accurately measure energy consumption of the new system, VLSI 

implementations need to built and tested. This requires a detailed knowledge of the 

circuitry involved and synchronization of both the decoders. This analysis will be crucial 

in determining the commercial viability of the new system. An important factor that 

needs to be investigated is how a variable decoding time will affect implementation 

complexity of the algorithm. 

 

Based on the strong argument given in Section 6.4, it would also be helpful to build a 

conclusive proof to establish that the standard Viterbi decoder would not be able to 

correct any bit-errors that the Simple Decoder does not detect. 
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Appendix A – Gantt Chart 
Referred to in Section 5.3 

1 BACKGROUND RESEARCH 69 days 10-Feb-10 14-May-10 

1.1 Study of Papers & Other Literature 59 days 10-Feb-10 30-Apr-10 

1.2 
Familiarization with Software Tool 
(MATLAB ®) 

14 days 24-Mar-10 12-Apr-10 

1.3 Preparation of Background Report 25 days 12-Apr-10 14-May-10 

2 DESIGN AND IMPLEMENTATION 65 days  
12-May-

10 
6-Aug-10 

2.1 Study Viterbi Algorithm 6 days 
12-May-

10 
18-May-10 

2.2 Break for Exams 14 days 
19-May-

10 
7-Jun-10 

2.3 
Implement code to perform simple 
decoding using Viterbi Algorithm 

6 days 8-Jun-10 15-Jun-10 

2.4 
Design algorithm to perform decoder 
switch on/ off operation appropriately 

7 days 16-Jun-10 24-Jun-10 

2.5 
Implement code for switch on/off 
operation 

7 days 16-Jun-10 24-Jun-10 

2.6 
Design algorithm to convolutionally 
encode input data & introduce errors 

7 days 25-Jun-10 5-Jul-10 

2.7 
Implement code to convolutionally 
encode data & introduce errors 

7 days 1-Jul-10 9-Jul-10 

2.8 Design algorithm to estimate energy use 7 days 10-Jul-10 19-Jul-10 

2.9 
Design simulation of entire 
communication system in Simulink 

14 days 20-Jul-10 6-Aug-10 

3 EXPERIMENTATION &ANALYSIS 7 days  9-Aug-10 17-Aug-10 

4 PREPARATION OF REPORT 64 days 8-Jun-10 1-Sep-10 

4.1 Chapter 1: Introduction 6 days 22-Jul-10 29-Jul-10 

4.2 Chapter 2: Background 10 days 30-Jul-10 12-Aug-10 

4.3 Chapter 3: FEC in mobile networks 7 days 8-Jun-10 16-Jun-10 

4.4 
Chapter 4: Design & Implementation of 
Experiment 

40 days 17-Jun-10 10-Aug-10 

4.5 
Chapter 5: Results & Analysis, Chapter 
6: Conclusion 

6 days 13-Aug-10 20-Aug-10 

4.6 
Abstract, References & Formatting of 
Report 

6 days 21-Aug-10 27-Aug-10 

4.7 Review & Correction of Report 3 days 30-Aug-10 1-Sep-10 

 

Table A.1: Gantt Chart Task List
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Figure A.1: Gantt Chart 
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Appendix B: General Algorithm for Hamming Codes 
 

The general algorithm used to construct hamming codes as stated in [12] has been reproduced 
below.  

S.No: Algorithm Example 

1 
 The bits are numbered starting from 1  

Bit 1, 2, 3, 4, 
5… 

2 
 The binary representation of the bit positions are written 

1, 10, 11, 100, 
101… 

3 

 Parity Bits: These are all the bits whose position number is 
power of 2. They will have only 1 bit having value 1 in their 
binary representation   

Bit 1, 2, 4, 8,16 
… 

4 
 Data Bits:  These are all the remaining bits having two or 
more 1 bits in their binary representation 

Bit 3,5,6,7,9 … 

5 
 Each data bit is included in a unique set of two or more 
parity bits, as determined by its binary representation 

  

6 
 Each parity bit covers all bits where the binary AND of the 
parity position and the bit position is non-zero. 

  

 
Table B.1: General algorithm for Hamming Codes [12] 

The parity bits and the corresponding bits that they check are listed below as . 

Parity Bit Data Bits Covered 

Parity Bit 1 
 Covers all bit positions which have the least 
significant bit set 

bit 1 (the parity bit 
itself), 3, 5, 7, 9, 11… 

Parity Bit 2 
Covers all bit positions which have the second 
least significant bit set 

bit 2 (the parity bit 
itself), 3, 6, 7, 10, 11… 

Parity Bit 3 
 Covers all bit positions which have the third 
least significant bit set 

bits 4–7, 12–15, 20–
23… 

Parity Bit 4 
Covers all bit positions which have the fourth 
least significant bit set 

bits 8–15, 24–31, 40–
47… 

 
Table B.2: Table describing the bits covered by each parity bit [12] 

A diagrammatic representation of the result is shown in Figure B.1 and helps in understanding 
the algorithm better. 

 

Figure: B.1: Visual representation of Parity and Data bits 
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Appendix C: CRC Generator Polynomials 
 

CRC Check Codes have some properties that make them suitable for use in error 
detection. The fact that CRC checks are simple to implement has also resulted in CRC 
checks being widely used as an error detection mechanism in all forms of 
communications.  

There are different kinds of generator polynomials each of which are used for detecting 
different types of errors. 

