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Abstract

This project aims to explore the state of the art in unsupervised representation learning

for facial images. Facial images contain a great deal of information about their subjects,

however, these information components are often entangled in highly non-linear ways.

As such, disentangling information components can be a very difficult task. This project

considers three models presented in the literature: the Gaussian Restricted Boltzmann

Machine (GRBM), the spike-and-slab Restricted Boltzmann Machine (ssRBM) and the

higher order spike-and-slab Restricted Boltzmann Machine (hossRBM), aiming to serve

as a comprehensive guide to these models, as well as to show that they make it possible

to learn representations, in an unsupervised fashion, in which information components

become disentangled.

In experiments, promising results were obtained using both the Gaussian restricted

Boltzmann machine and spike-and-slab restricted Boltzmann machine to learn mean-

ingful representations of facial images. Meaningful representations of images utilising

the higher order spike-and-slab restricted Boltzmann machine were not achieved due to

instabilities of the model which occur during training. Possibile reasons for this insta-

bility are explored in the project, and attemps to overcome them using several different

approaches are demonstrated and discussed.
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Chapter 1

Introduction

1.1 Description of Problem

When deciding on a representation for data to be used in machine learning tasks, it

is important to consider that structures within the data may be the product of many

interacting factors, or information components [2, 3]. For instance, a set of facial images

may contain photographs taken of many different individuals, making different facial

expressions and under different lighting conditions. The distribution of intensity values

for each individual pixel is conditionally dependent upon all of these factors.

In many cases, not all of the available data is categorised by the factors of interest;

as such, unsupervised learning techniques must be used in order to extract meaning

from the data. Unsupervised learning methods often serve as a form of pre-processing

for data in a classification pipeline [4], with the success of the classification algorithm

determined by the ability of the unsupervised learning method to disentangle information

components within the data [3, 5].

This is especially important when the information component of interest is not dominant

in the raw pixel intensity based representation. In the example of facial images, the

variation caused in the raw pixel representation due to difference in identity far outweigh

those caused by difference in facial expression, and as such facial expression recognition

10
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on this representation is likely to yield poor results [2]. This is the problem which will

be considered in this project: the problem of finding a representation of facial images

in which the facial expression of the subject of an image becomes disentangled from the

images more prominent features.

In the field of representation learning many different techniques have been attempted

to solve problems of this nature. One particularly promising technique is the use of

probabilistic graphical models. It is a subset of these models, restricted Boltzmann

machines (RBMs), which are the subject of this project.

1.2 Aims and Contributions

It is hoped that this project will serve as a useful contribution to the literature in

representation learning. To this end, the two primary objectives of this project are:

1. To act as a thorough and complete reference work on the subject of Restricted

Boltzmann Machines (RBMs), including Gaussian (GRBM), spike-and-slab (ss-

RBM) and higher order spike-and-slab (hossRBM) variants. Ideally, it should be

possible for someone with a solid knowledge of linear algebra, calculus and statistics

to use this material in order to gain a reasonably comprehensive understanding

of the models presented despite no previous knowledge of machine learning or

graphical models.

2. To demonstrate the advantages of probabilistic models for learning representations

of facial images. In particular, the aim is to prove that hossRBMs successfully dis-

entangle information components of facial images, learning a representation which

increases the accuracy of a linear classifier when classifying images by facial ex-

pression. Successfully demonstrating this requires that a significant improvement

against both the raw pixel representation and representations learnt by other mod-

els can be achieved. In this way, this project aims to serve to replicate and confirm

the findings of [6] and [2].
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1.3 Structure of Project

The structure of this dissertation is as follows:

The first chapter gives a brief introduction to the problem domain and describes the

aims and structure of the project.

The second chapter gives a brief overview of Markov Random Fields, using their proper-

ties to justify the designs of the models used in the project. The RBM, GRBM, ssRBM

and hossRBM are introduced, with a strong emphasis on describing their structure and

providing commentary on the motivations for any design choices. The concepts of spar-

sity and regularisation are also introduced along with a discussion of how they can be

used when training RBMs.

The third chapter gives a description of how the models described in the previous chapter

are trained. The topics of stochastic gradient descent, Gibbs sampling and contrastive

divergence are discussed in relation to training RBMs.

The fourth discusses the details of the implementation used in the experiments completed

in the course of the project. An overview is given of the major technologies used,

noting any differences between the models described in the previous chapters and the

implementations.

The fifth chapter is concerned with the main experiment conducted for this project.

This experiment involves training several models on facial images. The representations

learnt by each model are used as the input for a linear SVM, along with facial expression

labels.
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The sixth chapter provides a discussion of the outcomes of the project, presenting a more

personal, informal reflection on the successes and failures of the project. This chapter

also contains a discussion of possible directions of future work based on the outcomes of

the project.

Finally, the seventh chapter provides a summary of the project as a whole and gives a

few concluding remarks.



Chapter 2

Restricted Boltzmann Machines

This chapter provides an introduction to the Restricted Boltzmann Machine (RBM).

The first section of the chapter provides a brief context and background for the model,

exploring the current state of representation and discussing the advantages and disad-

vantages of various approaches currently being explored in the field. The next section

discusses energy based graphical models in an abstract way, with the remaining sections

describing the RBM itself, along with several variations of the model.

2.1 Representation Learning

Representation learning is described by Bengio et al. as “[The process of] learning

transformations of data that make it easier to extract useful information when building

classifiers or other predictors” [3]. The earliest representation learning techniques, such

as Principal Component Analysis (PCA), were concerned primarily with dimensionality

reduction [7]. In the case of PCA, the aim was to find a lower dimensional representation

which maintained as much variance from the original data as possible, built on the

assumption that directions of high variance corresponding to interesting structure in the

data [8]. Such models made no attempt to separate explanatory factors within the data

but could still prove useful in the preparation of data whose dimensionality prohibits

the learning of more expanatory representations [3].

14
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In their review, Bengio et al. outline three of the most popular approaches taken to

representation learning: auto-encoders, in which the training algorithm is based on re-

ducing the error in the reconstruction of training data from the representation; manifold

learning, in which the emphasis is placed on finding representations which describe the

data as being embedded in a lower dimensional manifold in the feature space and prob-

abilistic models, which have the goal of learning the underlying distribution from which

the training data is sampled [3].

Whilst all three methods have produced state-of-the-art classification results in recent

years (auto-encoder: [9], manifold: [10], probabilistic: [11]), this project will be con-

cerned solely with probabilistic models. In particular, it will explore an interesting

approach introduced in [2], in which a probabilistic model, the higer order spike-and-

slab restricted Boltzmann machine (hossRBM) is constructed with the primary purpose

of learning to disentangle information components in an unsupervised manner.

In recent years a great deal of focus has been placed on deep learning, the process of

learning multiple representations in a hierarchical manner, with each layer of features

being more abstract from the raw data than the one before it. Success of deep learning

architectures is very much dependent upon the models used in each layer, as such the

investigation of novel approaches in single layer models is still an important area of

research. Due to the increased difficulties involved in training deeper models, only

single layer constructions will be considered within this project. It should, however, be

noted that the application of the hossRBM to deep learning has been described in the

original paper as “an important area of future research” [2].

2.2 Energy Based Graphical Models

Facial images are very complex, and can vary greatly in many ways. However, the set

of all possible facial images is highly structured. Separating out different information

components, such as identity and facial expression, is essentially the task of learning and

understanding this structure. With no prior knowledge of the structure of the domain,
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a fruitful strategy is to attempt to learn the underyling distribution based on a finite

number of training examples.

A powerful technique for modelling such a distribution is the use of hidden variables [12].

Using this approach, models are devised which consist of two sets of variables: v, the

set of visible or input variables, and h, the set of hidden or latent variables. Alongside

these variables are a set of parameters θ, which are chosen using algorithms based on

the training data. Many such models easily lend themselves to graphical representation,

with one such example being the Markov Random Field (MRF) [12].

The MRF is a model which was originally devised for use in statistical mechanics [13]. In

particular, it was created as an attempt to construct a general probabilistic framework

in which the random interactions of dipoles within ferromagnetic materials could be

explained [13]. In order to succinctly define and describe the MRF, several definitions

from graph theory must first be given [12, 14].

Definition 2.1. A graph G = (V,E), is a tuple consisting of a set of nodes V and

a set of undirected edges E, where each edge is defined as an unordered pair of nodes

{vi, vj} ∈ E.

Definition 2.2. Two nodes vi and vj are neighbours if {vi, vj} ∈ E. the neighbourhood

of v, Nv, is definied as the set of nodes connected to v, i.e. Nv = {w ∈ V : {w, v} ∈ E}

Definition 2.3. A clique on a graph G = (V,E) is a subset of V in which all pairs

of distinct nodes are connected by a node in E. A clique is maximal if a larger clique

cannot be made by adding more nodes from V .

In a Markov random field, a random variable Xv is associated with each node in V ,

with X being the set of all such variables. For a clique C ⊂ V , let XC denote the set of

random variables associated with the nodes in C.

Definition 2.4. A graph G along with associated random variables X forms a Markov

random field if the probability distribution of X satisfies the following property for all v:

P (Xv|X \ {Xv}) = P (Xv|Nv)
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That is, the distribution of Xv given the values variables on neighbouring nodes, is

independent of all other variables.

It is now almost possible to introduce the concept of an energy function, which will

be very important in the construction of models defined later on. However, it is first

necessary to state a result known as the Hammersley-Clifford Theroem.

Theorem 2.5. Let G be a graph with associated random variables X, let all variables

in X have a strictly positive distribution, and let C be the set of all maximal cliques of

G. The graph is a Markov Random Field if and only if there exist a set of non-negative

functions {ψC}C∈C such that ψC is dependent only on variables in C and

p(X) =
1

Z

∏
C∈C

ψC(X). (2.1)

The normalisation constant Z, known as the partition function, is defined as

Z =
∑
X

∏
C∈C

ψC(X). (2.2)

The proof of this theorem is beyond the scope of this project, but can be found in [15].

The alternative definition of an MRF this theorem gives is incredibly useful, as it yields

the following implicit definition of the probability distribution:

p(X) =
1

Z

∏
c∈C

ψCXC

=
1

Z
exp

(∑
C∈C

lnψC(XC)

)

=
1

Z
exp(−E(X)) (2.3)

Where E =
∑

C∈C lnψC(XC) is the energy function. It is easy to see that this function

behaves as desired; improbable outcomes on X correspond to high values of the func-

tion E, whereas low values will be induced by more probable configurations. Another
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important aspect of this derivation is that it allows for the possibility that, with some

care, a desirable energy function can be constructed first, and then an MRF induced

from this function [12].

An important observation is that the energy function defines a probability distribution

on the possible configurations of variables in the network. If it is possible to create a

function between a set of features of some dataset and configurations of the network,

then the network can effectively assign a probability to examples from the dataset. The

training of a model is the process of tuning the energy function to achieve a distribution

approximating the distribution from which the training data is sampled from; this pro-

cess is the subject of Chapter 3. Interestingly, once this has been achieved, the learnt

distribution can be sampled from, effectively allowing new data to be generated. For

this reason, this kind of model is sometimes referred to as a generative model [16].

2.3 The Restricted Boltzmann Machine

Let v = {v1, v2, . . . , vD} and h = {h1, h2, . . . , hN} be sets of binary random variables,

arranged in as shown in Figure 2.1. It can be seen that, if this graph is an MRF, as

will be proved shortly, all visible nodes are independent given the hidden nodes, and

vice-versa. The joint probability distribution of the restricted Boltzmann Machine over

these two sets of variables is given by the Gibbs distribution p(v, h) = 1
Z e
−E(v,h) with

energy function:

E(v, h) = −
N∑
i=1

D∑
j=1

Wijhivj −
D∑
j=1

bjvj −
N∑
i=1

cihi, (2.4)

At this point it is instructive to show that the RBM is an MRF. The approach usually

taken in the literature is to explicitly demonstrate conditional independences by calcu-

lating the marginal distributions of hidden and visible variables [14, 17]. An alternative

approach attempted here is to use the energy function to derive the potential functions
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of all cliques on the graph, then it can be claimed that the graph is an MRF using the

Hammersley-Clifford theorem [14]. Whilst the first of these methods is the more useful,

as it leads to the marginal distributions of individual nodes, the second will also be

demonstrated for this model as a useful example of how a distribution can be made to

factorise over an MRF.

v1 v2 v3 vm

h1 h3 hnh2

Figure 2.1: The Graphical Structure of the Restricted Boltzmann Machine

Approach 1

In order to show the RBM is an MRF it is necessary to show that the hidden variables

are conditionally independent of each other, and similarly for the visible variables. This

can be demonstrated directly from the joint distribution, by showing that the probability

of a particular outcome in one variable is not dependent on variables of the same type.

