

An Automated Assistant for Reducing Duplication in

Living Documentation

A dissertation submitted to the University of Manchester for the degree of Master of

Science in the Faculty of Engineering and Physical Sciences.

2015

SIA WAI SUAN

SCHOOL OF COMPUTER SCIENCE

Page 2 of 110

Table of Contents

List of Figures ... 6

List of Tables .. 9

List of Abbreviations ... 10

Abstract ... 11

Declaration .. 12

Intellectual Property Statement .. 13

Acknowledgements ... 14

Chapter 1 : Introduction ... 15

1.1 Overview .. 15

1.2 Aim ... 17

1.2.1 Objectives .. 17

1.3 Dissertation Outline .. 17

Chapter 2 : Background .. 18

2.1 Overview .. 18

2.2 Requirement Engineering (RE) .. 18

2.3 Specification by Example (SbE) .. 19

2.4 Acceptance Test-Driven Development (ATDD) .. 24

2.4.1 ATDD Exemplar: FitNesse .. 26

2.5 Behaviour-Driven Development (BDD) .. 28

2.5.1 BDD Exemplar: Cucumber .. 30

2.6 Conclusion .. 35

Chapter 3 : Duplication Detection and Analysis ... 36

3.1 Overview .. 36

3.2 Why BDD & Cucumber? ... 36

3.3 What is Duplication in BDD? .. 42

3.3.1 Good vs. Bad Duplication .. 42

Page 3 of 110

3.4 Importance of Reducing Duplication in BDD .. 45

3.5 Near-duplicates ... 46

3.6 Rules for Detecting Duplication ... 47

3.6.1 Rule 1 ... 48

3.6.2 Rule 2 ... 49

3.6.3 Rule 3 ... 49

3.6.4 Rule 4 ... 50

3.6.5 Decision Tree ... 50

3.7 Duplicate Detection Algorithm .. 51

3.7.1 Exact Duplicate Detection ... 51

3.7.2 Near-Duplicate Detection .. 52

3.7.3 Model of Duplication ... 56

3.7.4 Process Flow .. 57

3.7.5 Limitations ... 61

3.8 Refactoring ... 61

3.9 Methodology .. 64

3.9.1 Information Gathering ... 64

3.9.2 Development .. 65

3.9.3 Deliverables ... 65

3.9.4 Evaluation .. 66

3.10 Conclusion .. 66

Chapter 4 : Realizing the SEED tool .. 67

4.1 Overview .. 67

4.2 Software Design ... 67

4.2.1 Eclipse Plug-in Architecture .. 67

4.2.2 SEED Architecture .. 68

4.2.2 Domain Model Diagram .. 71

Page 4 of 110

4.2.3 Class Diagram .. 72

4.3 Version Control System ... 73

4.4 Functionality ... 74

4.4.1 Duplicate Cucumber Feature Titles Detection... 74

4.4.2 Duplicate Cucumber Scenario Titles Detection... 76

4.4.3 Duplicate Cucumber Scenario Steps Detection ... 77

4.4.4 Duplicate Cucumber Examples Table Rows Detection 79

4.4.5 Duplicate Cucumber Steps Detection .. 79

4.4.6 Duplicate Cucumber Pre-condition Steps Detection 81

4.4.7 Duplicate Cucumber Scenarios Detection ... 83

4.5 Testing .. 83

4.5.1 Unit Testing with Xtext ... 84

4.6 Conclusion .. 86

Chapter 5 : Evaluation .. 87

5.1 Overview .. 87

5.2 Hypothesis & Prediction .. 87

5.3 Approach .. 88

5.4 Experiment 1 .. 90

5.4.1 Duplication... 91

5.4.2 Refactoring... 93

5.5 Experiment 2 .. 94

5.5.1 Duplication... 94

5.5.2 Refactoring... 96

5.6 Experiment 3 .. 97

5.6.1 Duplication... 98

5.6.2 Refactoring... 99

5.7 Results & Discussion .. 99

Page 5 of 110

5.8 Conclusion .. 103

Chapter 6 : Conclusion .. 104

6.1 Future Work ... 105

Bibliography ... 106

Appendix A: Gherkin Grammar (Gherkin.xtext) .. 109

Word Count: 22825

Page 6 of 110

List of Figures

Figure 2.1: User story structure.. 19

Figure 2.2: Key process patterns of SbE. ... 20

Figure 2.3: Using examples to drive a conversation between customer, developer, and tester.

 ... 21

Figure 2.4: Refined examples. ... 22

Figure 2.5: Refined specification. .. 22

Figure 2.6: An overview of the automation architecture. .. 23

Figure 2.7: An example of an acceptance test. .. 25

Figure 2.8: The process of ATDD and its relationship with TDD. .. 26

Figure 2.9: FitNesse decision table. ... 27

Figure 2.10: Decision table in markup format. .. 27

Figure 2.11: Fixture code (in Java). ... 28

Figure 2.12: Executed acceptance test. .. 28

Figure 2.13: The language of BDD. ... 29

Figure 2.14: Full example of a BDD Story. ... 30

Figure 2.15: Describing a software feature (in Gherkin) using Cucumber. 31

Figure 2.16: An example of Cucumber’s Background. ... 31

Figure 2.17: An example of Cucumber’s Scenario Outline. .. 32

Figure 2.18: An example of potential Scenario Outline candidates. 32

Figure 2.19: An example of Cucumber’s Doc String. ... 33

Figure 2.20: An example of Cucumber’s Data Table. ... 33

Figure 2.21: An example of using descriptions in Cucumber. ... 33

Figure 2.22: An example of a step definition (written in Ruby). ... 34

Figure 2.23: Executed Cucumber feature file. ... 34

Figure 3.1: An example of a repeated event condition in scenarios. 43

Figure 3.2: An example of duplicated scenario descriptions. .. 43

Figure 3.3: An example of duplicated feature titles. .. 44

Figure 3.4: An example of a repeated pre-condition in scenarios. ... 44

Figure 3.5: Side-by-side comparison of bad and good Cucumber features. 45

Figure 3.6: An example of (semantically) equivalent steps. .. 47

Figure 3.7: A high level outlook of the goal of the project. ... 48

Figure 3.8: Decision Tree Diagram.. 51

Figure 3.9: A working example of the Dice Coefficient algorithm. 53

Figure 3.10: Duplication Model in SEED. ... 57

Figure 3.11: Flow of Duplication Detection. ... 59

Page 7 of 110

Figure 3.12: Abstract syntax tree produced by the parser after parsing a Cucumber feature. 60