As elaborated in the article [51], three kinds of errors and their detection mechanisms are 
briefly described below.  

When we divided the received codeword polynomial by the generator polynomial, a non-
zero remainder indicates that an error has occurred. 

1. Single errors 

These errors can be detected using a generator polynomial G(x) that has atleast two 
terms Xn and 1 where n is the degree of the codeword polynomial. 

2. Double errors 

These errors can be detected by using a generator polynomial G(x) such that G(x) 
does not divide Xp + 1 for any value of p <N-1 

3. Any odd number of errors 

These errors may be detected if the generator polynomial G(x) has a factor 1+X 

4. Any error bust having length < n 

A generator polynomial of degree n can detect an error burst of length <n 

The most commonly used CRC codes are CRC-16 and CRC -32.  
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Appendix D: BEP Performance Test Results and Statistics. 
Referred to in Section 7.1 

 
i. Datalength 10,000. Switching when there are no bit-errors for 7 consecutive slots 
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ii. Datalength 10,000. Switching when there are no bit-errors for 21 consecutive slots 
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iii. Comparison of average number of bits decoded between switches with both 

settings. Referred to in Section 7.1. 

 

       

SNR 

Setting 1 - Switch after 7 consecutive 

error free slots 

Setting 1 - Switch after 21 consecutive 

error free slots 

Avg number of bits 

decoded per call 

to Simple Decoder 

Avg number of 

bits decoded per 

call to normal 

decoder 

Avg number of bits 

decoded per call to 

Simple Decoder 

Avg number of bits 

decoded per call to 

normal decoder 

0.5 0.28 35.43 1.17 2083.42 

1 0.37 31.34 0.46 1351.70 

1.5 0.70 28.82 0.44 847.53 

2 0.90 25.83 0.51 555.38 

2.5 1.26 23.00 1.01 323.86 

3 1.90 21.57 2.04 205.55 

3.5 2.54 19.92 2.31 148.84 

4 3.56 18.77 3.32 100.26 

4.5 5.23 18.18 5.53 74.78 

5 7.37 17.46 7.14 60.56 

5.5 10.71 16.94 10.56 50.91 

6 14.83 16.75 15.06 44.01 

6.5 21.48 16.39 22.11 39.28 

7 31.37 16.19 32.94 36.84 

7.5 50.93 16.04 47.97 35.42 

8 72.10 16.13 70.72 32.86 

8.5 111.50 16.13 119.60 31.54 

9 186.50 16.05 182.53 31.27 

9.5 328.57 16.46 357.05 30.78 

10 571.78 16.81 572.49 30.28 

10.5 1232.58 18.18 913.45 30.51 

11 1905.12 19.12 1822.04 30.93 

11.5 3825.15 23.31 5526.11 32.78 

12 6225.88 27.88 7111.71 35.43 

12.5 8306.50 31.83 9971.00 35.00 

13 9971.00 35.00 9971.00 35.00 
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Appendix E: Packet Loss Rate Calculations 
Referred to in Section 7.2.2 

 

Eb/No 

Percentage Packet Loss 

MATLAB 

Decoder 

‘My Viterbi’ 

Decoder 

Switching 

Decoder 

5.0 14.0 16.0 16.0 

5.25 7.0 7.0 7.0 

5.5 5.0 3.0 3.0 

5.75 1.0 1.0 1.0 

6.0 1.0 2.0 2.0 

6.25 1.0 1.0 1.0 

6.5 0.0 1.0 1.0 

6.75 0.0 1.0 1.0 

7.0 0.0 0.0 0.0 

7.25 0.0 0.0 0.0 

7.5 0.0 0.0 0.0 
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 Appendix F: Timing Measurements 
Referred to in Section 7.2.4 
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Appendix G: MATLAB ® code 
 

1. encoder.m 

function  Y = encoder(NB,ZInp)  
 
X1=0;X2=0;X3=0;X4=0;X5=0;X6=0; % the input at the 6 stages of the  
                               % encoder  
  
Y = repmat(-1, 2*NB,1);  
  
for  n=1:NB  
    X=ZInp(n); % the nth input to the encoder  
    YL = xor( xor(X2,X1), xor(X6, X3));  
    YL = xor(YL,X); %(171)  
    YU = xor( xor(X3,X2), xor(X6,X5));  
    YU = xor(YU,X);  %(133)  
    Y(2*n-1) = YL; %171 Lower output stored at index 2n-1   
    Y(2*n)=YU;    %133 Upper output stored at index 2n  
     
    X6=X5; X5=X4; X4=X3; X3=X2; X2=X1; X1=X; % All the flip flops  
% move to the next state. First flip flop gets value of input                                        
end ;  
% disp(sprintf('Output after Conv. encoding: \t'));  
% disp(sprintf('\b %d ',Y));  
 
 
2. modulate.m 

 
function  [msg_tx, grayencod] = modulate(Y,M,Nsamp)  
 
k= log2(M);  
              
msg_enc = bi2de(reshape(Y, ...  
   size(Y,2)*k,size(Y,1) / k)');  
grayencod = bitxor(0:M-1, floor((0:M-1)/2));  
msg_gr_enc = grayencod(msg_enc+1);  
msg_tx = modulate(modem.pskmod(M, pi/4), msg_gr_enc );  
msg_tx = rectpulse(msg_tx, Nsamp);  
 