In doing so, the marginal distributions of the hidden and visible units are also obtained.

The approach to this calculation shown below is taken from [14]. This approach turns

out to be very powerful, and will be used in many calculations performed for more

sophisticated models. For this reason, an attempt is made to present the derivation in

as general a way as possible before applying it to the specific energy function of the

RBM. For a Markov Random Field with a set of visible variables v and a set of hidden

variables h, define h−l be the set of all hidden units except hl. Define αl(v) as the sum
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of the coefficients of hl in all terms in the energy function which have hl as a factor,

with β(v, h−l) being the sum of all the remaining terms.

Using these definitions, the energy function can be rewritten as

E(v, h) = β(h−l, v) + hlαl(v). (2.5)

The advantage of this definition is that it separates out all terms which are dependent

on hl. This allows p(hl = 1|h−l, v) to be calculated as:

p(hl = 1|v, h−l) =
p(hl = 1, h−l, v)

p(h−l, v)

=
exp(−E(hl = 1, h−l, v))

exp(−E(hl = 1, h−l, v)) + exp(−E(hl = 0, h−l, v))

=
exp(−β(h−l, v)− 1 · αl(v))

exp(−β(h−l, v)− 1 · αl(v)) + exp(−β(h−l, v)− 0 · αl(v))

=
exp(−β(h−l, v)) exp(−αl(v)))

exp(−β(h−l, v))(exp(−αl(h−l, v)) + 1)

=
1

1 + exp(αl(v))

= sigm(−αl(v)) (2.6)

Applying this principle to the energy function of the restricted Botlzmann machine gives

the definitions of αl(v) and β(v−l, h) as:

αl(v) = −
D∑
j=1

Wljhi − cl

and

β(v−l, h) = −
N∑

i=1,i 6=l

D∑
j=1

Wijhivj −
D∑
j=1

bjvj −
N∑

i=1,i 6=l
cihi

leading to a conditional probability of:
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p(hl|h−l, v) = sigm(−αl(v))

= sigm

 D∑
j=1

Wljvj + cl


= p(hl|v) (2.7)

Here sigm(x) is the sigmoid function, defined as sigm(x) = 1
1+e−x . From the equalities

shown above, it is apparent that the variables in the hidden layer are independent given

the visible layer. For a binary hidden variable hi, the probability p(h = 1) is sometimes

referred to as the activation probability of the variable [18].

Furthermore, due to symmetries in the function, p(h = 1|v) can be derived using nearly

identical steps, yielding the result:

p(hi = 1|v) = sigm

 D∑
j=1

Wijvj + ci

 (2.8)

As well as proving independence, the above gives the conditional probability distribu-

tions which will be necessary later for sampling from and training the model.

Approach 2

In order to determine a set of potential functions over cliques within the RBM graph,

it is first necessary to identify the cliques within the graph. Consider a node vj with

1 ≤ j ≤ D, for each hidden node hi with 1 ≤ i ≤ N the set {vj , hi} forms a clique,

since there is an edge connecting the two nodes. Furthermore, since the only edges in

the graph consist of one visible and one hidden node, this clique is necessarily maximal

(no other node can share an edge with both a hidden node and a visible one). From this

it can be deduced that there are n×m cliques, one for each hidden/visible pair.
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From the identity E =
∑

C∈C lnψC(Xc) an obvious approach to take is to devise a set of

functions which sum to the energy function, each one dependent only on nodes within

one clique, and then exponentiate these functions to get the actual potential functions.

One way of doing this is:

lnψ{vj ,hi}(v, h) = −Wijvjhi −
1

D
bjvj −

1

N
cihi

⇒ ψ{vj ,hi}(v, h) = exp(−Wijvjhi −
1

D
bjvj −

1

N
cihi) (2.9)

In this solution each clique {vj , hi} is responsible for a single element in the first sum in

Equation 2.4 and a fraction of a single element of each of the other two terms. Note that

this is not a unique solution, in fact there are many possible sets of potential function

for a given MRF [19].

2.4 Gaussian Visible Units

A disadvantage of the RBM as previously defined is the restriction to binary input. This

is not ideal for the processing of natural images, which consist of pixels which can take

a range of integer values, and therefore cannot be represented by binary units without

a lot of data being lost. A simple trick for extending the RBM to deal with real valued

visible units is simply to scale the training data to fit in an interval of unit length, and

take the value of p(vj = 1|h) as the variable state, rather than a measure of the binary

distribution.

A more nuanced approach is the use of Gaussian visible units. Using this method the

energy function becomes: [18]

E(v, h) = −
n∑
i=1

m∑
j=1

Wijhivj
σj

−
m∑
j=1

(bj − vj)2

2σ2
j

−
n∑
i=1

cihi,

Here each σj is an additional parameter representing the standard deviation of the Gaus-

sian noise of the corresponding visible unit [18]. Similarly, the bj variables correspond to
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the mean of the visible units vj . In this way, these additional parameters serve to scale

and translate the visible variables, meaning that the model can weight the influences of

different features in a meaningful way.

The derivation of the conditional probability p(hl|v) is almost unchanged, requiring only

trivial modifications to approach shown in Equation 2.6 to include the 1
σ term in the αl

function 1.

p(hl = 1|v) = sigm

 D∑
j=1

Wljvj
σj

+ cl

 (2.10)

The derivation of p(vl|h), however becomes slightly more involved. The following deriva-

tion is taken from [20].

p(v|h) =
exp(−E(v, h))∫

u
exp(−E(u, h))du

=

exp(−
n∑
i=1

m∑
j=1

Wijhivj
σj

−
m∑
j=1

(bj − vj)2

2σ2
j

−
n∑
i=1

cihi)

∫
u
exp(−

n∑
i=1

m∑
j=1

Wijhiuj
σj

−
m∑
j=1

(bj − uj)2

2σ2
j

−
n∑
i=1

cihi)du

=

exp(−
n∑
i=1

m∑
j=1

Wijhivj
σj

−
m∑
j=1

(bj − vj)2

2σ2
j

−
n∑
i=1

cihi)

m∏
j=1

σj
√

2π

(
exp(

1

2
(
n∑
i=1

hiwij)
2) +

n∑
i=1

cihi +
1

σj
bj

n∑
i=1

hjWij

)
1The β function also changes in order to ensure that Equation 2.6 still holds. However, this is not

important, since it is made to disappear using the trick in Equation 2.6.
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=

m∏
j=1

exp(−
n∑
i=1

Wijhivj
σj

− (bj − vj)2

2σ2
j

−
n∑
i=1

cihi)

m∏
j=1

σj
√

2π

(
exp(

1

2
(

n∑
i=1

hiwij)
2) +

n∑
i=1

cihi +
1

σj
bj

n∑
i=1

hjWij

)

=

m∏
j=1

1

σj
√

2π
exp

−(vj − bj)2

2σ2
j

− 1

2

(
n∑
i=1

hiWij

)2

+
1

σj
(vj − bj)

(
n∑
i=1

hiWij

)

=
m∏
j=1

1

σi
√

2π
exp

(
− 1

2σ2
j

(vj − bj)2 + σ2
j (

n∑
i=1

hiWij)
2 − 2σj(vj − bj)(

n∑
i=1

hiWij))

)

=
m∏
j=1

1

σi
√

2π
exp

(
1

2σ2
j

(vj − bj − σj −
n∑
i=1

hiWij)
2

)

=
m∏
j=1

N

(
bj + σj +

n∑
i=1

hiWij , σ
2
j

)
(2.11)

In the above, the step involving integration is done by completing the square for each

ui then using
∫∞
−∞ e

−x2dx = 1√
2π

.

2.5 The Spike and Slab Restricted Boltzmann Machine

Whilst the GRBM can be used to model real valued data, it is still not well suited to

the task of learning from natural images [6, 21]. This is not entirely unexpected, as the

representational power of the model is severely diminished by the move from a discrete

domain to a continous one [14]. One possible reason for the failure of the GRBM is the

binary nature of the hidden units, which are only guaranteed to accurately approximate

binary distributions [14].

In an attempt to remove these shortcomings, the spike-and-slab restricted Boltzmann

machine (ssRBM) was created [6]. In the ssRBM there are two distinct kinds of latent

variables, the binary ‘spike’ variables and the real valued ‘slab’ variables. The name

spike-and-slab is taken from the statistics literature, where it referred to a prior used in
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Bayesian regression, in which the probability distribution is uniform across an interval,

save for one elevated ‘spike’ value [22].

As before, there are D real valued visible variables represented by the vector v ∈ RD,

N hidden units, with the ith hidden unit consisting of a spike variable hi ∈ {0, 1} and

a real values slab variable si ∈ R or a vector of such variables si ∈ Rk. The energy

function the ssRBM defined over these variables is:

E(v, s, h) = −
N∑
i=1

vTWisihi +
1

2

N∑
i=1

sTi αisi +
1

2
vTΛv −

N∑
i=1

bihi

Where Wi a D ×K weight matrix weighting the interactions between visible variables

and the ith hidden variables, and bi is the bias term for the ith spike variable. The

diagonal matrices αi and Λ are matrices responsible for decreasing the likelihood of

configurations with large values of ||si||22 and ||v||22. The joint probability distribution is

of the form:

p(v, s, h) =
1

Z
exp(−E(v, s, h))I(v)

where I(v) is a uniform distribution which over the ball of radius R = max ||v||2 centred

at the origin, containing all the training data. The reason for the necessity of this

addition to the energy function is that the increased complexity of the energy function

means that it is no longer guaranteed that its integral over all possible configurations

is bounded, meaning that the partition function would need to be infinite, this will

be discussed in more detail in the next chapter. In practice the I(v) term is often

disregarded and in the literature is often only mentioned in the first formal definition of

the energy function [6, 23, 24]. This is a practice which will be adopted for the remainder

of this chapter, with the reasons for doing so discussed in the section of the next chapter

discussing the training of the ssRBM.
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One of most important marginal distribution to calculate is p(v|s, h). Within the bounts

of ||v||2 > R; this distribution is calculated as:

p(v|s, h) =
p(v, s, h)

p(s, h)

=
1

p(s, h)

1

Z
exp (−E(v, s, h))

=
1

p(s, h)

1

Z
exp

(
−1

2
vTΛv +

n∑
i=1

(vTWisihi +
1

2
sTi αisi + bihi)

)

=
1

p(s, h)

1

Z
exp

(
N∑
i=1

1

2
sTi αisi + bihi

)
exp

(
−1

2
vTΛv +

N∑
i=1

vTWisihi

)

=
1

Z ′
exp

(
1

2
vTΛv +

N∑
i=1

vTWisihi

)

=
1

Z ′′
exp

(
(v − Λ−1

N∑
i=1

Wisihi)
TΛ(v − Λ−1

N∑
i=1

Wisihi)

)

= N

(
Λ−1

N∑
i=1

Wisihi,Λ
−1

)
(2.12)

This derivation is an extended version of the three line derivation found in [23], with

some extra steps added. Note that Z ′ and Z ′′ are used to denote the partition function

absorbing terms which are independent of v, this will be common practice for subsequent

derivations in this chapter. It is worth remembering that Λ is a diagonal matrix, and

therefore its inverse is trivial to compute.