Figure 3.13: An example of quick fixes on Eclipse. .. 62

Figure 3.14: SEED’s quick fixes.. 62

Figure 3.15: Example of renaming duplications. ... 63

Figure 3.16: Example of moving pre-condition steps to the background. 63

Figure 3.17: Example of combining scenarios into a scenario outline. 64

Figure 3.18: Flow of refactoring. ... 64

Figure 4.1: Overview of Eclipse plug-in architecture. ... 68

Figure 4.2: A simple plug-in that adds a new item to the menu. ... 68

Figure 4.3: Architecture of the SEED plugin. .. 69

Figure 4.4: Detailed outlook of SEED's architecture. .. 71

Figure 4.5: Domain Model of SEED. .. 72

Figure 4.6: Class Diagram. .. 73

Figure 4.7: Pseudocode for detecting duplicate Cucumber feature titles. 75

Figure 4.8: Two different feature files with the same title. .. 75

Figure 4.9: Two different feature files with similar titles. ... 75

Figure 4.10: Pseudocode for detecting duplicate Cucumber Scenario titles. 76

Figure 4.11: Two scenarios with the same title/description. .. 77

Figure 4.12: Two scenarios with equivalent title/descriptions. .. 77

Figure 4.13: Pseudocode for detecting duplicate list of Cucumber steps. 78

Figure 4.14: Two different scenarios having similar list of steps. ... 78

Figure 4.15: Pseudocode for detecting duplicate Examples table rows. 79

Figure 4.16: Repeated rows in Examples table. ... 79

Figure 4.17: Pseudocode for detecting duplicate Cucumber steps. 80

Figure 4.18: Exact and equivalent steps detected. ... 80

Figure 4.19: Pseudocode for detecting steps that already exist the Background section. 81

Figure 4.20: Exact and equivalent steps already exist in the background section. 81

Figure 4.21: Pseudocode for detecting pre-condition steps repeated in every scenario......... 82

Figure 4.22: Pre-condition steps repeated in every scenario of the feature. 82

Figure 4.23: Pseudocode for detecting similar scenarios. .. 83

Figure 4.24: Scenarios that differ in their input/output values can be combined into a

scenario outline (through refactoring/quick fix). ... 83

Figure 4.25: Unit test code for detecting duplicate scenario titles. .. 85

Figure 4.26: JUnit test cases for SEED. ... 85

Figure 4.27: Expected vs. actual results from a failed unit test. .. 86

Figure 5.1: Classification of evaluation results. ... 88

Figure 5.2: History of Git commits. ... 89

Page 8 of 110

Figure 5.3: Coverage of Duplication Detection in Experiment 1. ... 92

Figure 5.4: snippet_search.feature ... 95

Figure 5.5: Coverage of Duplication Detection in Experiment 2. ... 96

Figure 5.6: Coverage of Duplication Detection in Experiment 3. ... 98

Figure 5.7: Results for Experiment 1. .. 101

Figure 5.8: Results for Experiment 2. .. 101

Figure 5.9: Results for Experiment 3. .. 102

Figure 5.10: SEED deployed on Eclipse Marketplace. .. 103

Page 9 of 110

List of Tables

Table 3.1: ATDD Tools. .. 39

Table 3.2: BDD Tools. ... 40

Table 3.3: FitNesse Support Tools. .. 40

Table 3.4: Cucumber Support Tools. ... 41

Table 3.5: Dice coefficient for syntactically and semantically equivalent statements. 54

Table 3.6: String similarity-matching algorithms ran against syntactically and semantically

equivalent statements. .. 56

Table 5.1: Total amount of feature files and commits in the Cucumber project. 90

Table 5.2: Count of duplications & errors detected within the Cucumber features. 91

Table 5.3: Count of duplications detected. .. 91

Table 5.4: Count of refactorings suggested/done. .. 94

Table 5.5: Total amount of feature files and commits in the Gitlab project. 94

Table 5.6: Count of duplications & errors detected within the Cucumber features. 94

Table 5.7: Count of duplications detected. .. 95

Table 5.8: Count of refactorings suggested/done. .. 97

Table 5.9: Total amount of feature files and commits in the RadiantCMS project. 97

Table 5.10: Count of duplications & errors detected within the Cucumber features. 98

Table 5.11: Count of duplications detected. .. 98

Table 5.12: Count of refactorings suggested/done. .. 99

Page 10 of 110

List of Abbreviations

TDD Test-Driven Development

ATDD Acceptance Test-Driven Development

BDD Behaviour-Driven Development

SbE Specification by Example

RE Requirement Engineering

Page 11 of 110

Abstract

Acceptance Test-Driven development and Behaviour-Driven development are two

software development methodologies that help software development teams to write

better requirements specifications and to allow customers to convey their needs easily.

Automation tools have emerged to automate this process and allow the specifications

to be executed as acceptance tests for the software. However, these tools have

drawbacks that lead to difficulty in maintaining the specifications. Users of the tools

are prone to mistakes such as repeating test scenarios since the writing of the tests is

not automated.

Duplication is an issue that stems from writing the tests manually. Test suites can grow

to a large scale as a software development project progresses. It is easy to create

duplication in large tests unknowingly. However, removing/searching for them is not

as easy. By allowing duplicates to occur and stay, maintenance and readability issues

would arise. This affects both the development team and the customers.

This project aimed to reduce duplication in BDD specifications by experimenting with

the Cucumber BDD automation tool. On top of that, the project also delivered a plugin

tool to not only detect exact- and near-duplication in these specifications but also

provide helpful refactoring diagnostics for them. Evaluation results showed that the

plugin tool was able to not only cover the duplicates detected by human experts but

also duplicates that went undetected.

Page 12 of 110

Declaration

No portion of the work referred to in this dissertation has been submitted in support of

an application for another degree or qualification of this or any other university or

other institute of learning.

Page 13 of 110

Intellectual Property Statement

i. The author of this dissertation (including any appendices and/or schedules to

this dissertation) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this dissertation, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or, where

appropriate, in accordance with licensing agreements which the University has

entered into. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the dissertation, for example graphs and tables

(“Reproductions”), which may be described in this dissertation, may not be

owned by the author and may be owned by third parties. Such Intellectual

Property and Reproductions cannot and must not be made available for use

without the prior written permission of the owner(s) of the relevant Intellectual

Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this dissertation, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available in

the University IP Policy (see

http://documents.manchester.ac.uk/display.aspx?DocID=487), in any relevant

Dissertation restriction declarations deposited in the University Library, The

University Library’s regulations (see

http://www.manchester.ac.uk/library/aboutus/regulations) and in The

University’s Guidance for the Presentation of Dissertations.

Page 14 of 110

Acknowledgements

I would like to thank my supervisor, Dr. Suzanne M. Embury, for her guidance and

help throughout this project.

I would also like to express my gratitude to my family for their continuous support

throughout the duration of my studies.

Page 15 of 110

Chapter 1 : Introduction

1.1 Overview

In every software development project, there is a requirements gathering process. The

main agenda of this phase is to determine, analyse, and document the system

requirements through a series of discussions with the stakeholders/customer [1]. The

output of this phase is a set of documents called the requirements specification. The

development team would then refer to these specifications for building the system.

The requirements documents, however, need to be interpreted by a human to gain an

understanding of the software’s expected behaviour. This leaves room for

misinterpretation and misunderstanding. As a result, rework may have to be done later

when the software does not meet the customer’s needs.