 
3. demodulate.m 

 
function  comp_Rx = demodulate(msg_rx,M,Nsamp,grayencod) 

 
k=log2(M);  
msg_rx_int = intdump(msg_rx, Nsamp);  
msg_gr_demod = demodulate(modem.pskdemod(M, pi/4), msg_rx_int);  
[dummy graydecod] = sort(grayencod); graydecod = gr aydecod - 1;  
msg_demod = graydecod(msg_gr_demod+1)';  
comp_Rx = de2bi(msg_demod,k)'; comp_Rx = comp_Rx(:) ;  
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4. simpleDecoder.m 

 
function   simpleDecoder(NB, Rx,begState) 
 
global  pState decoded ErrorFlag fLen numCalls_A ACount de cFlag  
  
numCalls_A=numCalls_A+1;  
FF = bitget(uint8(begState), 6:-1:1); % initialize flip flops to binary 
        % value of state  
t=fLen;        % store last index of output array  
index=fLen+2;  %index for output array when there are no errors       
  
for  i=index:NB  
     
    lowerInput = Rx(2*i-3);  
    upperInput = Rx(2*i-2);  
  
    lowerOutput = xor(xor(xor(FF(2),FF(1)), xor(FF( 6),FF(3))), 
lowerInput);  
    upperOutput = xor(xor(xor(FF(3),FF(2)), xor(FF( 6),FF(5))), 
upperInput);  
  
    if  ((lowerOutput ~=upperOutput )||(fLen > NB-35+6))  
% Conventional viterbi needs traceback depth of atl east 5 times  
% constraint length  
        fLen=fLen-7;  
        if  (fLen <=0)  
            fLen=0;  
            for  p = 1:7  
                pState(p)=0;      
            end  
        end        
        break ;  
        
    elseif (lowerOutput==upperOutput) % No error in received bits  
         
        fLen=fLen+1;    
        decoded(fLen)=lowerOutput;  
         
        for  p = 7:-1:2  
            pState(p)=pState(p-1);  
        end  
  
        sum=0;  
        for  bit = 6:-1:1  
            sum=sum + FF(bit)*(2^(6-bit));  
        end  
        pState(1)=sum;  
                     
        for  j=6:-1:2 % shift all the flipflop values to the right        
            FF(j)=FF(j-1);  
        end  
        FF(1)=lowerOutput; % first flipflop value is the last  
        % received output  
    end   
end  
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if (fLen <= t)    
    fLen=t;  
    pState(7)= begState; %if error occurs before 6 bits are  
% decoded return flipflops to state before Simple D ecoder was                          
% switched on  
end  
ACount=ACount + fLen-t;  
for  i = t+1:fLen  
    decFlag(i)=1;  
end  
 ErrorFlag = 1; % Error has occurred or end of array has been  
      % reached 

 
 
5. adapVitDec.m  (Adapted Viterbi Decoder) 

 
function   [currState ] = adapVitDec(NB,Rx)  
global  pState fLen decoded ErrorFlag numCalls_N NCount;  
global  decFlag;  
accError = repmat (Inf,[64,35]); % initiaize error metric values to   
                % infinity  
predecessor = zeros (64,35);     % initialize state history table  
tracebackPath=ones(1, 35);       % initialize traceback path  
numCalls_N=numCalls_N+1;  
% Initial value of error metric is taken as the sta te of the Simple 
Decoder % 6 slots prior 
accError(pState(7)+1,1)=0;  
RxT=fLen+1;      % index for data array containing received signal  
oldLowest=Inf;   % previous lowest error metric value  
noChangeCount=0; % count for the number of slots that error metric  
       % has remained constant  
beginPt=fLen;  
ErrorFlag=0;  
endpoint = min(35,NB+1-fLen); 
 
%-------------------------------------------------- ---------------  
% Create Previous State Table  
%-------------------------------------------------- ---------------  
% create 64 states  
% STATES ARE NUMBERED FROM 1 to 64 THOUGH ACTUALLY 0 to 63  
prevState = ones(64,6); % initialize array representing states of  
    % flipflops  
    for  i=1:64  
        for  j=1:6  
            %convert to 6 bit binary representation of 0 to 63  
  % which is the state of flipflops  
            prevState(i,j)=bitget(uint8(i-1),7-j);  
        end  
    end     
%-------------------------------------------------- ---------------  
  
for  t = 2:endpoint  
     RxT=RxT+1; %index for received signal  
  
    for  i=1:64  
        lowerBitXOR = xor(xor(prevState(i,1),prevSt ate(i,2)),  
     xor(prevState(i,3),prevState(i,6)));  
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        lowerOutput_IP0 = xor(lowerBitXOR,0); 
    % Lower output if input is  0  
        lowerOutput_IP1 = xor(lowerBitXOR,1); 
    % Lower output if input is  1  
  
        upperBitXOR = xor(xor(prevState(i,2),prevSt ate(i,3)),   
     xor(prevState(i,5),prevState(i,6)));  
        upperOutput_IP0 = xor(upperBitXOR,0); 
   % Upper output if input is  0  
        upperOutput_IP1 = xor(upperBitXOR,1);  
   % Upper output if input is  1  
  
%-------------------------------------------------- --------------- 
% BRANCH METRICS: Calculate Hamming Distances  
%-------------------------------------------------- ---------------  
  
        HD_IP0= xor(lowerOutput_IP0,Rx(2*RxT-3))+ 
xor(upperOutput_IP0,Rx(2*RxT-2));  
% add hamming distance of each bit if input is 0  
        HD_IP1= xor(lowerOutput_IP1,Rx(2*RxT-3))+ 
xor(upperOutput_IP1,Rx(2*RxT-2));  
% add hamming distance of each bit if input is 1  
  
%-------------------------------------------------- ---------------  
% Calculate next state  
%-------------------------------------------------- ---------------  
  
        s=i-1; %i=1 implies state 0 and so on  
        nextState_IP0 = bitshift(s,-1,6);  % next state if input  
   % is 0. divide i by 2 and round it off  
        nextState_IP1 = nextState_IP0 + 32;  
   % next state if input is 1.  
  