It may be tempting to try to marginalise out the slab variables and treat the model

as having only binary latent variables, with the slabs serving as an elaborate set of

parameters. However, attempting such a thing yields [23]

p(v|h) =
1

p(h)

1

Z

∫
exp

(
N∑
i=1

vTWisihi +
1

2

N∑
i=1

sTi αisi −
1

2
vTΛv +

N∑
i=1

bihi

)
ds

=
1

p(h)

1

Z

(
(2π)NK

N∏
i=1

det(α−1
i )

) 1
2

exp

(
1

2
vT

(
Λ−

N∑
i=1

hiWiα
−1
i W T

i

)
v

)

= N

0,

(
Λ−

N∑
i=1

hiWiα
−1
i W T

i

)−1
 (2.13)
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In this calculation, the integration over s is done by completing the square on s in the

exponent in order to get the constant term
(

(2π)NK
∏N
i=1 det(α−1

i )
)

, with the remaining

terms modelling a normal distribution on v.

This result makes treating the slab variables purely as parameters problematic, for a

couple of reasons. Firstly, there is no guarantee that
(

Λ−
∑N

i=1 hiWiα
−1
i W T

i

)
is positive

definite, a necessary condition for it to be a valid covariance matrix. Secondly, even if it

is positive definite, it is very computationally expensive to compute this matrix, since

it is the inverse of a non-diagonal matrix [6].

It is however, possible to calculate p(hi = 1|v), marginalising out s [23]:

p(hi = 1|v) =
1

p(v)

1

Z

∫
exp(−E(v, s, h))ds

=
1

p(v)

1

Z

∫ ( N∑
i=1

vTWisihi −
1

2

N∑
i=1

sTi αisi −
1

2
vTΛv +

N∑
i=1

bihi

)
ds

=
1

p(v)

1

Z
exp

(
1

2
hivWiα

−1
i W T

i v + bihi

)
((2π)Kdet(α−1

i ))
1
2

= sigm(
1

2
vTWiα

−1
i W T

i v + bi) (2.14)

The last step in the derivation of p(hi = 1|v) uses the trick shown in Equation 2.6, but

with the β function being a constant zero since there are no terms in the exponent which

are independent of hi.

Finally, the distribution p(s|v, h) is considered and shown to be Gaussian, this distribu-

tion is stated without proof in the literature [6, 23]:
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p(s|v, h) =
1

p(v, h)

1

Z
exp(−E(v, s, h))

=
1

p(v, h)

1

Z
exp

(
N∑
i=1

vTWisihi −
1

2

N∑
i=1

sTi αisi −
1

2
vTΛv +

N∑
i=1

bihi

)

=
1

p(v, h)

1

Z ′
exp

(
−1

2

N∑
i=1

(
si − hiα−1

i W T
i v
))

αi

(
−1

2

N∑
i=1

(
si − hiα−1

i W T
i v
))

=
1

p(v, h)

1

Z ′

N∏
i=1

exp

(
−1

2

(
si − hiα−1

i W T
i v
)
αi
(
si − hiα−1

i W T
i v
))

=
N∏
i=1

N
(
hiα
−1W T

i v, α
−1
i

)
(2.15)

The use of the pairing of two distinct kinds of latent variables allows for several choices

of representation based on the output of the model. It is possible to use the products of

the spike and slab variables as the representation, or similarly the product of the spike

and the magnitude of the slab. Alternatively, it is possible to use just the spike variables,

or the expectations thereof, using the fact that it is relatively easy to marginalise over

s to find p(h|v).

2.6 Higher Order Interactions

The ssRBM is much more suited to the task of learning representations of natural images

than the GRBM, however, it still makes no attempts to model images as being generated

from a distribution based on multiple explanatory factors. Using the approach outlined

in [2], this can be done by associating each slab variable with multiple interacting spike

variables.

The motivation behind this model is a notion regarding the relationship between the

generative process and the process of creating a representation. In particular, that

generating samples using a model is roughly the reverse of creating a representation for a

specific input. Therefore, having a generative process in which information components
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become entangled leads to a model which exposes these components with data it is

presented [2]. The energy function which gives rise to these interactions is:

E(v, s, f, g, h) =
1

2
vTΛv −

∑
k

ekfk +
∑
i,k

cikgik +
∑
j,k

djkhjk +
1

2

∑
i,j,k

αijks
2
ijk

+
∑
i,j,k

(−vTW.,ijksijk − αijkµijksijk +
1

2
αijkµ

2
ijk)gikhjkfk (2.16)

The interactions between latent variables can be visualised in the way demonstrated in

Figure 2.2. The parameters g ∈ {0, 1}M×K and h ∈ {0, 1}N×K are matrices, with the

columns and rows respectively determining the interactions within a given block. The

parameters in f ∈ {0, 1}K are responsible for controlling the interactions between blocks.

It is due to these higher order interactions between spike variables that the higher order

spike-and-slab Restricted Botlzmann Machine (hossRBM) gets its name.

The other parameters are as follows:

• W : The D×M ×N ×K tensor weighting the interactions between the visible and

latent variables.

• µ: The M ×N ×K tensor describing the mean of the slab variables.

• α: The M ×N ×K tensor describing the precision of the slab variables, punishing

large values of s.

• Λ: The D ×D matrix punishing large input values.

• c: The M ×K matrix of bias terms for the g variables.

• d: The N ×K matrix of bias terms for the h variables.

• e: The K vector of bias terms for the f variables.

The following conditional dstributions are all stated without proof in [2].
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Figure 2.2: Visualisation of the interactions of spike and slab variables with the block
controlled by fk. Based on diagram from [2].

As with the ssRBM, the probabilities of the visible variables given the hidden variables

can be shown to be Gaussian:

p(v|s, f, g, h) =
1

p(v, s, f, g, h)

1

Z
exp(−E(v, s, f, g, h))

=
1

p(v, s, f, g, h)

1

Z ′
exp

1

2
vTΛv −

∑
i,j,k

vTW·ijksijkgikhjkfk


=

1

p(v, s, f, g, h)

1

Z ′′
exp

1

2

v − Λ−1
∑
i,j,k

W ′·ijk

Λ

v − Λ−1
∑
i,j,k

W ′·ijk


= N

∑
i,j,k

Λ−1W·ijksijkgikhjkfk,Λ
−1

 (2.17)

Here W ′·ijk = W·ijksijkgikhjkfk and all terms of the energy function that do not have v

as factor are absorbed by the partition function 1
Z′ .

As with the ssRBM it is insightful to show the conditional distribution of the visible

variables over the spike variables, marginalising out the slab variables. Due to the

complexity of the energy function, proof of this is very fiddly, in order to partially

alleviate this, some new notation is introduced
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α̂ =
1

2
vTΛv −

∑
k

ekfk +
∑
i,k

cikgik +
∑
j,k

djkgjk +
1

2
αijkµ

2
ijkfkgikhjk (2.18)

β̂ijk =
1

2
αijk (2.19)

γ̂ijk = −(vTWijkαijkµijk)fkgikhjk) (2.20)

Using these definitions, the energy function becomes:

E(v, s, f, g, h) = α̂+
∑
i,j,k

ˆβijks
2
ijk +

∑
i,j,k

γ̂ijksijk (2.21)

Marginalising over the s variables gives:

∫
p(v, s, f, g, h)ds =

1

Z

∫
exp(−(α̂+

∑
i,j,k

ˆβijks
2
ijk +

∑
i,j,k

γ̂ijksijk))ds

=
1

Z
exp(−α̂)

∫
exp(−(

∑
i,j,k

ˆβijks
2
ijk +

∑
i,j,k

γ̂ijksijk))ds

=
1

Z
exp (−α̂+

∑
i,j,k

γ̂2
ijkβ̂

−1
ijk)

∫
exp(−(

∑
i,j,k

ˆβijk(sijk +
1

2

∑
i,j,k

γ̂ijkβ̂
−1
ijk)

2)ds

=
1

Z ′
exp (−α̂+

∑
i,j,k

γ̂2
ijkβ̂

−1
ijk) (2.22)

From the above, the marginal distribution given s can be thought of as having an energy

function of the form:

Ê(v, f, g, h) =
1

2
vTΛv −

∑
k

ekfk +
∑
i,k

cikgik +
∑
j,k

djkhjk +
1

2
αijkµ

2
ijkgikhjkfk

+
∑
i,j,k

(
vTW·ijk − αijkµijk

)
fkgikhjk (2.23)

This energy function can then be used to calculate p(v|f, g, h):
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p(v|f, g, h) =
1

Z

∫
exp(−Ê(v, f, g, h))dv

=
1

Z ′
exp(−(

1

2
vT (Λ−

∑
i,j,k

W·ijkW
T
·ijkα

−1
ijkfkgikhjk)v − v

∑
i,j,k

W·ijkµijkfkgikhjk))

=
1

Z ′
exp

−
v −∑

i,j,k

Cv|f,g,hW
′
·ijk

C−1
v|f,g,h

v −∑
i,j,k

Cv|f,g,hW
′
·ijk


= N

∑
i,j,k

Cv|f,g,hW·ijkµijkfkgikhjk, Cv|f,g,h

 (2.24)

In the above the notation W ′·ijk = W·ijkµijkfkgikhjk is used for readability and

Cv|f,g,h = (Λ−
∑
i,j,k

W·ijkW
T
·ijkα

−1
ijkgikhjkf

−1
k )−1 (2.25)

This result differs slightly from that found in the original paper [2], in which the mean

is given without proof as
∑

i,j,k Λ−1W·ijkµijkfkgikhjk
2.

From this distribution, it can be seen that f , g and h contribute not just to the con-

ditional mean of the visible variables, but also the conditional covariance. This ability

to model the conditional covariance in a more sophisticated way is argued to be a rea-

son that this model should offer an improvement over the traditional RBM model in

handling natural images [2].

The conditional distributions of the spike variables can be calculated as:

p(fk = 1|v, g, h) = σ(eik +
∑
i,j

vTW·ijkµijkgikhjk +
1

2

∑
i,j

α−1
ijk(v

TW·ijk)
2gikhjk) (2.26)

p(gik = 1|v, f, h) = σ(cik +
∑
j

vTW·ijkµijkhjkfk +
1

2

∑
j

α−1
ijk(v

TW·ijk)
2fk) (2.27)

2Contact has been made with one of the original authors regarding this, but so far he has neither
refuted nor confirmed this as a mistake.
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p(hjk = 1|v, g, h) = σ(djk +
∑
i

vTW·ijkµijkgikfk +
1

2

∑
i,j

α−1
ijk(v

TW·ijk)
2gikfk) (2.28)

The derivations of the above equations are all very similar, and all heavily dependent on

the trick used in equation 2.6. For p(gik = 1|v, f, h) the distribution can be demonstrated

by defining:

γi′k′ = ci′k′ +
∑
j

vTW·i′jk′µi′jk′hjk′f
′
k +

1

2

∑
j

α−1
i′jk′(v

TW·i′jk′)
2fk′ (2.29)

With β defined defined as the sum of all energy terms in Ê which do not have gik as

a factor. The notation γi′k′ is being used rather than αi′k′ in order to avoid confusion

with the precision tensor α. The results for p(gik = 1|v, f, h) and p(fk = 1|v, g, h) can

be found similarly.

Finally, the conditional distribution of the slab variables can be shown to be Gaussian:

p(sijk|v, f, g, h) =
1

p(s, h)

1

Z
exp(−E(v, s, f, g, h)

=
1

p(s, h)

1

Z ′
exp

(
− 1

2
αijks

2
ijk

+ (vTW·ijksijk + αijkµijksijk)fkgikhjk
)

=
1

p(s, h)

1

Z ′′
exp

(
−

(sijk − αijkW·ijksijk)2

2α2
ijk

)

= N
(

(α−1
ijkv

TW·ijk + µijk)fkgikhjk, α
−1
ijk)
)

(2.30)

2.7 Weights and Visualisation

When RBMs and their variants are used on images in the literature, a common method of

demonstrating properties of a trained model is the visualisation of that model’s weights.

The weight matrix, or tensor, describes the conditional relationships between the visible

variables and hidden ones. An advantage of this is that vectors from the matrix corre-

spond to patterns of activation of visible units within the model. As such, the weights
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can be visualised, and used to gain an insight into the kinds of features the model has

learnt. Furthermore, these features can be ranked by importance, with the features

corresponding to latent variables with higher activations being those with the greatest

influence on the generative process [16].