Specification by example (SbE) is an approach to this problem. It was devised by

Martin Fowler in 2002 [2]. In SbE, the requirements of the system are represented as

examples. The examples depict the software’s functionality in the form of specific

scenarios. It encourages frequent collaboration and communication between the

customers, developers, and testers of the system such that each participant of the

discussion has a shared understanding on what needs to be done. This helps to reduce

ambiguity when it comes to interpreting the requirements specification.

To make validating the system through the examples less tedious and much quicker,

automated testing tools have been introduced. The tools make the specification

executable without modifying its original content. The execution of an example

reports success if the software under construction implements the behaviour described

in the example, and reports failure if it does not. The results from execution could not

only trigger further discussions with the customer(s) on clarifying the requirements

but also help keep the system in line with the specification – something that

passive/typical documentation tends to fail at. By making the specification a single

source of truth on the requirements of the system and automating the validation of the

example(s) on the software under construction, the requirements specification

becomes a living documentation [3].

Acceptance Test-Driven Development (ATDD) and Behaviour-Driven Development

(BDD) are two software development methodologies that were introduced based on

SbE/living documentation. They are extensions to SbE [4]. ATDD promotes the

Page 16 of 110

practice of creating necessary acceptance tests/executable examples before coding [5].

The key concept here is not to create the tests but to create the necessary tests such

that the development team would only need to write the required code around these

tests. BDD promotes an easy-to-understand and common language when writing

customer examples of the required software behaviour [6]. A non-technical person can

not only understand these examples but also write them if necessary.

This project aimed to identify a challenging aspect of writing Cucumber tests/features

and to create a software tool that could identify problems and propose remedies for

them. The project began by surveying existing literature and tool base to identify the

problems that users are currently seeing in their Cucumber test suites.

Initial survey of the various existing ATDD/BDD automated testing tools revealed

that they share a common issue in that users of these tools have to put effort into

writing consistent and maintainable tests. Writing the tests with these tools is,

unfortunately, not automated and is highly dependent on the user of the tool. Thus,

this process is prone to human mistakes. An example of this is unknowingly creating

duplication in an acceptance test case. With large scale test suites, it gets increasingly

difficult to manually identify duplication in the tests. Duplication is a problem because

the specification then becomes difficult to maintain and read.

We selected BDD and the Cucumber tool for this project and for researching the

duplication problem. The project included establishing a definition for duplication in

BDD specifications and identifying viable refactoring solutions for this form of

detected duplication. A plugin tool was then developed to incorporate the results of

the research.

The tool is founded on the assumption that it detects the same duplications and fixes

them in the same/similar way as expert writers of Cucumber tests do. The evaluation

of the tool was carried out to prove whether the behaviour of the tool corresponded to

the actions of Cucumber experts. The evaluation results showed that the plugin tool

was able to capture the duplicates and refactor them accordingly albeit with further

evaluation required on duplicates that were not detected by Cucumber experts.

Page 17 of 110

1.2 Aim

The aim of the project is to determine whether a software tool is able to detect the

same or similar duplication in BDD/Cucumber test cases as a human expert does, as

well as providing the same or similar suggestions for refactoring the duplication.

1.2.1 Objectives

1. Compile a list of existing ATDD/BDD tools and identify their aims and

drawbacks.

2. Invent a set of rules that denotes whether duplication exists in a

BDD/Cucumber test.

3. Develop a plugin tool with the intent of highlighting duplication within

Cucumber specifications and providing refactoring suggestions for them.

4. Evaluate the quality of the tool and how well it solves the problem.

1.3 Dissertation Outline

The report is structured as follows:-

 Chapter 2: Background – This chapter discusses in detail the concept of

requirement engineering, SbE, ATDD, and BDD and how they differ from one

another.

 Chapter 3: Duplication Detection and Analysis – This chapter gives an in-

depth review of the duplication problem as well as motivating our focus on

BDD and Cucumber in the project. The methods used for detecting and

refactoring duplications are also discussed in this chapter.

 Chapter 4: Realizing the SEED tool – This chapter examines the overall

architecture of the plugin tool and its implementation details.

 Chapter 5: Evaluation – This chapter describes how we have evaluated the

plugin tool and provides the final results of the project.

 Chapter 6: Conclusion – This chapter summarizes the work done and lessons

learned in the project as well as describes potential future work.

Page 18 of 110

Chapter 2 : Background

2.1 Overview

This chapter discusses the background research done in the project. It starts by

discussing the requirement engineering process from an agile perspective. Then, the

discussion will branch out into SbE, ATDD, and BDD, where it is shown that they

share the same goals but still have their own distinct features.

2.2 Requirement Engineering (RE)

Requirement engineering [7] [8] [9] is an essential part of software engineering. It

serves as the foundation for building the right software product. The purpose of

requirement engineering is to gather the needs of the software from the

customer/stakeholders, analyse them, and document them as necessary. A document

containing the software requirements is known as a requirements specification.

In an agile software development process, requirements are gathered from the

customer iteratively [10]. A general overview of the software functionality is first

established at the start of the project by the customer. It does not have to cover every

single aspect of the software as it is meant to serve as a starting point of the project.

This information is then documented in the form of user stories. As shown in Figure

2.1, a user story is a short description of a piece of the software’s functionality. It can

be written on a piece of paper such as a card or a post-it note. The user stories are then

prioritized (by the customer) according to their importance before moving forward

with implementing them. The development team then selects a subset of user stories

to work on for the upcoming iteration. At the beginning of each iteration, detailed

requirements and clarifications are gathered from the customer on the user stories that

have to be implemented before the end of the iteration. An iteration runs for

approximately 1 - 4 weeks. 1

1 Iteration [Online]. Available at: http://guide.agilealliance.org/guide/iteration.html

http://guide.agilealliance.org/guide/iteration.html

Page 19 of 110

Figure 2.1: User story structure.

Throughout the development timeline, new user stories might be added and existing

ones might be altered. Part of the agenda of agile is to promote customer collaboration

within software development projects. 2 Therefore, the customer is constantly involved

in the development process. The process includes clarifying requirements, writing

acceptance tests, and getting feedback/validation on the implemented software

features. The benefit from this is that the need for major re-work after the software has

been delivered to the end users is reduced [11].

However, due to the simplistic nature of user stories, they do not contain enough

information to formally represent the software requirements. There is still ambiguity

and uncertainty surrounding it. A user story mainly triggers further communication

and discussions between the customer and the software development team. These

discussions take place in order for the developers to get a better understanding of how

the software needs to function.

It should be obvious by now that the clarity of the software requirements is dependent

on the communication with the customer. The developers ask the questions whilst the

customer does the answering. It is essential for the requirements to be as accurate as

possible in order to reduce the risk of building the wrong software i.e. something that

the customer does not want. However, customers can sometimes have trouble

conveying their business objectives/what they want clearly [11]. Of course, getting

frequent feedback from the customer throughout the iteration helps keep the

development on the right track. Still, this can be improved upon.