%-------------------------------------------------- ---------------  
% ADD, COMPARE, SELECT : Update Accumalated Error M etric Table and % 
Surviving State table  
%-------------------------------------------------- --------------- 

  
        if (accError(1+nextState_IP0,t)>(accError(i,t-1)+ HD_I P0))  
            if (accError(1+nextState_IP0,t)==Inf)  
                predecessor(1+nextState_IP0,t)=0; %lower branch  
            else  predecessor(1+nextState_IP0,t)=1; % upper branch  
            end  
            accError(1+nextState_IP0,t)=(accError(i ,t-1)+ HD_IP0);  
  
        elseif (accError(1+nextState_IP0,t)==(accError(i,t-1)+ 
HD_IP0)&&(predecessor(1+nextState_IP0,t)< i))  
            % consistently choose the higher state in cases of  
  % equality  
            predecessor(1+nextState_IP0,t)=1;  
        end  
  
        if (accError(1+nextState_IP1,t)>(accError(i,t-1)+ HD_I P1))  
            if (accError(1+nextState_IP1,t)==Inf)  
                predecessor(1+nextState_IP1,t)=0; % lower branch  
            else  predecessor(1+nextState_IP1,t)=1; % upper branch  
            end  
            accError(1+nextState_IP1,t)=(accError(i ,t-1)+ HD_IP1);  
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        elseif (accError(1+nextState_IP1,t)==(accError(i,t-1)+ HD_ IP1)&& 
(predecessor(1+nextState_IP1,t)< i))  
            % consistently choose the higher state in cases of  
  % equality  
            predecessor(1+nextState_IP1,t)=1;  
        end  
    end  
end  
  
%-------------------------------------------------- ---------------  
%   SURVIVOR PATH DECODING: Traceback Operation Beg ins  
%-------------------------------------------------- ---------------  
  
[value state]=min(accError(:,t));  
tracebackPath(t)=state;  
  
for  tr=t-1:-1:1  
    state=tracebackPath(tr+1);  
    temp=bitshift(state-1,1,6);  
    tracebackPath(tr)= temp + predecessor(state,tr+ 1)+1;  
  
end  
  
nextState_IP0 = bitshift(tracebackPath(1)-1,-1,6);  
nextState_IP1 = nextState_IP0 + 32;  
  
if (tracebackPath(2)==nextState_IP0+1)  
    decoded(fLen+1)=0;  
     
elseif  (tracebackPath(2)==nextState_IP1+1)  
    decoded(fLen+1)=1;  
end  
decFlag(fLen+1)=0;  
  
fLen = fLen+1;  
tb_index=fLen;  
endVal=max(0,NB+1-35);  
newLowest=0;  
oldLowest=0;  
t=35;  
while ( tb_index<= endVal)  
    for  j = 1: 34  
        for  i=1:64  
            accError(i,j)=accError(i,j+1);  
            predecessor(i,j)=predecessor(i,j+1);  
        end  
        tracebackPath(j)=tracebackPath(j+1);  
    end  
    for  i = 1:64  
        accError(i,35)=Inf;  
        predecessor(i,35)=0;  
    end  
  
    RxT=RxT+1; %index for received signal  
  
    for  i=1:64  
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        lowerBitXOR = xor(xor(prevState(i,1),prevSt ate(i,2)), 
xor(prevState(i,3),prevState(i,6)));  
        lowerOutput_IP0 = xor(lowerBitXOR,0); % Lower output if  
           % input is  0  
        lowerOutput_IP1 = xor(lowerBitXOR,1); % Lower output if  
           %input is  1  
  
        upperBitXOR = xor(xor(prevState(i,2),prevSt ate(i,3)), 
xor(prevState(i,5),prevState(i,6)));  
        upperOutput_IP0 = xor(upperBitXOR,0); % Upper output if  
            % input is  0  
        upperOutput_IP1 = xor(upperBitXOR,1); % Upper output if  
           % input is  1  
  
%-------------------------------------------------- ---------------  
BRANCH METRICS : Calculate Hamming Distances  
%-------------------------------------------------- ---------------  
  
        HD_IP0= xor(lowerOutput_IP0,Rx(2*RxT-3))+ 
xor(upperOutput_IP0,Rx(2*RxT-2)); % add hamming distance of each  
         % bit if input is 0  
        HD_IP1= xor(lowerOutput_IP1,Rx(2*RxT-3))+ 
xor(upperOutput_IP1,Rx(2*RxT-2)); % add hamming distance of each  
         % bit if input is 1  
  
%-------------------------------------------------- ---------------  
% Calculate next state  
%-------------------------------------------------- --------------- 
  
        s=i-1; %i=1 implies state 0 and so on  
        nextState_IP0 = bitshift(s,-1,6);  % next state if input  
      % is 0. divide i by 2 and round it off  
        nextState_IP1 = nextState_IP0 + 32; % next state if input 
         % is 1.  
  