2.8 Chapter Summary

In this chapter the restricted Boltzmann machine has been introduced. Some general

background has been given regarding where the models fit in the field of representation,

as well as some detail given about MRFs in general, showing the mathematical under-

pinnings of the models. The structure of the restricted Boltzmann machine is described,

and three variants of the RBM have been introduced. The motiviation behind each

variant and the structure of each have been given, including several proofs relating to

the distributions of variables which have previously been omitted from the literature.



Chapter 3

Training Restricted Boltzmann

Machines

In the previous chapter, model parameters were introduced freely whenever they were

required. However, no effort was made to describe what values these parameters should

take. It is, in fact, the values of these parameters which determine the efficacy of the

model in capturing the distribution of the data. This chapter discusses the training of

restricted Boltzmann machines, that is, the process of finding values for these parameters

which lead to meaningful representations of the data.

3.1 Maximum Likelihood

The primary goal of training a model is to find a distribution for the model which closely

approximates the distribution from which the training data is sampled. A measure of

this difference is the Kullback-Leibler divergence (KL-divergence). If the training data

is from the distribution q and the model’s distribution is p, then the KL-divergence is

given by:

KL(q||p) =
∑
v

q(v) ln
q(x)

p(x)
=
∑
v

q(v) ln q(v)−
∑
v

q(v) ln p(v)), (3.1)

35



Chapter 3. Training Restricted Boltzmann Machines 36

where the sums are over all possible configurations of the visible variables, whilst marginal-

ising out the hidden ones. Since the first term in the sum is dependent only upon the

unknown distribution and not on the model, it can be disregarded [14]. This formu-

lation will become useful shortly, but for now an alternative, equivalent formulation is

considered: maximising log-likelihood.

Define θ as the set of all parameters for a given model and define V = v1, v2, . . . vl as

the set of training data for the model. The likelihood of the model given the data is a

function L : θ → R defined as:

L(θ|V ) =
l∏

i=1

p(vi|θ)

Generally, the log of this measure, the log-likelihood is used instead, this is given by

lnL(θ|S) = ln
l∏

i=1

p(vi|θ) =
l∑

i=1

ln p(vi|θ)

The log-likelihood is a measure of the how likely the model is to generate the training

data, it is therefore desireable that the parameters of the model be chosen in order to

maximise this function. Analytic solutions are rarely possible for complex datasets, and

therefore the usual approach to finding parameter values is the use of gradient ascent

on the log-likelihood [14] or equivalently gradient descent on the negative log-likelihood

[25].

3.2 Stochastic Gradient Ascent

Gradient ascent is an algorithm in which parameters are tuned by iteratively looking at

the gradients of some function (in this case the log-likelihood function) at the current

position in the parameter space, and changing the parameters by some amount, the

learning rate, in the direction of the greatest increase in gradient. Since the training set

can be very large, it would be costly to approximate the true log-likelihood gradient of
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the set at each iteration; a stochastic approach is usually used instead. Using stochastic

gradient ascent (SGA), the gradient is estimated using a small batch of examples from

the training distribution [26]. A version of the stochastic gradient ascent can be seen in

Algorithm 1.

It is worth noting that there are several useful modifications which can be made to SGA.

Within the scope of this project, it will be useful to note that the learning rate can be

a function of the number of iterations which have currently been performed rather than

a constant, which can allow the algorithm to avoid local minima in the initial stages,

whilst allowing finetuning once the region containing the true minimum is found [18].

Additional features, such as weight decay, which punishes large parameter values, and

momentum, which prevents some oscillations in parameter values by making the next

iteration dependent on the previous as well as the current one, will not be used in this

project, but are discussed in the context of RBMs in [14].

Algorithm 1: Sochastic Gradient Ascent

Input: Set of parameters θ, Set of training data V , Number of Iterations k,
Learning-rate η, Batch size n

Output: Updated parameters θ

for i in 1 . . . k do
Choose S,a set of n samples from V
foreach sample v from S do

θ ← θ + η ∂
∂θ (lnL(θ|x))

end

end
return θ

In order to apply this algorithm to a model, it is necessary to be able to calculate

∂
∂θ (lnL(θ|v)) for a given training example. Taking the restricted Boltzmann machine’s

energy function as an example, the log-likelihood of a single training sample v is given

by [14]:

lnL(θ|v) = ln(p(v|θ) = ln
1

Z

∑
h

e−E(v,h)

= ln

∑
h e
−E(v,h)∑

v,h e
−E(v,h)

= ln
∑
h

e−E(v,h) − ln
∑
v,h

e−E(v,h) (3.2)
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where
∑

h is the sum over all possible configurations for the hidden variables and
∑

v,h

is the sum over all configurations of hidden and visible variables. From this, derivatives

of the log-likelihood with respect to trained parameters can be found [14]:

∂ lnL(θ|v)

∂θ
=

∂

∂θ

(
ln
∑
h

e−E(v,h)

)
− ∂

∂θ

ln
∑
v,h

e−E(v,h)


= − 1∑

h e
−E(v,h)

∑
h

e−E(v,h)∂E(v, h)

∂θ

+
1∑

v,h e
−E(v,h)

∑
v,h

e−E(v,h)∂E(v, h)

∂θ

= −
∑
h

p(h|v)
∂E(v, h)

∂θ
+
∑
v,h

p(v, h)
∂E(v, h)

∂θ
(3.3)

An important observation gained from the above is that the derivative can be written

as the difference between two expectations: the expectation of ∂E(v,h)
∂θ under the dis-

tribution conditioned on v and the expectation of the same derivative under the model

distribution. These two expectations are referred to as the positive phase and the neg-

ative phase respectively [25]. During training, the first term increases the likelihood of

the model generating the training data, whilst the second term decreases the likelihood

under the model of samples that it generates [25].

Calculation of the derivatives of the energy function with respect to model parameters,

as required by Equation 3.3 turns out to be fairly easy. For the GRBM, the derivatives

were found in the literature, specifically in [20]:

∂E

∂Wij
=
vj
σ2
j

hi (3.4)

∂E

∂bj
=
vj − bj
σ2
j

(3.5)

∂E

∂ci
= −hi (3.6)

∂E

σj
= −

(
vj − bj
σj
√
σj

)2

+

(
2vj
σ3
j

)T
Wijhi (3.7)
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For the ssRBM, explicit calculations of the gradients could not be found in the literature.

The closest that could be found is [6], where the expectations for the positive phase terms

are given. Using these values to verify calculations, the derivatives are found to be:

∂E

∂Wij
= vjsihi (3.8)

∂E

∂Λj
=

1

2
v2
j (3.9)

∂E

∂bi
= hi (3.10)

∂E

∂αi
=

1

2
s2
i (3.11)

In this case, ∂E
∂Wij

and ∂E
∂αi

are vectors of the length of the slab vectors sk, or scalar values

in the case k = 1.

Finally the gradients of the positive phase in the directions of the parameters of the

hossRBM are given, these calculations do not appear in previous literature for the model.

∂E

∂ek
= fk +

∑
i,j

(
−vTW·ijksijk − αijkµijksijk +

1

2
αijkµ

2
ijk

)
gikhjk

∂E

∂cik
= gik +

∑
j

(
−vTW·ijksijk − αijkµijksijk +

1

2
αijkµ

2
ijk

)
fkhjk

∂E

∂djk
= djk +

∑
i

(
−vTW·ijksijk − αijkµijksijk +

1

2
αijkµ

2
ijk

)
fkgik

∂E

∂Λi
=

1

2
v2
i

∂E

∂αijk
=

1

2
s2
ijk + (−µijksijk +

1

2
µ2
ijk)gikhjkfk

∂E

∂µijk
= (−αijksijk + αijkµijk)gikhjkfk

∂E

∂Wlijk
= −vlsijkgikhjkfk
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The difficulty which emerges when computing the gradient of the log-likelihood is not

in any of the above calculations, the difficulty is that in the current form Equation 3.3

requires the computation of each of these terms for every possible configuration of the

model.

3.3 Positive Phase of GRBM and ssRBM

At first the calculation of the expection for the positive phase of GRBM and ssRBM

may seem problematic. For an arbitrary parameter θ the term for the positive phase is:

∑
h

p(h|v)
∂E(v, h)

∂θ
(3.12)

This appears to require the summing over all possible configurations of hidden variables,

or worse for continuous variables, where it is possible for each variable to take infinitely

many values. Fortunately, it is possible to greatly simplify this calculation.

Using the notation used in [14] and the derivations from [20], the positive phase for the

derivative with respect to Wij becomes:

∑
h

p(h|v)
∂E

∂Wij
=
∑
h

p(h|v)
hivj
σ2

=
∑
h

n∏
k=1

p(hk|v)
hivj
σ2
j

=
∑
h

∑
h−1

p(hi|v)p(h−i|v)
hivj
σ2
j

=
∑
hi

p(hi|v)
hivj
σ2
j

= p(hi = 1|v)
vj
σ2
j

(3.13)
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where
∑

h−i
is the sum over all configurations of the set of hidden variables less the

variable hi. For bj and ci the derivatives are even simpler using the same trick to

eliminate all terms which do not share the index to compute:

∑
h

p(h|v)
∂E

∂bj
=
∑
h

p(h|v)
vj − bj
σ2
j

=
vj − bj
σ2
j

and

∑
h

p(h|v)
∂E

∂ci
= −

∑
h

p(h|v)hi

= −
∑
hi

p(hi|v)hi

= p(hi = 1|v) (3.14)

Finally, the derivative with respect to σj is also amenable to simplification.

∑
h

p(h|v)
∂E

∂σj
=
∑
h

p(h|v)

(
vj − bj
σj
√
σj

)
+
∑
h

p(h|v)Wijhi

=

(
vj − bj
σj
√
σj

)
+ p(hi = 1|v)Wij (3.15)

Applying the same technique to the positive phase of the gradient function of the ssRBM

is also possible, but slightly more complicated. The results below are stated without
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proof in [6].

∫
s

∑
h

p(h, s|v)
∂E

∂bi
ds =

∫
s

∑
h

p(s|h, v)hids

=
∑
h−i

p(h−i|v)
∑
hi

p(hi|v)hi

∫
s
p(s|h, v)hids

=
∑
hi

p(hi|v)hi

∫
s
p(s|hi, v)ds

= p(hi = 1|v)

∫
s
p(s|hi, v)ds

= p(hi = 1|v) (3.16)

For the derivative in the direction of Λj , the derivative is independent of both s and h,

giving:

∫
s

∑
h

p(h, s|v)
∂E

∂Λj
=

∫
s

∑
h

p(h, s|v)
1

2
v2
j

=
∑
h

p(h|v)

∫
s
p(s|h, v)

1

2
v2
jds

=
∑
h

p(h|v)
1

2
v2
j

=
1

2
v2
j (3.17)

Due to the dependence of ∂E
∂Wij

on both s and h, the calculation is slightly more difficult.

∫
s

∑
h

p(h, s|v)
∂E

∂Wij
ds =

∫
s

∑
h

p(h, s|v)vjsihids

= vj
∑
h

p(h|v)hi

∫
s
p(s|v, h)sids

= vj
∑
hi

p(hi|v)hu

∫
si

p(si|v, hi)sidsi

= vjp(hi = 1|v)

∫
si

p(si|v, hi = 1)sidsi

= vjp(hi = 1|v)α−1W T
i v (3.18)
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The last line of the proof above comes from the fact that the integral will be evaluated

as the mean of the distribution of s, which is known from 2.15 to be hiα
−1
i W T

i v.

Finally, the explicit calculation for the positive phase of the gradient function with

respect to α is given. This does not appear at all in the literature, but an attempt at

derviing the gradient is given here 1.