2.3 Specification by Example (SbE)

Specification by Example helps software development teams to build the right

software from the start of the project/iteration [12]. An illustration of the SbE process

2 The Agile Manifesto [Online]. Available at: http://www.agilealliance.org/the-alliance/the-agile-
manifesto/

http://www.agilealliance.org/the-alliance/the-agile-manifesto/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/

Page 20 of 110

is shown in Figure 2.2 (taken from G. Adzic [3]). Building it right from the start

reduces the need for re-work during and after an iteration. Re-work leads to

unnecessary delays in the development time. SbE does this by reducing the

communication gap between the customer and development team when it comes to

understanding software requirements. Questions and clarifications can still come up

during development but there is less back and forth for feedback between the customer

and the development team. This leads to shorter iterations and reduced (overall)

development time.

Figure 2.2: Key process patterns of SbE.

In SbE, as we have said, examples are used when describing software requirements

[3]. An example in SbE is a concrete and unambiguous description of the behaviour

of a software feature. Figure 2.3 (taken from G. Adzic [3]) gives an insight into what

an example in SbE looks like. Illustrating using examples is a way of preventing

misinterpretation/misunderstanding of the software requirements amongst the

Page 21 of 110

different participants of the software development project (e.g. customer, testers,

developers, and business analysts). As mentioned previously, misinterpretation leads

to re-work. During the discussions before an iteration begins, developers and testers

are able to utilize examples as a way of flushing out inconsistencies and edge cases of

the software feature under development. It is also a way of gaining a shared

understanding of what needs to be done. In addition, the examples are used to drive

the entire development process, using (as we shall see) ATDD processes.

Figure 2.3: Using examples to drive a conversation between customer, developer,

and tester.

Building the right software is a team effort and requires co-operation from both the

customer and the development team. Customers are not software designers [3].

Therefore, it is unfair to expect them to cover the entire scope of the software (e.g.

user stories and use cases) whilst the development team handles the implementation

side of things. The result of this is an end product with functional gaps and a lack of

customer satisfaction. Instead, the development team should collaborate with the

customer in establishing the scope of the project. The customer is in charge of

conveying their business goals. The team would then come up with efficient/feasible

solutions that help achieve these goals. This is what it means by deriving scope from

goals.

As for specifying collaboratively, people from various domain-specific backgrounds

and knowledge work together in getting the software requirements right. Developers

use their experience in technology to locate functional gaps within the requirements.

Testers are able to specify the potential issues of certain software features. Inputs and

Page 22 of 110

opinions from different expertise help make the requirements more specific and

accurate. This leads to a more refined set of software requirements.

After the set of examples have been listed out by the customer, the next step for the

team would be to clean them up. The examples described by the customer tend to be

from a user perspective. This means that they contain user interface details such as

clicking buttons and links [3]. These extra details show how the software works when

the examples are meant to identify what it needs to do. Keeping them may obscure the

key information of an example and therefore, needs to be removed. As the examples

are used to guide development and testing, it is important that they remain

unambiguous and precise. Figure 2.4 (taken from G. Adzic [3]) shows what refined

examples look like. They can be further organized into what is shown in Figure 2.5

(taken from G. Adzic [3]). The requirements specification is then represented by these

refined examples. This falls under the refining the specification stage of the SbE

process.

Figure 2.4: Refined examples.

Figure 2.5: Refined specification.

Page 23 of 110

As mentioned, the examples are frequently used to validate the software. This means

that the team would refer to them as a way of making sure that they are not getting off

track from the software requirements during development. However, doing this

manually is tedious, slow, and prone to human error. SbE introduces the concept of

automating validation without changing specifications as a solution to this problem.

The examples themselves are used as acceptance tests for the software [3] and

automation makes them executable. There are various existing tools that help with the

automation process. Figure 2.6 illustrates an overview of how the tool relates to the

examples/specification and the software. The tools work by sending inputs from the

executed examples to the production code and comparing the outputs (returned by the

production code) against the expected outputs in the examples [3]. An executed

example reports success if the software under construction implements the behaviour

described in the example, and reports failure if it does not. The support code is part of

the tool and is there to connect the examples to the production code (i.e. the software).

It is important to note that the developers will have to write this support code. These

tools can be divided into two classifications – Acceptance Test-Driven development

(ATDD) and Behaviour-Driven Development (BDD). They will be further explored

in the following sections. It is important that the examples are not altered in any way

through the process of automation [3]. They should remain understandable and

accessible to the customer and the development team. This is so that the purpose of

creating these examples in the first place is not defeated.

Figure 2.6: An overview of the automation architecture.

Now that the specification is executable, the team can proceed with validating the

software frequently. Aside from making sure that development is on the right track of

meeting the software requirements, the benefit of this is also to keep the specification

in-line with the production/software code. The team is able to see if things get broken

due to the changes made to both the document and the code. Apart from missing

functionality/behaviour, a failing example could also indicate that something is broken

in the software under development. This allows the customer and the team to gauge

Page 24 of 110

the progress of the project. The goal here is to ensure that all of the examples pass by

the end of the project timeline.

In the end, the specification becomes a living document. “Living documentation is a

reliable and authoritative source of information on system functionality that anyone

can access.” (p. 24 [3]). It acts as a single source of truth during the development

process. It gets updated when there are changes. Developers refer to it as guidance

during development. Testers use the examples to aid in testing. Customers use it to

measure whether the software is complete. This is what is meant by evolving a

documentation system in SbE.

2.4 Acceptance Test-Driven Development (ATDD)

ATDD is a software development technique that helps the customer and development

team know when a software requirement has been completed. This is done by

capturing the software requirements in the form of acceptance tests. The acceptance

tests are discussed and written before doing any coding. 3 An acceptance test works

the same way as an executable example whereby it has a set of input and expected

output values [13]. The expected output values denote whether the test passes or fail.

Figure 2.7 (taken from G. Adzic [3]) shows an example of an acceptance test where

the input and output values are arranged in a tabular format. An acceptance test is

created from a user story. A user story can have many acceptance tests. Each test

represents a specific scenario in the story. A user story is complete only when all of

its acceptance tests pass. 4 Since the user stories represent the software requirements,

the project can only be considered complete when all of its user stories have been

completed.

3 Acceptance Test-Driven Development [Online]. Available at:
http://www.netobjectives.com/acceptance-test-driven-development
4 Acceptance Tests [Online]. Available at:
http://www.extremeprogramming.org/rules/functionaltests.html

http://www.netobjectives.com/acceptance-test-driven-development
http://www.extremeprogramming.org/rules/functionaltests.html

Page 25 of 110

Figure 2.7: An example of an acceptance test.

Before going further, it is important that Test-Driven development (TDD) be briefly

discussed. As the TDD process is contained within the ATDD process, it is therefore,

a test-driven technique. TDD is a software development methodology that

encompasses three steps. First, the developer writes a failing automated unit test for a

particular software feature. A unit test is a low-level test case focusing on the

functionality of a single unit of the system (typically, taken to be a class in object-

oriented programming) i.e. ensuring that the production source code works as intended

[14]. Second, the developer writes as little code as possible to make the test pass.