%-------------------------------------------------- ---------------  
% ADD, COMPARE, SELECT : Update Accumalated Error M etric Table and % 
Surviving State table  
%-------------------------------------------------- ---------------  
  
        if (accError(1+nextState_IP0,t)>(accError(i,t-1)+ HD_I P0))  
            if (accError(1+nextState_IP0,t)==Inf)  
                predecessor(1+nextState_IP0,t)=0; %lower branch  
            else  predecessor(1+nextState_IP0,t)=  1;  
       % upper branch  
            end  
            accError(1+nextState_IP0,t)=(accError(i ,t-1)+ HD_IP0);  
  
        elseif (accError(1+nextState_IP0,t)==(accError(i,t-1)+ HD_ IP0))  
            % consistently choose the higher state in cases of  
  % equality  
            predecessor(1+nextState_IP0,t)= 1;  
        end  
  
        if (accError(1+nextState_IP1,t)>(accError(i,t-1)+ HD_I P1))  
            if (accError(1+nextState_IP1,t)==Inf)  
                predecessor(1+nextState_IP1,t)=0; % lower branch  
            else  predecessor(1+nextState_IP1,t)=1; % upper branch  
            end  
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            accError(1+nextState_IP1,t)=(accError(i ,t-1)+ HD_IP1);  
  
        elseif (accError(1+nextState_IP1,t)==(accError(i,t-1)+ HD_ IP1))  
       % consistently choose the higher state in cases of equality  
            predecessor(1+nextState_IP1,t)=1;  
        end  
    end  
  
    [value state]=min(accError(:,t));  
    tracebackPath(t)=state;  
  
    for  tr=t-1:-1:1  
        state=tracebackPath(tr+1);  
        temp=bitshift(state-1,1,6);  
        if (tracebackPath(tr)== temp + predecessor(state,tr+1) +1)  
            break ;  
        else  tracebackPath(tr)=temp+predecessor(state,tr+1)+1;  
        end  
  
    end  
  
    nextState_IP0 = bitshift(tracebackPath(1)-1,-1, 6);  
    nextState_IP1 = nextState_IP0 + 32;  
  
    tb_index=tb_index+1;  
    if (tracebackPath(2)==nextState_IP0+1)  
        decoded(tb_index)=0;  
  
    elseif  (tracebackPath(2)==nextState_IP1+1)  
        decoded(tb_index)=1;  
    end  
    decFlag(tb_index)=0;  
  
    newLowest = accError(tracebackPath(1));  
  
    if (newLowest ==oldLowest)  
        noChangeCount=noChangeCount+1;  
    else  
        noChangeCount=0;  
    end  
  
    oldLowest = newLowest;  
  
    if  ( (noChangeCount >=21 )&&(tb_index <(NB-35-6)) )  
        
%%%===============================================================  
%  Switch Back to Simple Decoder  
%%%===============================================================  
        ErrorFlag=1;  
        break ;  
    end  
end  
fLen=tb_index;  
currState= tracebackPath(2);  
  
if (ErrorFlag~=1 )  
    ep=min(34,NB);  
    for  i=2:ep  
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        nextState_IP0 = bitshift(tracebackPath(i)-1 ,-1,6);  
        nextState_IP1 = nextState_IP0 + 32;  
  
        tb_index=tb_index+1;  
        if (tracebackPath(i+1)==nextState_IP0+1)  
            decoded(tb_index)=0;  
  
        elseif  (tracebackPath(i+1)==nextState_IP1+1)  
            decoded(tb_index)=1;  
        end  
        decFlag(tb_index)=0;  
    end  
    fLen=tb_index;  
    currState=tracebackPath(i+1);  
end  
  
ErrorFlag=0;  
NCount=NCount+fLen-beginPt;  
 

 
6. MAINFILE.m   

clear all ; clc;  
global  decoded pState fLen ErrorFlag ;  
global  numCalls_A numCalls_N numCalls_C;  
global  ACount NCount CCount;  
global  decFlag  
  
NB =10000;  % Number of orig bits for testing.  
Inp = randsrc(NB, 1, 0:1);  
  
ZInp=[Inp; 0; 0; 0; 0; 0; 0]; NB=NB+6;   %Add 6 extra zeros to flush at 
end.  
  
%-------------------------------------------------- ---------------  
%Convolutional coder1/2 K= 7 (171,133)  
%-------------------------------------------------- ---------------  
Y = encoder(NB,ZInp);  
  
%-------------------------------------------------- ---------------  
% Coded signal Y.  Modulate signal QPSK. Store tran smitted signal as 
msg_tx  
%-------------------------------------------------- ---------------  
  
M=4;k= log2(M);Nsamp=4;  
[msg_tx grayencod]=modulate(Y,M,Nsamp);  
[msg_tx_uncoded grayencod]=modulate(ZInp,M,Nsamp);  
%-------------------------------------------------- ---------------  
%Initialize matrices  
  