∫
s

∑
h

p(h, s|v)
∂E

∂αi
=

∫
s

∑
h

p(s, h|v)
1

2
s2
i ds

=
∑
h

p(h|v)

∫
s
p(s|h, v)

1

2
s2
i ds

=
∑
h

p(h|v)

∫
s
p(s|v, h)

1

2
s2
i ds

=
∑
h

p(h|v)

(∫
si

p(si|v, h)
1

2
s2
i ds

)

=
∑
h

p(h|v)

∫
si

s2
i

exp
(

(si−µ)2

2σ2

)
σ
√

2π
dsi


=
∑
h

p(h|v)

(
1

σ
√

2π

∫
u
(
√

2σu+ µ)2e−u
2
du

)

=
∑
h

p(h|v)

(
1

σ
√

2π

∫
u

2σ2u2e−u
2
du+

1

σ
√

2π

∫
u

2
√

2σuµe−u
2
du

+
1

σ
√

2π

∫
u
µ2e−u

2
du

)

=
∑
h

p(h|v)

(
2σ2

σ
√

2π

[
1

4

√
πerf(u)− 1

2
e−u

2

]∞
−∞

+
2
√

2σµ

σ
√

2π

[
1

2
e−u

2

]∞
−∞

+
2σ2

σ
√

2π

[√
π

2
erf(u)

]∞
−∞

)
em =

∑
h

p(h|v)

( √
π

σ
√

2

[
(σ2 + µ2)erf(u)

]∞
−∞ +

[
1√
2

(
√

2µ+ σu)e−u
2

]∞
−∞

)
1In the original ssRBM paper [6] the parameter α is given a fixed value, the alpha parameter is

allowed to vary in [24], but no calculations of the gradient are given



Chapter 3. Training Restricted Boltzmann Machines 44

=
∑
h

p(h|v)

√
π√
2σ

(µ2 + σ2)

=
∑
h

p(h|v)

√
π√

2α−1
i

((hiα
−1
i W T

i v)2 + α−2
i )

= p(hi|v)

√
π

2
α−1
i W T

i vv
TWi +

√
π

2
α−1
i (3.19)

where µ and σ are the mean and standard deviation of the normal distribution defined

for p(s|v, h) given in 2.15 and u = si−µ
σ . The evaluation of the above integral was done

using a table of standard integration results [27], with erf(x) being the error function,

defined as

erf(x) =
2√
π

∫ x

0
e−t

2
dt.

3.4 Positive Phase for hossRBM

The calculation of the negative phase of the gradient has now been discussed for all

the relevant models. However, a complication exists within the positive phase for the

gradient of the log-likelihood for the hossRBM model. The form of the positive phase

for a generic parameter θ is:

−
∑
f,g,h

∫
s
p(f, g, h, s|v)

∂E(v, s, f, g, h)

∂θ
ds (3.20)

Due to the interactions of the slab variables in the energy function, attempts to compute

p(f, g, h, s|v) will require the computation p(f |v), p(g|v) or p(h|v) 2. Any attempts at

computation of any of these terms will involve the summing over all possible configura-

tions of the two other spike variables. As such, the computation is intractable, and a

different approach must be taken.

2Assuming that s has already been marginalised out
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The approach chosen in [2] is to assume that the joint conditional distribution p(f, g, h|v)

can in fact be approximate by a distribution in which f , g and h are conditionally

independent given v. This method is known as mean-field approximation, and is another

strategy taken from the physics, particularly, statistical mechanics [28], and has been

shown to be very successful for use in deeper graphical models [29].

The idea is that the joint conditional distribution p(f, g, h|v) can be approximated by

some functionQv(f, g, h) = Qv(f)Qv(g)Qv(h). The KL-divergenceKL(Qv(f, g, h)||p(f, g, h|v)

is used to give a measurement of the quantity to be minimised. This gives the desired

distribution as:

maxL(Qv) = max
Qv

∑
f,g,h

Qv(f)Qv(g)Qv(h) log

(
p(f, g, h|v)

Qv(f)Qv(g)Qv(h)

)

This can be found by using the conditional distributions p(f |g, h, v), p(g|f, h, v) and

p(h|f, g, v) to form a set of fixed point equations, which are iterated over until a station-

ary point is reached:

f̂k = σ(eik +
∑
i,j

vTW.ijkµijkĝikĥjk +
1

2

∑
i,j

α−1
ijk(v

TW.ijk)
2ĝikĥjk) (3.21)

ĝik = σ(cik +
∑
i,j

vTW.ijkµijkf̂kĥjk +
1

2

∑
i,j

α−1
ijk(v

TW.ijk)
2f̂kĥjk) (3.22)

ĥjk = σ(dik +
∑
i,j

vTW.ijkµijkĝikf̂k +
1

2

∑
i,j

α−1
ijk(v

TW.ijk)
2f̂kĥjk) (3.23)

Assuming the absence of significant local maxima, the stationary points will correspond

to the distribution with minimum distance from the desired distribution [3].

3.5 Gibbs Sampling

The ability to obtain unbiased samples from the model distribution is key when comput-

ing the negative phase of the log-likelihood gradient. This task is accomplished with the
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use of Gibbs Sampling, a technique which makes it possible to sample from the model’s

distribution without having to explicitly calculate the distribution’s density [30].

This section closely follows the material found in [14], although attempts have been

made to include additional commentary where it is constructive to do so. In particular,

a brief discussion will be presented at the end of this section about the application of

Gibbs Sampling to RBMs, in contrast with the far more general context of the original

paper. Additionally, since this section relies heavily on the use of Markov chains, a

primer on the subject is contained in Appendix B.

Let X = {X1, . . . XN} be an MRF on a graph G = (V,E). For convenience each

random variable takes values from the same finite state space Λ. Let the joint probability

distribution be defined as π(x) = 1
Z e
−E(x). A Markov chain Y = {X(k)|k ∈ N} can be

constructed, taking values in Ω = ΛN , with X(k) = (X
(k)
1 , . . . , X

(k)
N ) being the state of

the MRF at time k.

In order to define the transition probabilities for the chain, an arbitrary strictly positive

distribution q on V is first defined, with q(i) being the probability of selecting the

variable Xi for 1 ≤ i ≤ N . The new value for the chosen variable is sampled from the

conditional distribution of the variable given the states of all the other variables in the

current configuration. This gives the transition probability between two states x,y of

the MRF Y as:

pxy =


q(i)π(yi|(xv)v∈V \i) if ∃i ∈ V so thatv 6= i⇒ xv = yv

0 otherwise

It can be shown that π is the stationary distribution of the MRF. This is done by showing

that the detailed balance condition holds for the distribution. If x = y then the detailed

balance condition trivially holds. If x and y differ by more than one variable in X then

pxy = pyx = 0 and once again the detailed balance condition trivially holds. Finally, the

case that x and y differ by a single variable is considered. For some i let xj = yj and

xi 6= yi and for all j 6= i. In this case it holds that
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π(x)pxy = π(x)q(i)π(yi|(xv)v∈V \i)

= π(xi, (xv)v∈V \i)q(i)
π(yi, (xv)v∈V \i)

π((xv)v∈V \i)

= π(yi, (xv)v∈V \i)q(i)
π(xi, (xv)v∈V \i)

π((xv)v∈V \i)

= π(y)q(i)π(xi|(xv)v∈V \i)

= π(y)pyx. (3.24)

Hence the detailed balance condition holds. In order to show that π is the unique

stationary distribution of the model, all that remains is to show that the Markov chain

is both irreducible and aperiodic. Aperiodicity simply comes from the fact that pxx > 0

for all possible states. Since π is the distribution of an MRF it is of the form e−E(X),

and therefore is strictly positive. A necessary condition for this is that the distribution

of each variable in the MRF is also strictly positive. The probability of a variable Xi

reaching state xi in a single transition is non-zero, and therefore any state can be reached

with N steps, giving irreducibility.

A couple of important amendments to Gibbs sampling as defined above must be made

before it is ready to be used in the training of RBMs. Firstly, in practice the variable

to be updated is not selected at random, but instead the variables are updated in a

prefined sequence. This is not a problem, as long as all variable are included in the

sequence. Secondly, it is very common for several conditionally independent variables to

be updated in parallel. In particular the hidden variables of the RBM are all updated

in parallel, as are the visible ones. This modificiation is known as block Gibbs sampling

As discussed in the previous chapter, the energy function for the ssRBM is actually

a truncated Gaussian, rather than a full Gaussian as is the case for visible variables

in the GRBM [6]. In order to implement this rejection sampling is used. In rejection

sampling, a sample is drawn from the full Gaussian described by the energy function,

but is accepted as a valid sample if and only v is contained with the bounded domain,
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otherwise another sample is drawn from the distribution. This process is repeated until

a sample from within the bounds is drawn.

The introduction of spike and slab variables complicates the process of Gibbs sampling

due to the introduction of another set of variables. However, it is still amenable to Gibbs

sampling if the distributions p(h|v), p(s|v, h) and p(v|s, h) are used[6], in this case the

structure of the k-step Gibbs chain is:

h0 ∼ p(h|v0)

s0 ∼ p(s|v0, h0)

v1 ∼ p(v|s0, h0)

. . .

vk ∼ p(v|sk−1, hk−1)

hk ∼ p(h|vk)

sk ∼ p(s|vk, hk)

where v0 is a sample taken from training data. The negative phase of the hossRBM is

also amenable to Gibbs sampling, with the Gibbs chain taking a similar form to that of

the ssRBM, sampling from p(f |v, g, h), p(g|v, f, h), p(h|v, f, g), p(s|v, g, f, h) and finally

p(v|f, g, h, s). The initial value for the visible variables v0 is taken from training data as

before, and f0,g0 and h0 taken at random [31].

3.6 Contrastive Divergence

In order to approximate sampling from the model distribution with great accuracy using

Gibbs sampling requires a large number of steps for the distribution of the chain to

converge to that of the model. However, in order to make it possible to train the model

in a reasonable amount of time, Contrastive Divergence (CD) is often used.
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In contrastive divergence the second term of the log-likelihood gradient is approximated

by running a short Gibbs chain from a training sample. In particular, for k-step con-

trastive divergence (CD-k) a Gibbs chain is initialised from a training example v(0), then

for each step t from 1 to k h(t) is sampled from the conditional distribution p(h|v(t)

then v(t+1) is sampled from p(v|h(t+1)) [14]. Using Equation 3.3 and p(v|h(t+1)) as an

approximation of the probability of v under the model distribution, CDk(θ, v
(0)), and

approximation of ∂ lnL(θ|v)
∂θ is obtained as:

CDk(θ, v
(0)) = −

∑
h

p(h|v(0))
∂E(v(0), h)

∂θ
+
∑
h

p(h|v(k))
∂E(v(k), h)

∂θ
(3.25)

The derivatives in the direction of a given parameter can be estimated by the derivative

of that parameter with respect to a single example, or a small batch of examples.

The algorithm for k-step Contrastive Divergence (CD-k) applied to a GRBM is shown

in Algorithm 2. This algorithm closely follows the algorithm presented in [14], but is

applied to the GRBM instead of the RBM, in order to make it more relevant to the

models in this project.

It is important to note that the samples gained from contrastive divergence are not truly

samples from the stationary distribution of the model. This is due to the fact that using

contrastive divergence does not maximise the likelihood of the data under the model,

but instead maximises the difference between the two KL-divergences [14]:

KL(q|p)−KL(pk|p)

This is not a problem when k is large, as in this case KL(pk|p)→ 0 [14]. However, even

for small values of k it has been found that contrastive divergence leads to reasonable

approximations [14, 20].
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Algorithm 2: k-step Contrastive Divergence.

Input: v1, v2, . . . vm, h1, h2 . . . hn, training data batch B, Number of steps k
Output: Estimates of the gradient in direction of model parameter

∆Wij ,∆bj ,∆ci,∆σj 1 ≤ i ≤ n, 1 ≤ j ≤ m
init ∆Wij ,∆bj ,∆ci for all i,j for v ∈ B do

v(0) ← v
for t = 0 to k − 1 do

for i = 0 to n do

sample h
(t)
i ∼ p(hi|v(t))

end
for j = 0 to m do

sample v
(t+1)
j ∼ p(vh|h(t))

end

end
for i = 1 to n, j = 1 to m do

∆Wij ← ∆wij + p(hi = 1|v(0))v
(0)
j − p(hi = 1|v(k))v

(k)
j

∆bj ← ∆bj + v
(0)
j − v

(k)
j

∆ci ← ∆ci + p(hi = 1|v(0))− p(hi = 1|v(k))

∆σj ← ∆σj +
v
(0)
j

σj
√
σj

+ p(hi = 1|v(0)
j )−+

v
(k)
j

σj
√
σj
− p(hi = 1|v(k)

j )

/* Since the θ parameter updates are inter-dependent with the

updates of other parameters, these updates must be done in

parallel. This is not the case for the RBM. */

end

end
return ∆wij ,∆ci,∆bj , σj for 1 ≤ i ≤ n, 1 ≤ j ≤ m

In many cases k = 1 is sufficient to train a model well [17]. In [14] it is demonstrated

that the maximum of the log-likelihood of the training data over many iterations of

gradient ascent is improved by increasing k, but the rate of improvement in the early

stages of training is comparable. Care should be taken when drawing conclusions from

this, however, monitoring the progress of the training of a model using log-likelihood

can be problematic [18].