Third, the code is refactored to remove code smells. This means removing duplicate

code and hardcoded data amongst other things [15]. These three steps are then repeated

for another unit of the system/software feature. The main benefit of this is to keep the

number of coding errors low. If they do show up and cause a test to fail, it is easy to

locate them since minimal code was changed since the tests last passed, and the error

is likely to be found in these changes. TDD aims to ensure that the software’s technical

quality is maintained [13] such as well-written code and minimal software bugs.

ATDD uses TDD to build code in order to implement a single complete feature by

involving multiple units/classes. It works at the level of a single software feature

(instead of a unit as TDD does), as described by a set of acceptance tests. An

acceptance test passes when the functionality it describes is implemented. The unit

tests pass when the functionality that they collectively describe is implemented.

According to Figure 2.8 (taken from L. Koskela [13]), it can be depicted that an

acceptance test passes when all of its unit tests passes. Once an acceptance test passes,

the ATDD process is then repeated for the next set of software features/functionality.

Page 26 of 110

Figure 2.8: The process of ATDD and its relationship with TDD.

Like SbE, the acceptance tests can be automated/made executable through the support

of automation tools. Automation allows the team to get quick feedback on whether a

test passes or fails. It also makes regression testing of the software easier. This is to

ensure that the changes made are error-free. The FitNesse5 tool will be used to help

illustrate how an ATDD automation framework works and what it looks like.

2.4.1 ATDD Exemplar: FitNesse

FitNesse is an automation testing tool that supports the writing of acceptance tests

through a wiki.

In FitNesse, an acceptance test is expressed in a tabular format. An acceptance test

table, in FitNesse, is referred to as a decision table6. Figure 2.9 shows an example of

a “division operation” acceptance test written in the mentioned format. Each row in

the table represents a scenario of the acceptance test and is read from left to right.

Within each scenario, there are input and expected output values that will be used

during the execution of the test. In this case, the “numerator” and “denominator”

columns represent the inputs whereas the “result?” column represents the expected

outputs (this is signified by the question mark suffix in the column name). For the first

5 FitNesse [Online]. Available at: http://fitnesse.org/
6 Decision Table [Online]. Available at:
http://fitnesse.org/FitNesse.UserGuide.WritingAcceptanceTests.SliM.DecisionTable

http://fitnesse.org/
http://fitnesse.org/FitNesse.UserGuide.WritingAcceptanceTests.SliM.DecisionTable

Page 27 of 110

row in the table, the scenario reads as follows: “If given a numerator of 10 and a

denominator of 2, the result should be a 5”.

Figure 2.9: FitNesse decision table.

In FitNesse, creation of the decision tables is done by using the markup language. An

example of this is shown in Figure 2.10. The vertical bars are required as delimiters

for the table cells. 7

Figure 2.10: Decision table in markup format.

Before a FitNesse acceptance test can be executed, the glue code has to be written (by

the developers) in order to pass values from the decision table to the production code

(i.e. the software under development). In FitNesse, glue code is referred to as fixture

code8. An example of some fixture code is shown in Figure 2.11. When an acceptance

test is executed, FitNesse will attempt to map the decision table header to a fixture

class name. Then, it maps the column headers to their respective fixture method

names. The column headers representing the input values are mapped with setter

method names i.e. has a “set” in front of the header name. The setter methods are in

charge of setting the input values before processing them for results. Also, following

code conventions, each header name is replaced with camel-casing whereby spaces

are moved from the name, and the first letter in every word of a header name is

7 An Example FitNesse Test [Online]. Available at:
http://fitnesse.org/FitNesse.UserGuide.TwoMinuteExample
8 Fixture Code [Online]. Available at:
http://fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.FixtureCode

http://fitnesse.org/FitNesse.UserGuide.TwoMinuteExample
http://fitnesse.org/FitNesse.FullReferenceGuide.UserGuide.WritingAcceptanceTests.FixtureCode

Page 28 of 110

capitalized. A column header ending with a question mark will be interpreted as an

expected output value coming from its respective fixture method name (is not a setter

method).

Figure 2.11: Fixture code (in Java).

After the fixture code has been written, the acceptance test is ready to be executed

using FitNesse. Figure 2.12 shows the result of the test after it has been executed. The

green cells indicate that the values returned from the production code match the

expected values whereas the red cell indicates otherwise. To ease developers in

debugging failed tests, red cells are accompanied by the actual values returned. In the

figure shown, the cell was expecting “4.0” but it received “3.0” instead.

Figure 2.12: Executed acceptance test.

2.5 Behaviour-Driven Development (BDD)

BDD is a software development methodology created by Dan North [5] that “uses

natural language to capture customer examples in a domain-specific language” [16].

The idea for BDD stemmed from the original creator’s frustrations with TDD. These

frustrations include figuring out what to test, how much testing was involved, and

where to begin testing [5] [17]. Therefore, the BDD framework was developed to

address these questions. In BDD, customer examples are known as scenarios and tests

Page 29 of 110

are known as behaviours of the software9 . The scenarios represent examples of the

software behaviour when given different situations.

BDD introduced a common language for writing examples, software requirements,

and (acceptance) tests. This language is the core of BDD. Its purpose is to reduce

miscommunication between the customer and development team since everyone

within the discussion is using the same terminology. It also removes ambiguity when

it came to describing the software requirements or the behaviour of a software feature.

This ensures that everyone participating in the discussion has a collective

understanding on the customer’s needs of the software. In order for that to happen and

as shown in Figure 2.13, the language had to not only be natural enough such that the

customer can easily understand it but also structured in a way that they can be

automated by automation tools [5]. Figure 2.14 (taken from D. North [18]) shows an

example of the BDD’s given-when-then expressions being used in one of the scenarios

in a user story. A scenario represents an example of the behaviour of the software

feature. In order to fully specify the story, there can be more than one scenario in a

story.

Figure 2.13: The language of BDD.

9 Bdd [Online]. Available at: http://guide.agilealliance.org/guide/bdd.html

http://guide.agilealliance.org/guide/bdd.html

Page 30 of 110

Figure 2.14: Full example of a BDD Story.

Like SbE and ATDD, BDD expressions/examples can be automated. The automation

tools that support BDD are not only able to make the customer examples executable

but also recognize BDD’s language, such as the given-when-then notation. This means

that the tool is able to extract the scenario fragments from the user story/specification

and parse them as input arguments for the underlying test code. The Cucumber10 tool

will be used to help illustrate how a BDD automation framework works and what it

looks like.

2.5.1 BDD Exemplar: Cucumber

Cucumber was developed by Aslak Hellesøy to provide support for customer

examples to be written in plain English whilst still being executable. Cucumber refers

to BDD’s language as Gherkin11.

As shown in Figure 2.15, a user story/software behaviour is referred to as Feature12.