EbN0 = zeros(1,26);  
nErrs_A =zeros(1,26);  
nErrs_matHard = zeros(1,26);  
nErrs_Conv = zeros(1,5);  
nErrs_uncoded = zeros(1,26);  
nErrs_channel=zeros(1,26);  
BER_A=zeros(1,26);  
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BER_matSoft = zeros(1,26);  
BER_matHard=zeros(1,26);  
BER_Conv = zeros(1,26);  
BER_uncoded=zeros(1,26);  
BER_channel=zeros(1,26);  
  
for  runs = 1:26  
  
    ErrorFlag=0;                 % Set Error Flag to 0  
    decoded = repmat(-1,[NB,1]); % initialize decoded output array  
    decFlag=repmat(-1,[NB,1]);   % Flag to check which bits were  
        % decoded by Simple Decoder  
    pState = zeros(7,1);         % intitalize last 7 states of the  
        % decoder  
    fLen=0;                      % initialize last index of  
        % decoded output  
    numCalls_A=0;  
    numCalls_N=0;  
    numCalls_C=0;  
  
    ACount=0;  
    NCount=0;  
    CCount=0;  
    EbN0(runs)= runs/2 ;  
    EsN0 = EbN0(runs) + 10*log10(2);  
%-------------------------------------------------- ---------------  
% Modulated signal msg_tx.  Introduce bit-errors. S ignal at Receiver is 
msg_rx  
%-------------------------------------------------- ---------------  
  
    msg_rx = awgn(msg_tx, EsN0-10*log10(2)-10*log10 (Nsamp)); % AWGN % 
NOISE to Encoded Signal  
    msg_rx_uncoded = awgn(msg_tx_uncoded,EsN0-10*lo g10(2)-
10*log10(Nsamp));  %AWGN Noise to Uncoded Signal  
     
    %---------------------------------------------- ---- 
    % Introduce bit errors to certain parts of the message 
    %---------------------------------------------- ----  
    % msg_rx=msg_tx; % no noise added  
    % msg_tx_PART1 = msg_tx (1:NB);  
    % msg_tx_PART2=msg_tx(NB+1:2*NB);  
    % msg_tx_PART3 = msg_tx(2*NB+1:3*NB);  
    % msg_tx_PART4=msg_tx(3*NB+1:4*NB);  
    % 
    % msg_rx_PART1=msg_tx_PART1;  
    % msg_rx_PART2=awgn(msg_tx_PART2, EsN0-10*log10(2)-
10*log10(Nsamp));  
    % msg_rx_PART3=awgn(msg_tx_PART3, EsN0-10*log10(2)-
10*log10(Nsamp));  
    % msg_rx_PART4=msg_tx_PART4;  
    % 
    % 
msg_rx=cat(2,msg_rx_PART1,msg_rx_PART2,msg_rx_PART3 ,msg_rx_PART4); 
 
%-------------------------------------------------- ---------------  
% Demodulate signal received .Store in comp_Rx  
%-------------------------------------------------- ---------------  
  
    comp_Rx = demodulate(msg_rx,M,Nsamp,grayencod);  
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    comp_Rx_uncoded = demodulate(msg_rx_uncoded,M,N samp,grayencod);    
    Rx= double((comp_Rx > 0.5)); % hard decision, round off  
  
%-------------------------------------------------- ---------------  
% Apply MATLAB Viterbi decoder for checking later:-  
%-------------------------------------------------- ---------------  
    trellis = poly2trellis(7,[171 133]);     % IEEE802.11  
    tblen = 35; delay = tblen; % Traceback length  
    matdecodedHard = vitdec(Rx,trellis,tblen, 'term' , 'hard' ); % Hard 
decision  
 
%-------------------------------------------------- ---------------  
% Switching Decoder  
%-------------------------------------------------- ---------------  
    currState=1; % Set initial current state to 1  
    while  (fLen < NB)  
        if  (ErrorFlag==0)  
        %-------------------------------------------------- -------  
        %  Start Simple Decoding Method  
        %-------------------------------------------------- -------  
             simpleDecoder(NB, Rx,currState-1); % Perform simple  
        % decoding        
   elseif (ErrorFlag==1)  
        %-------------------------------------------------- -------  
        % Start Adapted Viterbi Decoder 1/2 K= 7 (171,133)  
        %-------------------------------------------------- -------  
  
            [currState ] = adapVitDec(NB,Rx); % Perform normal  
           % Viterbi decoding  
        end  
    end  
%-------------------------------------------------- ---------------% ‘My 
Viterbi’ Decoder Run from Beginning to End  
%-------------------------------------------------- ---------------  
  
    CON_decoded = conVitDec2(NB,Rx); 
 
%-------------------------------------------------- ---------------  
    countA(runs)=0;  
    for  i =1:NB  
        if (xor(ZInp(i),decoded(i)) && (decFlag(i)==1))  
            countA(runs)=countA(runs)+1;  
        end  
  
    end  
    [nErrs_A(runs) BER_A(runs)] = biterr(ZInp, deco ded);  
    [nErrs_matHard(runs) BER_matHard(runs)] = biter r(ZInp, 
matdecodedHard);  
    [nErrs_Conv(runs) BER_Conv(runs)] = biterr(ZInp , CON_decoded);  
    [nErrs_uncoded(runs) BER_uncoded(runs)] = 
biterr(ZInp,comp_Rx_uncoded);  
    [nErrs_channel(runs) BER_channel(runs)]=biterr( Y,comp_Rx);  
  