A potential modification to the way contrastive divergence is used is to store the final

states of the chains used to compute the gradient, then use those states as the initial

states for the contrastive divergence subroutine in the next iteration of the stochastic

gradient ascent algorithm. This technique is known as persistent contrastive divergence

[32], and is a technique which will be utilised by the implementations of models used

for experiments later on. The use of this model can be problematic, as using the output
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which persists from the previous chain approximates sampling from the previous models

distribution, not the updates one. For this reason, it is important to use a reduced

learning rate when using PCD, as this increases the likelihood that high-probability

states in one iteration will remain high-probability in the next [32]

3.7 Sparsity

In the literature, sparsity constraints are used on a variety of RBMs and RBM like models

[18, 33]. These contraints are designed to ensure that the expected values of binary latent

variables are very small, i.e., the average probability of a latent variable being activated

by an input is close to zero. In order to accomplish this, a small probability known as

a sparsity target is chosen, with the goal of having the probability of activation of each

hidden unit being close to the sparsity target[18].

This penality is formulated as the negative cross entropy between the desired activation

probability q and the actual activation probability of the current model p [18]:

Sparsity Penalty = A(q log p+ (1− q) log(1− p)),

where A is the sparsity weight, a hyperparameter which decides the relative impacts of

the log-likelihood and sparsity costs in the training of the model. Explicit computation

of p would be very costly, so an alternative approach is used, p can be estimated by

using the mean activation of hidden units based on the current batch used in the SGA

algorithm [31]. In order to train a model with a sparsity target, a sparsity penality is

introduced in a weighted sum with the log-likelihood to the function being maximised

by the gradient ascent [33]. In this way, the function being maximised becomes:

l∑
i=1

ln p(vi|θ) +A

 1

N

N∑
j=1

(q

l∑
i=1

ln(p(hi|vl)) + (1− q)
l∑

i=1

(1− p(hi|vl))

 , (3.26)

For a model with l training examples, parameters θ and N hidden variables.
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Setting sparsity targets can in some cases serve the opposite purpose to that discussed

above. In cases where the problem is that most units are inactive the majority of the

time, it can be advantageous to set a high sparsity target, perhaps around 0.5. Setting

such a target encourages more hidden units to be active for a typical input [18].

3.8 Regularisation

Another modification that can be made to the cost function is the addition of a regu-

larisation term. The purpose of regularisation is to punish large weights in the weight

matrix, and therefore encourage a greater uniformity of weight values [35]. The use of

regularisation can have a significant impact on the quality of the learnt representation

of a model[36]. There are two type of regularisation that can be applied, L1 and L2.

The penalties used in each case are defined as :

L1 =
∑
i

|θi|

L2 =
∑
i

θ2
i (3.27)

Where i indexes all weight parameters to which the regularisation applied. The key

difference between the two kinds of regularisation is that L2 issues a far greater punish-

ment to large values weight parameters. whilst punishing small values less. In practice,

this difference causes L1 regularisation to lead to the model learning filters which are

far more localised in the visible domain, especially when the number of latent variables

is large; L2 regularisation leads to less localised, but smoother features [35]

Like the sparsity penalty of the previous section, the regularisation penalties from a

weighted sum with the log-likelihood, of the form AL1 + BL2 + lnL(θ|S), which serves

as a new cost function to be optimised with SGA, with A and B being referred to as

the L1 and L2 regularisation penalties respectively.
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3.9 Chapter Summary

This chapter has covered the details of training restricted Boltzmann machines. Firstly,

the goal of training, the learning of the distribution of the training data, was described,

motivating a discussion of log-likelihood. The method of stochastic gradient ascent was

introuduced, with a demonstration of how this can be applied to the models discussed

in the previous chapter. The problem of calculating the gradient terms for the various

models was discussed, motivating the introduction of Gibbs sampling in order to obtain

unbiased samples from the models distribution. Finally, the concepts of sparsity and

regularisation were introduced, along with how these terms fit into the training process.



Chapter 4

Implementation

This chapter provides a brief discussion of the technologies used in the experiments

carried out during this project. The main technologies used in the implementation are

discussed, in increasing level of abstraction. The classifier used in classification problems

within the proect is also discussed.

4.1 Model Implementation

The implementations of ssRBM and hossRBM models used in this project are the imple-

mentations released to accompany the original paper on the hossRBM [2, 31]. For the

GRBM, the implementation which exists within Pylearn2 and the code accompanying

the hossRBM were both considered and tested in the early stages of this project. It

was decided to use the latter, as it was thought it would be easier to make like-for-like

comparisons between models.

In both available implementations of the GRBM, there is no parameter for the mean of

the visible variables. This is similar in some ways to [39], where the σ parameters are

removed from the model, with the caveat added in the text that the energy function

assumes a unit variance on all dimensions of the data. Similarly, if the data is pre-

processed in order to get a zero mean, then the energy function will prove adequate.

54
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One key difference between the hossRBM as described in Chapter 3 and the model

implemented in the code is the removal of f variables gating the interactions between

the blocks. In the case where only a single f block exists, the two models are equivalent,

since the binary f variable would learn to be active with a probability of one for all

inputs. For models with a larger number of blocks, this difference means that the

implementation can be thought of as having all f variables permanently set to be on.

It is argued that these variables are somewhat unnecessary [40], presumably because

the representational power which being able to turn off and on whole blocks is minor

compared to that given by the control of all variables within the blocks.

4.2 Pylearn2 and Theano

The implementations used in this project are highly dependent upon Pylearn2 [41] and

Theano [42]. For this reason, the key features of both are briefly described.

Pylearn2 is a machine learning research library, designed to be used in a wide variety of

experiments in the field. In the Pylearn2 framework, the model, data and training algo-

rithm are all python objects. Experimental configurations are created in a YAML file,

in which the objects are declared, along with any initialisation arguments they require.

This leads to a system where learning algorithms can be thought of as consisting of a

set of components, which can easily be interchanged or modified between experiments

[41].

Theano is a python library used to compile and evaluate mathematical functions and is

used for a lot of the computations in training the model. Of particular importance for

the models in this project, is the ability of theano to perform symbolic diffferentiation

and compile the resulting expression into an executable function which can be called by

the code within a machine learning model. Using this to compute the gradients of log-

likelihood function for energy-based models leads to simpler code; in [42] it is described

as “ combin[ing] the convenience of numpy sytax with the speed of optimized native

machine language” .
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4.3 SVM Implementation

For the linear classifier linearSVC is used from scikit-Learn[43]. linearSVC is an imple-

mentation of a linear Support Vector Machine(SVM), which can be applied to multi-label

data. It uses a one-vs-rest classification, where for each possible label a two-class SVM

is trained using with datat with that label being in the positive class, and the rest in

the negative class. In order to classify an example, it is scored by each classifier, and

is predicted to belong to the class whose classifier shows the most confidence that the

example belongs in that class.

Some problems were encountered with non-deterministic behaviour within the classifier,

with two classifiers trained on exactly the same data giving slightly different results.

These differences were often with a percentage point, but could occaisonally be more

extreme. In accordance with the documentation for the LinearSVC module [43], the

tolerance, the criterion used to determine when to terminate the training of the model,

was reduced by an order of magnitude from 10−4 to 10−5.



Chapter 5

Experiments on Facial Images

This chapter is concerned with experiments carried out during the course of this project.

The dataset used is introduced, and a general methodology for experiments is laid out.

The findings made during the process of carrying out the experiments are described,

and the data collected during the experiments is displayed.

5.1 Image Dataset

The dataset chosen for the experiments in this project is the Facial Recognition 2013

(FER-2013) dataset [1]. The dataset consists of 35,887 greyscale images of human faces.

Each image is 48x48 pixels and is labelled with one of seven categories corresponding to

the facial expression of its subject. These labels are: 0 = Angry, 1 = Disgust, 2 = Fear,

3 = Happy, 4 = Sad, 5 = Surprise, 6 = Neutral. Tests conducted by the compilers of the

dataset have put human accuracy at identifying the facial expressions of the subjects at

65±5%

The dataset is of a similar format to the Toronto Face Dataset (TFD), a dataset fre-

quently used for experiments in the literature [2, 9, 44]. However, the method of collect-

ing the data is significantly different. Whereas the TFD is constructed by aggregating

images from smaller datasets, most of which are created from images taken under ideal
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conditions, the FER-2013 dataset is constructed using Google’s image search API, using

facial images found using keywords relating to each emotion (e.g. “enraged” for anger),

examples of images for facial expression are shown in Figure 5.1. The TFD dataset is

therefore more highly structured, containing multiple images of the same person un-

der different conditions; this structure is potentially useful in both the unsupervised

and supervised stages of the classification task, and therefore higher accuracy might be

expected from the TFD than the FER-2013.

Limited preprocessing was done on to the dataset. Scaling was applied to each pixel

so as to give the training data a standard deviation of one. The choice to scale each

pixel has a couple of advantages. Firstly, it means that the standard deviation of the

data is uniform, meaning that the speed that the weights in the model corresponding

to each visible variable train at the same speed. Secondly, it gives an easy way to select

what the initial values for the parameters measuring precision of the visible variables

should be, and makes it easy to see that something is going wrong in the model if these

parameters are learnt to be significantly different from these values. The pixel values for

each image are also shifted, so that the mean value for each pixel in over the training

set is zero. This is necessary, since the GRBM implementations used in the experiments

are not capable of learning the mean of individual pixels [31].

For the experiments, the dataset was split into three smaller sets: the training set,

consisting of 28,709 images; the validation set, consisting of 3,589 images and the test

set, also consisting of 3,589 images. The size chosen for these sets is the same as the size

originially chosen for the competition for which the dataset was originally published. A

validation set is used instead of using cross validation, since the amount of time required

to train models is prohibitive, and the size of the training set is sufficiently large that

the loss of some samples for use in a validation set should not be problematic.
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Figure 5.1: Examples of images taken from the facial image data set [1]. From top
to bottom: Anger, Disgust, Fear, Happy, Sad, Surprise, Neurtal.

5.2 Methodology

A common problem, especially in the cases of ssRBM and hossRBM models is that the

majority of the parameter space leads to models in which weight values tend rapidly

towards infinity. In order to counter this for simpler RBM models, it can be sufficient

to simply decrease the learning rate [18]. However, significantly more exploration of the

parameter space was required for the more complex models. The restrictions, compro-

mises and additional constraints for each model will be discussed in individual sections.

The general strategy adopted for the experiments was to find suitable values for hyper-

parameters using visual inspection of the filters learnt by each model. Where a relatively

broad range is found, the most appropriate value is decided by training multiple models
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using different values and testing their classification accuracy on the validation set.

Classification is done using a multi-class support vector machine (SVM). As well as the

tolerance parameter discussed in the previous chapter, the classifier also has a penalty

parameter, C, which decides the penalty in the SVM’s cost function for incorrect clas-

sifications. Whilst it would be possible to use the validation set again here to find

the optimum value of this parameter, it was decided that this is unnecessary, or even

counter-productive. This is because the aim of experiments in this project is to measure

the effectiveness of unsupervised models in improving classification accuracy with a lin-

ear classifier, not just improving classification accuracy as much as possible. Increasing

the complexity of the classification step itself does little to help achieve this goal.

Confidence intervals for classifier accuracy will be calculated under the assumption that

each test sample is independent, and in line with the methods described in Appendix A.