A Cucumber feature is stored in a plain text file with a “.feature” extension so that

Cucumber can find and execute it. In Cucumber, each scenario within the feature

consists of a list of steps13, also known as Givens, Whens, and Thens,

10 Cucumber [Online]. Available at: https://cukes.info/
11 Gherkin [Online]. Available at: https://cucumber.io/docs/reference#gherkin
12 Feature [Online]. Available at: https://cucumber.io/docs/reference#feature
13 Steps [Online]. Available at: https://cucumber.io/docs/reference#steps

https://cukes.info/
https://cucumber.io/docs/reference#gherkin
https://cucumber.io/docs/reference#feature
https://cucumber.io/docs/reference#steps

Page 31 of 110

Figure 2.15: Describing a software feature (in Gherkin) using Cucumber.

In Cucumber and Gherkin, a feature is allowed to have a Background14 section. Figure

2.16 shows an example of this. It is optional in a feature and is placed before the

scenarios and below the feature title. This section collects preconditions (given steps)

that are required/repeated in all of the scenarios under it into a single location. In turn,

this makes each scenario shorter and easier to maintain. However, it may make the

feature as a whole less readable.

Figure 2.16: An example of Cucumber’s Background.

Cucumber introduces additional entities on top of Gherkin. Cucumber allows a

Scenario Outline15 section. An example of a scenario outline is shown in Figure 2.17.

A scenario outline can be described as a scenario with placeholders in its steps.

Placeholders (i.e. variables in a scenario) are contained within the “< >” delimiters.

Scenario outline exists to avoid the need for repetitive scenarios which only differ in

their input/output values such as is shown in Figure 2.18. Therefore, an Examples

section is introduced below a scenario outline. This section is essentially a table giving

sets of placeholder values. It acts as a way of resolving the repetition problem by

14 Background [Online]. Available at: https://cucumber.io/docs/reference#background
15 Scenario Outline [Online]. Available at: https://cucumber.io/docs/reference#scenario-outline

https://cucumber.io/docs/reference#background
https://cucumber.io/docs/reference#scenario-outline

Page 32 of 110

combining the repetitive scenarios into a single scenario (outline). Their differing

input/output values are put into a table instead of separate scenarios.

Figure 2.17: An example of Cucumber’s Scenario Outline.

Figure 2.18: An example of potential Scenario Outline candidates.

For cases where a step requires more than a single line to convey its intention, the user

can rely on Doc Strings16 (Figure 2.19) and Data Tables17 (Figure 2.20). It is important

to note that doc strings are written within delimiters consisting of three double-quote

marks whereas each cell in a data table is delimited by the “|” character.

16 Doc Strings [Online]. Available at: https://cucumber.io/docs/reference#doc-strings
17 Data Tables [Online]. Available at: https://cucumber.io/docs/reference#data-tables

https://cucumber.io/docs/reference#doc-strings
https://cucumber.io/docs/reference#data-tables

Page 33 of 110

Figure 2.19: An example of Cucumber’s Doc String.

Figure 2.20: An example of Cucumber’s Data Table.

In Cucumber, on the lines following a feature, background, scenario, scenario outline,

or examples, the user is allowed to write any amount of plain text as long as the text

does not start with any of Cucumber’s keywords (e.g. Given, When, Then, And, But).

This piece of text is known as a Description18. It can be used to provide further details

on important aspects of the feature or even for user comments. An example of this is

shown in Figure 2.21.

Figure 2.21: An example of using descriptions in Cucumber.

Once the features have been written, the next step would be to write some code to

implement the features. As mentioned previously, the automation process is not

complete until the examples have been linked to the production code. This is handled

by the glue code which needs to be written by the developers. The same process

applies to Cucumber. In Cucumber, glue code is known as Step Definitions19. A step

18 Descriptions [Online]. Available at: https://cucumber.io/docs/reference#descriptions
19 Step Definitions [Online]. Available at: https://cucumber.io/docs/reference#step-definitions

https://cucumber.io/docs/reference#descriptions
https://cucumber.io/docs/reference#step-definitions

Page 34 of 110

definition helps translate the Gherkin syntax from the customer examples into the

same actions at the code level. Figure 2.22 shows the step definitions that are able to

support the feature file from Figure 2.15. Cucumber looks for matching step

definitions (written in Ruby) when executing a scenario. Therefore, a step definition

is accompanied by a pattern statement. Once a match is found, the code associated

with the step definition is then executed. The code in this case refers to the production

code (the application/software itself) which the developers will also have to write. It

also indicates whether or not the scenario passes. A passing scenario indicates that the

behaviour (of the software under construction) the scenario describes has been

implemented/is working correctly. However, a failing scenario indicates otherwise.

Figure 2.22: An example of a step definition (written in Ruby).

After the step definitions and production code have been created, the only thing left to

do is to execute the feature file. Figure 2.23 illustrates what is output when the feature

is executed using the command line (after Cucumber has been installed). The results

are informative enough such that the developers should not have much trouble

debugging a failed scenario.

Figure 2.23: Executed Cucumber feature file.

Page 35 of 110

2.6 Conclusion

This chapter has provided the underlying foundation for the project. The concepts and

purpose of Software Requirements Engineering, SbE, ATDD, and BDD have been

presented. Additionally, FitNesse and Cucumber were introduced to show how ATDD

and BDD are used in practice. In the following chapter, an analysis of the project’s

problem domain will be discussed.

Page 36 of 110

Chapter 3 : Duplication Detection and Analysis

3.1 Overview

Now that the definitions of ATDD and BDD have been established, the discussion can

shift towards the research question introduced in Chapter 1 i.e. can a software tool

detect the same duplications in BDD specifications as human experts do and provide

refactoring suggestions that human experts think are worth applying?

The chapter will begin by discussing the reasons for using BDD and Cucumber in this

project. The discussion will then proceed with an in-depth review of the project’s

problem domain i.e. the duplication problem. The algorithms used for detecting and

refactoring duplications in BDD specifications are also explained in this chapter.

Finally, the methodologies used in this project are briefly discussed.

3.2 Why BDD & Cucumber?

There are various existing ATDD and BDD tools. For the purpose of this project,

Cucumber was selected out of the many to help answer the project’s research question.

However, this was not decided at random. During the initial stages of the project, a

survey was done on the existing ATDD and BDD tools. The survey included

understanding the purpose of the tool, what makes it unique, and potential issues

observed from the author’s hands-on use of the tool. The results of this survey have

been tabulated into Tables 3.1, 3.2, 3.3, and 3.4. Gathering this data helped narrow

down the choices of ATDD/BDD tools for the project.

In Tables 3.1 and 3.2, the “automation language” column refers to the primary

programming language used for the tool’s glue code and the “test syntax” column

refers to the primary structure of a test written with the tool. The “aim(s)/purpose”

column was necessary to help understand what makes a particular ATDD/BDD tool

different from the others and whether it had an advantageous feature over them. As

for the “problem(s) observed” column, the observations were gathered through hands-

on experience with the tools. One of the purposes of gathering this information was to

gain an insight as to how customer-friendly the tools are. This is an important factor

because (in theory, at least) the customers will be using the ATDD/BDD tools as much

as the development team will. Therefore, it is best to not turn customers off from them

for the reasons mentioned in Section 2.3.