    disp(sprintf( 'Eb/No: %0.1f' ,EbN0(runs)));  
    disp(sprintf( 'Channel Bit-error rate = %d' ,nErrs_channel(runs)));  
    disp(sprintf( 'Number of biterrors (Matlab Viterbi Decoder) = 
%d' ,nErrs_matHard(runs)));  
    disp(sprintf( 'Number of biterrors (‘My Viterbi’ Decoder)     = 
%d' ,nErrs_Conv(runs)));  
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    disp(sprintf( 'Number of bit-errors (Switching Decoder) = 
%d' ,nErrs_A(runs)));  
   
    disp(sprintf( 'NumCalls Simple Decoder : %d' ,numCalls_A));  
    disp(sprintf( 'NumCalls Adapted Viterbi Decoder : %d' ,numCalls_N));  
    disp(sprintf( 'NumCalls Normal Viterbi decoder(‘My Viterbi’ dec.) : 
%d' ,    numCalls_C));  
  
    disp(sprintf( 'NumBitsDecoded A: %d' ,ACount));  
    disp(sprintf( 'NumBitsDecoded N: %d' ,NCount));  
    disp(sprintf( 'NumBitsDecoded C: %d' ,CCount));  
  
    disp(sprintf( 'No. errors in simple decoded bits: 
%d' ,countA(runs)));  
    disp(sprintf( '-------------------------------------------------- ---
---------------------' ));  
  
    end 
 
figure(1);  
 
semilogy(EbN0,BER_matHard, '-xb' , EbN0,BER_Conv, '-dr' ,EbN0,BER_A, '-
og' ,EbN0,BER_uncoded, '+r' ); %,EbN0,BER_matSoft,'-Xm');  
grid on; title( 'Bit-error prob against EB/No' );  
xlabel( 'Eb/No (dB)' ); ylabel( 'Bit error prob' ); legend( 'Matlab 
Viterbi' , 'MyViterbiDecoder' , 'Switching Decoder' , 'Uncoded' );  
  
grid on; title( 'Bit-error prob against Eb/No' );  
xlabel( 'Eb/No (dB)' ); ylabel( 'Bit error prob' ); 
 
 

7. Portion of conVitDec2.m  (‘My Viterbi’ Decoder ) 

 
 
function   [decoded t ] = conVitDec2(NB,Rx)  
global  numCalls_C CCount;  
numCalls_C=numCalls_C+1;  
accError = repmat (Inf,[64,35]); % initiaize error metric to undefined 
value.  
predecessor = zeros (64,35); %initialize state history table  
prevState = ones(64,6);  
decoded = repmat (-1,[NB,1]);  
 

 
The rest of the code remains largely the same as the Adapted Viterbi Decoder, the 
difference being that we don’t maintain a counter for determing that bit-errors have 
stopped occurring. As expected, decoding is continued without any switches to the 
Simple Decoder. 
 

8. MAINFILE_PacketLoss.m (Modified Main File to Measure Packet Loss) 

 
 
clear all ; clc;  
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global  decoded pState fLen ErrorFlag ;  
global  numCalls_A numCalls_N numCalls_C;  
global  ACount NCount CCount;  
global  decFlag  
  
packetA_Count=0;  
packetConv_Count=0;  
packetMat_Count=0;  
packetUncoded_Count=0;  
for  packet=1:100  
    NB =1000;  % Number of orig bits for testing.  
    Inp = randsrc(NB, 1, 0:1);  
    ZInp=[Inp; 0; 0; 0; 0; 0; 0]; NB=NB+6;   %Add 6 extra zeros to 
flush at end.  
  
 %-------------------------------------------------- -------------- 
 % Convolutional coder 1/2 K= 7 (171,133)  
 %-------------------------------------------------- -------------- 
  
    Y = encoder(NB,ZInp);  
  
%-------------------------------------------------- ---------------  
% Coded signal Y.  Modulate signal QPSK. Store tran smitted signal as 
msg_tx  
%-------------------------------------------------- ---------------  
    M=4;k= log2(M);Nsamp=4;  
    [msg_tx grayencod]=modulate(Y,M,Nsamp);  
    [msg_tx_uncoded grayencod]=modulate(ZInp,M,Nsam p);  
%-------------------------------------------------- ---------------  
    %Initialize matrices  
    snr = zeros(1,1);  
    nErrs_A =zeros(1,1);  
    nErrs_matSoft = zeros(1,1);  
    nErrs_matHard = zeros(1,1);  
    nErrs_Conv = zeros(1,1);  
    nErrs_uncoded = zeros(1,1);  
    nErrs_channel=zeros(1,1);  
    BER_A=zeros(1,1);  
    BER_matSoft = zeros(1,1);  
    BER_matHard=zeros(1,1);  
    BER_Conv = zeros(1,1);  
    BER_uncoded=zeros(1,1);  
    BER_channel=zeros(1,1);  
  
    for  runs = 1:1  
  
        ErrorFlag=0;                     % Set Error Flag to 0  
        decoded = repmat(-1,[NB,1]);      
   % initialize decoded output array  
        decFlag=repmat(-1,[NB,1]);        
   % Flag to check which bits were decoded by Simple D ecoder  
        pState = zeros(7,1); % intitalize last 7 states of the  
         % decoder  
        fLen=0;       % initialize last index of decoded output  
        numCalls_A=0;  
        numCalls_N=0;  
        numCalls_C=0;  
  