The number of iterations for which the the gradient ascent algorithm is run is a very

important decision in training a model. It was decided that each model would be trained

for 50,000 iterations of the gradient descent algorithm, divided into epochs of 1,000 steps,

when monitoring statistics will be collected. This number of iterations is within the range

of iterations used in the literature [6, 20] and should allow the models enough time to

learn the structure of the dataset whilst low enough that the amount of time to train a

model is not too prohibitive 1

Another decision which was made was to have the learning rate decrease linearly with

each epoch, ending an order of magnitude lower than its original value. The reasoning

behind this, inspired by [18], is that the large learning rate in the earlier stages allows

the model to avoid local minima in the vicinity of the initial values of parameters, whilst

decreasing later on allows the model to fit more snugly in the minimum in which it finds

itself.

1 Depending on the model and number of hidden variables, experiments performed in this project
took anywhere between two and twenty hours to run
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5.3 Raw Pixel Representation

One of the primary purposes of many unsupervised learning techniques, including the

ones examined in this project, is to serve as a form of preprocessing for data in supervised

learning tasks [3]. As such, for a representation to be truly useful it must serve as a

more effective input to a classification model than the raw pixel representation. In order

to find this benchmark, the classifier was trained and tested using this representation.

Training a multiclass support vector machine on the raw pixel representation of the

training data provides a model with an accuracy of 33.0% ± 0.7 on the training data

and 27.0% ±1.4 on the test data, the discrepancy being due to the model overfitting

the data. It should be noted that both these figures are significantly better than chance

(14.3%), but well below the human benchmark of 65.5% ± 5.

5.4 Experiments using GRBMs

Preliminary Experiments

An interesting phenomenon observed when training GRBMs, is the tendancy for a large

number of weights to get stuck in a relative noisy state, as shown in figure 5.2. Using a

model which has learnt these filters for the purposes of classification leads to relatively

poor results, only just better than chance. Several possible causes to this were explored.

Ideally, classification accuracy on the validation set would be used for each of the models

trained in this preliminary investigation, however, this option proved to be too time-

consuming to be practical. In many cases the quality of the filters learnt by the model

are clear from visual inspection alone, with noisy unstructured filters clearly indicating

a poor representation; for such cases no classifiers were trained.

The first thing which was attempted was to increase the initial learning rate. The idea

being that the reluctance of the model to leave these noisy filters was due to them being

contained within local minima of the cost function. If this was the case, then increasing
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Figure 5.2: Examples of weights learnt by an GRBM with 500 hidden units

the learning rate at the beginning of training would make it more likely that the model

would be able to leave these minima in order to find a better configuration closer to the

global minimum. However, these attempts proved to be in vain, as such models would

produce models which were either qualitively very similar, or within which the weights

would explode off to infinity, rendering the model useless. Interestingly, the difference

between a learning rate leading to a good representation and one in which the weights

exploded appears to be very small. In the experiments carried out for this project, a

learning rate of 0.001 would lead to a reasonably successful model, whereas a learning

rate of 0.002 would return an error after less than one epoch.
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In accordance with the advice given in [18], the weight matrix is initialised from a

zero-mean normal distribution with a small standard deviation. Initially, a standard

deviation of 0.1 was used. However, the results achieved with a standard distribution of

0.01 appeared to be far less noisy, giving filters that appear cleaner and more structured.

The one hyper-parameter which was not changed is the initialisation of the variances.

This is because there is a good justification for setting this to a specific value. Since

the precision parameters describe the approximate precision of the inputs in a given

dimension, and the dataset has unit precision in each direction, it is logical to set these

parameters to initially be one.

Introducing a regularisation term proved to yield interesting results. Using L1 regulari-

sation on the weight matrix produced the filters shown in Figure 5.3. In some ways this

matrix looks like it provides a poorer set of filters to learn representations of the data,

with less clearly defined facial structures. However the filters are also a lot smoother,

and appear to deal with more localised structures within the image space. This is in

line with the results of L1 regularisation found in [35]. L2 regularisation was also tried,

demonstrating similar quality filters for small values of the regularisation penalty, how-

ever, neither kind of regularisation encouraged more filters to contain useful structure,

and so did not provide a solution to the problem.

A wide variety of values for the initial bias terms for the hidden variables were tried.

Positive or zero values initial values would cause the model to learn minimal structure.

Large negative values also generate filters with no discernable structure. Some success

was achieved with fairly small negative values. The filters learnt with initial h of -5

and -10 both looked promising, the first being noisier, but with a greater number of

filters showing meaningful structure than the prior (An attempt to show the difference

can be seen in Figure 5.4). A large portion of the filters still show little structure, but

this number is reduced. In order to determine which configuration to use for the main

experiment, both options were used to train a model and a classifier trained on the

validation set for each. The results are shown in Table 5.1; based on these results, the

initial biases for the hidden units in further experiments was chosen to be −10
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Initial h values Training Set Validation Set

-5 31.9%± 0.6 28.1%± 1.5
-7.5 29.1% ± 0.5 26.6% ±1.4
-10 35.6%± 0.6 33.4%± 1.5

Table 5.1: Table showing the classification accuracy of GRBMs with different initial
bias values for hidden units

L1 Regularisation L2 Regularisation

Regulaisation Penalty Training Set Validation Set Training Set Validation Set

0 31.9%± 0.6 28.1%± 1.5 31.9%± 0.6 28.1%± 1.5
0.001 21.8 % ± 0.5 22.4 % ± 1.5 23.9%± 0.5 24.2%± 1.5
0.01 25.4 % ± 0.5 25.2 % ± 1.5 17.3% ± 0.5 16,8% ±1.4

Table 5.2: Table showing the classification accuracy of GRBMs with different amounts
of L1 and L2 regularisation applied

Number of hidden units Training Set Test Set

500 30.5%± 0.5 27.4%± 1.5
1000 39.6% ± 0.7 34.5 % ±1.6
1500 42.1% ± 0.7 32.5% ±1.5
2000 30.2% ± 0.5 27.8% ±1.5

Table 5.3: Table showing the classification accuracy of GRBMs with different numbers
of hidden units

Having established a suitable set of hyper-parameters, L1 and L2 regularisation was

attempted again, to see if their ability to produce smoother filters (as has been demon-

strated in [35]) would have a beneficial effect on classification accuracy on the vaidation

set. The results of these experiments can be seen in Table 5.2, based on these results, it

was decided not to use regularisation for the main experiment.

GRBM Main Experiment

Having established a suitable set of hyper-parameters, different numbers of hidden units

were experimented with, this time using the test dataset. The results can be seen in

Table 5.3.

Since in all cases tested for the GRBM the dimensionality of the learnt representation

has been less than the dimensionality of the raw pixel representation, GRBM can be

considered to have been used as a method of dimensionality reduction. As such, it is

interesting to compare the classification accuracies found against classification accuracies
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Figure 5.3: Examples of weights learnt by an GRBM with 500 hidden units and an
L2 regularisation penalty

which are achieved using PCA on the raw pixel representation. This data can be found

in Table 5.4. There is no clear winner in the comparison, with both achieving significance

over the other in some cases. However, it is possible that with better hyperparameters

(ones for which training results in all filters showing meaningful structure), that the

classification accuracy of GRBM could be greatly improved.
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Figure 5.4: Examples of filters learnt by two GRBMs with different initialisation of
biases for hidden units. Left: -5, Right: -10

Number of Dimensions Training Set Test Set

500 34.9%± 0.7 32.1% ±1.5
1000 34.1% ± 0.7 30.4 % ± 1.5
1500 35.2 % ± 0.7 30.1% ± 1.5
2000 36.9 % ± 0.7 27.8% ± 1.5

Table 5.4: Table showing the classification accuracy of SVM on PCA data (retaining
dimensions containing the most variance)

5.5 Experiments Using ssRBMs

Preliminary Experiments

Finding suitable hyper-parameters for the ssRBM proved to be an extremely difficult

task. Many different sets of parameters were attempted before any model was found

which successfully learnt any meaningful filters at all. The primary problems were that
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moderate to large values of the learning rate would cause the model to find extreme

difference in gradient, thus causing the weight values to explode, i.e., grow exponentially

quickly and rapidly produce ’nan‘ errors; conversely, small learning rates would fail to

learn any interesting features at all, similar to the problems encountered with using the

GRBM in [45].

In order to prevent a weight explosion, many configurations of initial conditions were

tried with a very small learning rate (i.e. 10−6 to 10−7). This prevented the weights

from exploding in all cases, however, it became clear that such a low learning rate was

preventing meaningful filters from being learnt.

Eventually, with some expert advice [40], a successful configuration was found. The

most important hyper-parameters appear to be the initial size of elements the precision

matrix α. The key with these value seems to be that they need to be very large, severely

punishing excessively large values of the slab variables. Another constraint which proved

important to add to the model was the truncation of the of the distribution of v variables.

The apparent necessity of this constraint is contrary to the claims in the literature, dis-

cussed in Chapter 3, about the model automatically tending towards regions of stability,

and therefore the model not requiring artificial bounds on the distribution of the visible

variables [24]. With these parameters discovered, a learning rate of 10−4 to 10−3 proved

sufficient to train the model.

ssRBM Main Experiment

A selection of weights learnt by the ssRBM can be seen in Figure 5.5. Many of these

clearly exhibit strong resemblence to human faces. If the number of weights could

successfully be increased in the model, perhaps to several times the number of input

features, it would be expected that the weights learnt would be more localised, with

many filters being concerned with a single facial feature [16]

For each model a linear SVM is trained on two representations, one treating each of the

spike variables and each slab variables as a separate dimension (labelled as ‘separated’),
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# of units Separated Product
(# slabs per unit) Training Set Test Set Training Set Test Set

500 (1) 36.9% ± 0.6 34.7% ± 1.6 27.41% ± 0.5 26.41 % ± 1.4
1000 (1) 33.7% ± 0.5 32.2% ± 1.5 36.7% ± 0.6 34.1% ± 1.6
500 (2) 30.5 % ± 0.5 30.0 % ± 1.5 35.5% ± 0.6 32.6% ± 1.5
1000 (2) 33.7 ± 0.5% 32.3% ± 1.5 33.9 % ± 0.6 31.1 % ± 1.5

Table 5.5: Classification accuracies of ssRBM models with different numbers of hidden
variables

the other being the expectation of product of the spike variables with their corresponding

slab variables (labelled as ‘product’). The results of these experiments are shown in Table

5.5. In experiments, neither of the two representations consistently outperforms the

other in terms of classification accuracy. This suggests that for real-world applications,

the choice of representation would be best decided through the use of a validation set.

5.6 hossRBM

There were several difficulties in training the hossRBM. It appears that the log-likelihood

of the cost function is very unstable. Many attempts to train the model had teh gradient

descent contained to a small volume of the parameter space for prolonged periods of time

before suddenly become uncontrollably large. An example of this can be seen Figure 5.6.

As a result of this, no successfully trained models were created. This section discusses

the various experiments performed whilst searching for an initial configuration of the

model leading to meaningful representations of the data.

In the experiments described below, a single block structure was used, with 6 × 4 slab

variables. Whilst multi-block structures and structures with more latent variables were

briefly experimented with early on, it was decided that the best approach would be

to get the model working for a small single block structure before moving on to more

complex configurations.

In a departure from the training strategy for the previous two models, only twenty

epochs of training were used (in cases where the weight explosion does not occur before

twenty epochs). This should be more than sufficient to for structure to appear in the
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Figure 5.5: Examples of weights learnt by an ssRBM with 500 hidden units

model (in previous models visible structure would often appear within a single epoch),

this was necessary, as even with the reduction in the number of iterations the models

would take several hours to train.

Changing Learning Rate

Attempts were made to mitigate this by changing the learning rate. Increasing the

learning rate above the range of 0.01 would cause the weight explosion to happen much

sooner, often with 10,000 iterations. Decreasing the learning rate causes the model
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Figure 5.6: Graph showing an example of a model become unstable after a prolonged
period of training.

to 0.001 or below, weight explosion does not occur but the model fails to learn any

meaningful filters.

Changing Initial Weights and Bias Values

It was observed that during training, it was often the case that only one or two spike

variables would be active in the samples in the monitoring batches. Encouraging acti-

vations of these spike variables by initialising their biases to be strongly negative was

attempted, but yielded no success.