Page 37 of 110

As for Tables 3.3 and 3.4, the findings were limited to the support tools (i.e.

extensions) of FitNesse and Cucumber. In order to reduce the scope of ATDD/BDD

tools, the project had to shift its focus towards the most popular ATDD and BDD tools

i.e., FitNesse and Cucumber, respectively. Gathering the data for these tables was

necessary in order to gain further understanding on the limitations of FitNesse and

Cucumber as well as why these support tools were needed in the first place. In

addition, there was insufficient time to gather information on every existing support

tool.

From the findings shown in the tables, most of the ATDD/BDD tools share a similar

trait whereby the process of writing the tests is done manually and the test’s

consistency/structure is not maintained by the tool.

BDD was chosen as the focus for this project due to its nature of being more customer-

focused than ATDD [19]. ATDD tends to be more developer-focused. It is geared

towards capturing software requirements in the form of acceptance tests which in turn,

help drive the development process. BDD cares more about the expected behaviour of

the software system rather than testing its implementation details. BDD is also more

widely adopted in the software industry [20]. Therefore, it is more beneficial to focus

efforts on BDD for the project.

The Cucumber tool was selected for the project because not only is it popular amongst

the BDD community but also due to its major feature which is that it could support

plain text BDD specifications [21]. This was important since it eases the customer into

joining the collaboration process. Since (in theory) Cucumber is optimized for

customers (instead of testing/technical staff), it is essential that the tests/features

created with the tool remain readable at all times [22].

Page 38 of 110

ATDD Tools

Tool name URL Automation

language

Test

syntax

Aim(s)/purpose Problems observed

FitNesse http://fitnesse.org/ Java Decision

table

To automate

acceptance testing

through a wiki.

Difficulty in editing tables

(through FitNesse editor). For

example, removing a column

would require the user to remove

each row within that column one-

by-one.

Robot Framework http://robotframework.org/ Python Keyword-

driven

To automate ATDD. Readability is affected by a

mixture of comments and test

cases within a specification. Since

both use plain text, it becomes

difficult to distinguish one from

the other.

Concordion http://concordion.org/ Java HTML To allow customer

examples be

expressed in a natural

Writing of tests is done with basic

HTML. The customer might not be

open to that unless the writing is

http://fitnesse.org/
http://robotframework.org/
http://concordion.org/

Page 39 of 110

language (through

HTML).

entirely done by the development

team.

Table 3.1: ATDD Tools.

BDD Tools

Tool name URL Automation

language

Test

syntax

Aim(s)/purpose Problems observed

Cucumber https://cukes.info/ Ruby Gherkin To automate BDD

with plain text

support.

Similar issue with FitNesse whereby

making changes to a scenario that share

similar steps as another scenario would

require extra effort. Since this is done

manually by the user, it is prone to careless

mistakes (especially if the user needs to

make the changes to many scenarios).

JBehave http://jbehave.org/ Java Gherkin First automation tool

created to support

BDD.

Shares a similar issue with Cucumber.

Behat http://docs.behat.org/en/v2.5/ PHP Gherkin BDD framework for

PHP.

Shares a similar issue with Cucumber.

https://cukes.info/
http://jbehave.org/
http://docs.behat.org/en/v2.5/

Page 40 of 110

RSpec http://rspec.info/ Ruby Mixed Inspired by JBehave

and to provide Ruby

support for BDD.

The automation code is written alongside

the customer examples. This could

potentially turn off customers from using

the tool due to a lack of non-technical

interface.

EasyB http://easyb.org/ Java Groovy BDD framework for

Java.

Shares a similar issue with RSpec.

Table 3.2: BDD Tools.

FitNesse Support Tools

Tool name URL Aim(s)/purpose

GivWenZen https://github.com/weswilliams/GivWenZen Allow FitNesse to recognize BDD’s

given-when-then notation in its tests.

Cukable http://www.automation-excellence.com/software/cukable Allows running of Cucumber features

in Fitnesse.

Table 3.3: FitNesse Support Tools.

http://rspec.info/
http://easyb.org/
https://github.com/weswilliams/GivWenZen
http://www.automation-excellence.com/software/cukable

Page 41 of 110

Cucumber Support Tools

Tool name URL Aim(s)/purpose

Cucover https://github.com/mattwynne/cucover Skips a scenario/feature if the code has

not been changed since the last

execution.

Cucumber-Eclipse https://github.com/cucumber/cucumber-eclipse An Eclipse IDE plugin for editing and

running Cucumber features.

Guard:Cucumber https://github.com/guard/guard-cucumber Allows Cucumber features to be

automatically executed when changes

are detected.

Relish https://relishapp.com/ Allows Cucumber features to be viewed

from a web browser.

Table 3.4: Cucumber Support Tools.

https://github.com/mattwynne/cucover
https://github.com/cucumber/cucumber-eclipse
https://github.com/guard/guard-cucumber
https://relishapp.com/

Page 42 of 110

3.3 What is Duplication in BDD?

Like any complex computational artefact, Cucumber features can contain “smells”

[23]. In programming languages, these smells are referred to as code smells. A code

smell is an indication that something might be wrong in the code [24]. It usually stems

from a flaw in the code design. A code smell does not necessarily prevent the software

from running i.e. is not a bug. However, if left unattended, the smell may increase the

risk of bugs in the future. For developers/programmers, code smells are signs for when

refactoring is needed.

There are good and bad code smells. Duplicated code is a bad code smell. An example

of this is having the same fragment/block of code repeated in a method. This increases

the size/length of the method; making it difficult to follow/read. An option for

refactoring this problem would be to migrate the fragment into its own method. Now,

the fragment has a name and the method has gotten shorter. The single responsibility

principle is a good code smell. The principle states that every class is responsible for

a specific part of the software functionality and that its methods are catered towards

that responsibility. This keeps each class robust towards changes. Changes made to

one class would require minimal (at best, none) changes in other classes.

Duplication is one of many bad code smells and is defined as the action of

duplicating/repeating something. It is not necessarily a bug. For example, with

duplication, Cucumber features can still be correctly expressed, in that they describe

the desired behaviour. Most of the time, duplication is done unintentionally e.g. copy-

and-pasting. However, duplication can be interpreted differently depending on the

given context. To answer this question, a fair amount of familiarity with

BDD/Cucumber had to be achieved. Therefore, this section will be dedicated to

establishing what it means to have duplication in BDD. The Cucumber tool will be

used as the source of examples.