        ACount=0;  
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        NCount=0;  
        CCount=0;  
        snr(runs)= 6.5; %Set snr to a fixed value for all 50 packets  
        EsN0 = snr(runs) + 10*log10(k);  
%-------------------------------------------------- ---------------  
% Modulated signal msg_tx.  Introduce bit-errors. S ignal at  
% Receiver is msg_rx  
%-------------------------------------------------- ---------------  
        msg_rx = awgn(msg_tx, EsN0-10*log10(2)-10*l og10(Nsamp)); 
        % AWGN NOISE 
        msg_rx_uncoded = awgn(msg_tx_uncoded,EsN0-1 0*log10(2)-
10*log10(Nsamp)); %Uncoded Signal  
        % msg_rx=msg_tx; % no noise added  
 
%-------------------------------------------------- ---------------  
% Demodulate signal received .Store in comp_Rx  
%-------------------------------------------------- ---------------  
        comp_Rx = demodulate(msg_rx,M,Nsamp,grayenc od);  
        comp_Rx_uncoded = demodulate(msg_rx_uncoded ,M,Nsamp,grayencod);  
%-------------------------------------------------- ---------------  
   Rx= double((comp_Rx > 0.5)); % hard decision, round off  
  
%-------------------------------------------------- ---------------  
% Apply MATLAB Viterbi decoder for checking later:-  
%-------------------------------------------------- ---------------  
        trellis = poly2trellis(7,[171 133]);     % IEEE802.11  
        tblen = 35; delay = tblen; % Traceback length % NB length  
      % has 6 zero's appended  
        matdecodedHard = vitdec(Rx,trellis,tblen, 'term' , 'hard' ); 
    % Hard decision  
%-------------------------------------------------- ---------------  
% Switching Decoder  
%-------------------------------------------------- ---------------  
        currState=1; % Set initial current state to 1  
        while  (fLen < NB)  
            if  (ErrorFlag==0)  
%-------------------------------------------------- ---------------  
% Start Simple Decoding Method  
%-------------------------------------------------- ---------------  
         simpleDecoder(NB, Rx,currState-1);  
    % Perform simple decoding  
  
            elseif (ErrorFlag==1)  
 
   %----------------------------------------------- ----------  
   % Start Adapted Viterbi Decoder 1/2 K= 7 (171,13 3)  
        %-------------------------------------------------- -------  
  
            [currState ] = adapVitDec(NB,Rx); % Perform normal  
           % Viterbi decoding  
         end  
        end  
%-------------------------------------------------- ---------------  
% ‘My Viterbi’ Decoder Run from Beginning to End  
%-------------------------------------------------- ---------------  
         CON_decoded = conVitDec2(NB,Rx); % ‘My Viterbi’ decoder run  
           % from beginning to end 
%-------------------------------------------------- ---------------  
        countA(runs)=0;  
        for  i =1:NB  
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            if (xor(ZInp(i),decoded(i)) && (decFlag(i)==1))  
                countA(runs)=countA(runs)+1;  
            end  
        end  
        [nErrs_A(runs) BER_A(runs)] = biterr(ZInp, decoded);  
        [nErrs_matHard(runs) BER_matHard(runs)] = b iterr(ZInp, 
matdecodedHard);  
        [nErrs_Conv(runs) BER_Conv(runs)] = biterr( ZInp, CON_decoded);  
        [nErrs_uncoded(runs) BER_uncoded(runs)] = 
biterr(ZInp,comp_Rx_uncoded);  
        [nErrs_channel(runs) BER_channel(runs)]=bit err(Y,comp_Rx);  
  
        disp(sprintf( 'Channel Bit-error rate = 
%d' ,nErrs_channel(runs)));  
        disp(sprintf( 'Number of biterrors (matHard-Decoded) = 
%d' ,nErrs_matHard(runs)));  
        disp(sprintf( 'Number of biterrors (ConvBitDec2)     = 
%d' ,nErrs_Conv(runs)));  
        disp(sprintf( 'Number of bit-errors (Decoded With Switching) = 
%d' ,nErrs_A(runs)));  
  
        if  nErrs_A(runs) ==0  
            packetA_Count=packetA_Count+1;  
        end  
        if  nErrs_matHard(runs) ==0  
            packetMat_Count=packetMat_Count+1;  
        end  
        if  nErrs_Conv(runs) ==0  
            packetConv_Count=packetConv_Count+1;  
        end  
        if  nErrs_uncoded(runs) ==0  
            packetUncoded_Count=packetUncoded_Count +1;  
        end  
  
        disp(sprintf( 'NumBitsDecoded A: %d' ,ACount));  
        disp(sprintf( 'NumBitsDecoded N: %d' ,NCount));  
        disp(sprintf( 'NumBitsDecoded C: %d' ,CCount));  
  
        disp(sprintf( 'No. errors in simple decoded bits: 
%d' ,countA(runs)));  
        disp(sprintf( '-------------------------------------------------
-------------------------' ));  
%-------------------------------------------------- ---------------  
    end  
end  
disp(sprintf( 'Successful Packets - Matlab Viterbi Decoder: 
%d' ,packetMat_Count));  
disp(sprintf( 'Successful Packets - ‘My Viterbi’ Decoder: 
%d' ,packetConv_Count));  
disp(sprintf( 'Successful Packets - Switching decoder 
%d' ,packetA_Count));  
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