Since the problem is that the weights growing very large, an obvious thing to attempt is

to decrease the size of the initial weights. Initial weights are sampled from a zero-mean

normal distribution, reducing the standard deviation of this distribution from 0.1 to

0.05 makes the weight explosion happen later, but does not prevent it. In light of this

observation, it seems plausible that the sudden explosion of weights occurs not after a

period of stability, but is in fact preceded by a period of slow growth. This line of enquiry

seems initially promising, plotting the change in the mean of weights when the weights
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are initialised from a zero-mean distribution of with standard deviation 0.01 appears to

increase linear, as shown in Figure 5.7. However, zooming in on the first half of the

graph in Figure 5.6, gives the graph shown in 5.8, showing a far more meandering and

stable path. Whilst the possibility still exists that this a very noisy gradual increase, it

is a lot less clear cut.

Figure 5.7: Graph showing the mean value of weight tensor during first epoch of
training of hossRBM.

Adding Sparsity Conditions

Enforcing sparsity constraints appears to have little effect on the training of the model.

Since there appears to be a problem with under-activation of units, the sparsity target

was chosen to be 0.5 for both g and h variables, with the goal of driving up the activation

probability of units. This however, appeared to have no discernable effect, suggesting

that the low number of activations of hidden units is a symptom, rather than a cause of

the problems found in training the model.
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Figure 5.8: Graph showing period of stability of weight values before weight explosion
during hossRBM training.

Adding Regularisation

Since the problem is the magnitude of weight values become far too large, including

a regularisation term, in order to punish increases large values in the weight tensor,

seems like it might provide a solution to the problem. Due to the nature of the problem,

L2 regularisation seems like a far more obvious choice of solution than L1, since it

more heavily punishes large values in the weight matrix. Using L2 regularisation some

structure is sporadically learnt by the model, but the model does not seem to converge

as completely as the ssRBM and GRBM did. An example of this can be seen in Figure

5.9. A pecular phenomenon is observed with larger regularisation penalties, where some

of the filters learnt in early epochs are recognisably based on single training examples.

Preliminary attempts to train a classifier with representations learnt from these models2

show that the representations are the same regardless of input data, leading to a classifier

which just chooses the most common class in the training data.

2For this experiment, the default classifier using just the spike variables was used
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Figure 5.9: Examples of weights learnt by hossRBM with a regularisation penalty of
0.1. From top to bottom: epoch 1, epoch 2 and epoch 5

5.7 Summary of Results

In this chapter several experiments have been performed using each of the various mod-

els.

The GRBM, has proven to be an effective tool for learning useful representations of

facial images, with accuracies which in the worst case match (within error bounds) of

the raw pixel representation, and in best cases significantly outperform it.

Using the ssRBM was also demonstrated as a technique with the potential of increasing

the classification accuracy of a linear classifer. Although in some cases, the different rep-

resentations yield significantly different classification accuracies, there does not appear

to be a consistent winner. For practical applications, it would therefore be wise to train

classifiers using multiple representations available from the model, and select the best

representation using classification accuracy on a validation set held out of the training

data.

No meaningful representations were learnt using the hossRBM, with the majority of

initial conditions leading to a weight explosion, often after a long period of relative

stability or otherwise failing to learn any meaningful features at all. The weight explosion

can be prevented through regularisation of values in the weight tensor, although it is
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still not possible to learn a truly useful representation. Trying more variations of hyper-

parameters or finding some new insight is required in order to successfully train the

hossRBM.

The parameters found in these experiments are by no means optimal, making it hard

to do direct comparisons between the models. Both the GRBM and ssRBM perform

above the raw pixel representation, although it is not clear which is better, since the best

results from each model (34.5% ± 1.6 and 34.1 % ± 1.6 respectively) are well within the

error bounds of each other.

A primary theme which emerged during these experiments is that RBMs are very sensi-

tive to changes in hyper-parameters, and a great deal of fine-tuning is required to gain

useful representations from them.



Chapter 6

Discussion

This chapter serves to provide a discussion of the project. A personal reflection is given,

discussing what I believe to be the strengths and weaknesses of the project, the lessons

learnt and what would be done differently if I were to carry out a similar project in

future. Several suggestions for directions of future work are given along with a brief

justification for each.

6.1 Personal Reflection

The models presented in this project have proved to be deeply interesting to me. I find

the idea that a statistical model can be made to ‘understand’ something as complex as

facial images very intriguing, and it is topic that I hope to have the chance to investigate

further.

Initially, the task of learning to understand the models involved was quite daunting,

but the exercise proved to be very enjoyable. Through a process of extensive literature

research, as well as spending time playing with the underlying mathematics, I feel I was

able to devise a fairly logical and complete exposition of the models used in this project.

I spent a significant amount of time attempting to write an implementation of the

hossRBM myself. In retrospect, this was definitely over-ambitious and proved costly,
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restricting the amount of time remaining for experiments after an implementation was

obtained from the authors of the original paper on the model [31]. Whilst it is hard

to say whether this extra time would have allowed me to find a set of suitable hyper-

parameters for the hossRBM, it would have been nice to be able to investigate some

aspects of the model more thoroughly. Similarly, it would have been nice to be able to

use validation on some of the parameters in ssRBM, this wasn’t done in order to ensure

sufficient time was left to train models with different numbers of hidden units.

The training of all models presented in this project proved to be far more problematic

than anticipated. In particular, the failure to successfully train the hossRBM model

has been extremely disappointing. More generally, it was interesting to discover that

something mentioned only passingly in the literature, the difficulty of finding suitable

hyper-parameters [20, 45] could prove to be such a major hurdle. Whilst I had originally

intended to focus far more on different aspects of the training process (such as the effects

of different values of k in the CD-k algorithm, and the likelihood of particular batches

of images during training), the difficulties encountered introduced the possibility of

focussing more on the effects of hyper-parameters and their effects on training, something

far less commonly discussed in the literature (with the notable exception being [18]).

6.2 Future Work

An obvious direction of future work is further exploration of the parameters spaces

for each model. Whether this would be performed by carrying out further random

sampling of combinations parameters from within a predetermined range, as in [6], or

by carrying out a more systematic approach. For this significantly more computational

resources would need to be utilised, as the training of models, especially those with a

large number of hidden units, is very computationally expensive.

The number of iterations of the gradient ascent algorithm used when training a model

in this project was based on numbers used in the literature and time constraints. In
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[18] it is suggested that number of iterations can be determined by holding out cross-

validation set, with the termination condition being that the probability of training data

becomes significantly greater than that of the validation set, this condition terminates

the training of the model at the early signs of overfitting. This modification would remove

the guesswork involved in determining when to terminate the training of a model.

A weakness of the data set used in this project is that it contains only a single label.

The justification for the use of this dataset is that lighting conditions and identity are

both far greater causes of variation in an image than facial expression, and therefore

an unsupervised learning method which increases the prominence of facial expression

in the representation must be in some way disentangling it from the other information

components. In order to show this disentangling more rigorously, a multi-label dataset

could be used, this would make it possible to test the representation more thoroughly,

and discover if any useful information components are being discarded.

For this project, a deliberate decision was made to perform only minimal preprocessing

on the dataset, closely following the methodology of [2]. In the literature, there are

numerous examples of more complex preprocessing techniques being used. A relatively

common practice is the use of either ZCA or PCA algorithms being applied to the

training data. These have the effect of removing a significant amount of the noise within

the data [20, 45].



Chapter 7

Conclusion

This dissertation was about the ability of three probabilistic models to disentangle in-

formation components within facial images in an unsupervised manner. It covered the

necessary background material and gave a detailed description of the models, including

a significant amount of detail not currently present in the literature.

Promising results were demonstrated with both the Gaussian restricted Boltzmann ma-

chine and the spike-and-slab restricted Boltzmann machine. The results achieved with

both models demonstrate significant improvements in classification accuracy over the

raw pixel representation, with significant reason to believe that further improvement

can be achieved from each model. No successful models were trained using the hoss-

RBM, but several possible reasons for this failure were investigated and reported. For

all models, several directions of future work were suggested based on the results and

lessons taken from experiments.
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Markov Chains for Gibbs

Sampling

This appendix contains the material regarding Markov Chains which is necessary in

order to understand Gibbs Sampling. The majority of the material taken from [14],

with references gven only for information taken from other sources.

Definition of Markov Chain

A Markov chain is a random process in which the next state is conditionally independent

of all previous states, given the current state. Formally, a sequence of random variables

X1, X2, . . . sharing a state space Ω are form a Markov chain if

P (X(k) = x|X(1) = x1, X
(2) = x2, . . . , X

(n−1) = xn−1) = P (X(n) = x|X(n−1) = xn−1)

(A.1)

for all n ≥ 0 and all x, x1, . . . xn−1 ∈ Ω.
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The set of probabilities pkij form a transition matrix for the kth transition. If for all k the

transition matrix pkij is the same, the Markov chain is homogeneous. For the purposes

of this project, only homogeneous Markov chains will be considered.

Let µ0 be the distribution of X0. For a homogeneous Markov chain, the distribution of

Xk, µ
k, can be defined as µ0P k.

Stationary Distributions and the Detailed Balance Condition

A stationary distribution of a Markov chain is a distribution π for which πT = πTP . A

sufficient condition for a Markov chain being stationary is that

π(i)pij = π(j)πji (A.2)

This is known as the detailed balance condition. An important property of stationary

distributions is that once a distribution reaches a stationary distribution, it will not

leave it. That is, if a Markove chain has reached a stationary distribution by time k, we

not only get that µk = π but also that µk+n = π for all n ∈ N

A Markov chain is irreducible if it is always possible to transition from one arbitrary

state to any other arbitrary sate in a single transition, that is ∀i, j ∈ Ω ∃k > 0 such that

P (X(k) = i|X(0) = j) > 0.

The period di of a state i ∈ Ω is defined as di = gcd(n ≥ 1|pnii > 0) [46]. A Markov chain

is aperiodic if di = 1 for all i ∈ Ω. A sufficient, but not necessary condition for this is

that it is always possible to reach a state from itself, that is pii > 0 for all i ∈ Ω.

If a Markov chain is both irreducible and aperiodic, then it can be shown that it has a

unique stationary distribution. Furthermore, irreducible and aperiodic Markov chains

converge to their stationary dstributions. That is, for any initial distribution µ:

limk→∞dv(µ
TP k, πT ) = 0 (A.3)
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where dv is the distance of variation, a measure of the distance between two distributions

defined as:

dv(α, β) =
1

2
|α− β| = 1

2

∑
x∈Ω

|α(x)− β(x)| (A.4)



Appendix B

Confidence Intervals for

Classification Accuracy

This appendix pertains to the process of finding confidence intervals for classifier accu-

racy. The majority of material in this appendix is based on [47].

In order to satisfactorily compare the classification accuracy of multiple classifiers, it is

not enough to just obtain the experimental classification accuracy of each, as the figures

obtained are only approximations to the true classification accuracy over data sampled

from the underlying distribution. For this reason, it is important to be able to devise a

measurement of the uncertainty associated with a result, and use the knowledge of this

uncertainty to construct a confidence interval.

An experiment to test classification accuracy consists of a series of independent out-

comes, with the outcomes being either correct, when the classification label matches the

data label, or incorrect, when it does not. The probability of a correct classification

is some fixed value p. The number of misclassifications therefore follows the binomial

distribution, with the probability of r misclassifications in n experiments being:
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P (X = r) =
n!

r!(n− r)!
pr(1− p)r

Whilst the true expectation is not known, it can be approximated using the number of

correct classifications:

p =
1

n

n∑
i=1

xi,

where xi = 1 if the ith experiment is correctly classified and is 0 otherwise.

From this s, the standard deviation is calculated as:

s =

√
p(1− p)

n

Using these values, and the fact that for large n the binomial distribution is closely

approximated by the normal distribution [48], the a confidence interval for classifier

accuracy can be constructed as:

p± zNs

where zN is the distance from the mean of a normal distribution with unit standard

deviation within which N% of area under the distribution curve lies. In this project N

is chosen to be 95%, which leads gives zN = 1.96 [47]
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