3.3.1 Good vs. Bad Duplication

Like code smells, there are good and bad kinds of duplication in BDD. Good

duplication refers to acceptable/necessary duplication in BDD specifications. For

example, the when step in Cucumber represents an event/action triggered by the user

and might be repeated in multiple scenarios. This is acceptable only if each of the

scenarios has different pre-condition (given) and/or outcome (then) steps. As shown

Page 43 of 110

in Figure 3.1, an event (when) with different preconditions (given) might lead to

different outcomes (then). The two scenarios shown in the figure are part of the

“addition” event but one scenario has two operands in its pre-condition whereas

another scenario has three operands.

Figure 3.1: An example of a repeated event condition in scenarios.

Bad duplication refers to duplication that does not contribute to the story that a BDD

specification is trying to convey i.e. it is unnecessary. For example, in the Cucumber

feature and shown in Figure 3.2, two or more scenarios have the exact same

descriptions/titles. The title of a scenario is important because it represents a summary

of the behaviour of the software i.e. how it should behave in different situations. It

confuses the reader if there are two or more of the same scenario titles in the feature

since the reader has to distinguish between the scenarios by reading their steps. This

defeats the purpose of having a title in the first place. It is worse if the scenarios have

the same list of steps. That shows a clear duplication and would only prove to be a

waste of space.

Figure 3.2: An example of duplicated scenario descriptions.

Page 44 of 110

Figure 3.3 shows another example of bad duplication. In the figure, both features have

different scenarios/behaviours but they are part of the same software functionality.

There is confusion when it comes to adding new “addition” scenarios to the feature

i.e. “Which feature do we add the new scenario to and how do we decide this?” Each

feature describes the behaviour of the software and has a set of scenarios that illustrate

examples for that behaviour. Therefore, any scenario that is related to the feature

should be grouped together in the same location. This allows the features to be

cohesive and distinguishable from one another.

Figure 3.3: An example of duplicated feature titles.

Another example of bad duplication comes with the given step. Each scenario should

have a precondition to define its context for the example at hand. The given step is

responsible for this task. At times, the same precondition is needed to set things up for

the scenario. Figure 3.4 illustrates an example of when the precondition is used in

more than one scenario. The consequence of repeating the preconditions is that if they

are required to be changed, the changes would have to be made in all of the scenarios

that have the same precondition step.

Figure 3.4: An example of a repeated pre-condition in scenarios.

This project will be focusing on reducing bad duplication in BDD/Cucumber

specifications.

Page 45 of 110

3.4 Importance of Reducing Duplication in BDD

It is important that duplication in BDD be avoided (or at least, kept to a minimum).

As mentioned in Section 2.5, one of the main reasons for using BDD is to allow

customers to get involved in writing and checking the specifications. So, it is vital for

the specifications to remain readable and consistent at all times. If they are difficult to

read/follow, the customer will possibly avoid using them. This leads to difficulty in

getting clarifications for unambiguous software requirements from the customer.

Additionally, the specifications’ quality is affected greatly when duplication is

introduced. This makes it difficult to trust their authenticity since there is a worry that

duplication exists somewhere in them and that it may affect their outcome.

BDD specifications should be readable. This means that reading a BDD specification

should not be complicated. The reader should be able to understand what each

Cucumber feature is about through the feature title. The examples/scenarios should be

descriptive enough such that the user does not have to refer to the steps in order to

decipher their meaning. The steps are meant to provide a walkthrough towards

achieving the goal that the scenario has specified. However, it is easy to write

irrelevant steps that the user is forced to read around. Introducing duplication to the

specifications will only make reading them difficult. This also makes the scenario

longer than necessary. A good rule of thumb is to write steps pertaining to what needs

to be done instead of how it is done [25]. Figure 3.5 (taken from D. Kennedy [26])

shows an example of what bad and good Cucumber features can look like. Both

features represent the same example and behaviour. However, the feature on the right

has removed irrelevant steps from its example and kept steps that are important for

expressing the example. It is difficult to grasp the important points in the feature on

the left due to the need to rummage through the less important steps. In addition, the

feature on the right has added a narrative to make the story clearer.

Figure 3.5: Side-by-side comparison of bad and good Cucumber features.

Page 46 of 110

Another reason for avoiding duplication is to help keep test suites small and efficient

to execute, so that developers can maintain them. Therefore, BDD specifications

should not only be readable but easily maintainable. If duplication is introduced into

the specifications, the creator of the specifications is expected to fix it. It is harder than

it sounds. For example, a repeated scenario has been inserted (possibly, copied-and-

pasted) into a Cucumber feature unknowingly. This is possible if the feature already

has a large number of scenarios in it and the user overlooked the scenario that already

exists. Later on, the creator has to manually look through the feature for the duplication

and remove it. Likewise, the same can be said when/if one of the duplicates needs to

be updated/changed. This gets increasingly tedious and risky if there is more than one

repeated scenario in the feature and there are many features to look through. Since the

removal of the duplicates is done manually, it is easy to overlook a few. Another

example is if the creator wanted to remove repeated pre-conditions from the scenarios.

The creator might carelessly remove more than he/she was aiming for in the first place.

Features that passed initially may fail after the changes were made or features that

would have failed because of the deleted precondition may now pass. Ultimately, the

creator would have to proceed with debugging the failing features and trace back

his/her changes to locate the source of the problem. Again, the situation is worse if the

changes were made towards many features.

If left untreated, duplication can build up and a significant amount of effort and time

would have to be put into refactoring the specifications later on. The issues depicted

here could be avoided if the creator of the specifications was aware that duplicates

were being created in the early stages/as the features are being written.

3.5 Near-duplicates

So far, the discussion has been directed towards exact duplicates. However, there is a

need to take into account near-duplicates as well. Near-duplicates detection is defined

as identifying entities that might differ slightly from one another but are close enough

to be considered as duplicates. For example, within the context of Cucumber, given

two textually distinct steps in a Cucumber feature, do they have the same meaning?

This is also known as semantic equivalence. Another instance of near-duplication

could be when two Cucumber steps differ from one another only in the placement of

punctuation marks (e.g. full stop). Figure 3.6 shows two steps that are not exact

matches but are pointing to the same meaning and can be considered as duplicates of

Page 47 of 110

one another. One of the objectives of this project is to flag for near-duplicates in BDD

specifications.

Figure 3.6: An example of (semantically) equivalent steps.

Again, this comes back to improving the readability of specifications. Similar

features/scenarios/steps would only serve to confuse the reader. Using BDD should

not create further ambiguities. Having near-duplicates in the specifications also brings

up further questions regarding which of the similarities should be kept and which

should be refactored.

3.6 Rules for Detecting Duplication

There is the issue of how one can judge whether two or more BDD entities are truly

bad duplicates of one another. In addition, good duplications should be allowed. If a

software application were to detect duplications in the specifications, would human

experts (ones who are well-versed with BDD) detect the same duplications? It is

important for the application not to flag duplicates that are necessary to the

specifications. This would only serve to confuse the application user. The point to

make here is to ease the use of BDD for users and guide them into writing the right

BDD specifications from the very beginning. Therefore, it is essential to establish what

constitutes bad duplication and what does not in this project.

A set of rules (that has not been proposed before) was established for detecting

whether duplications exist in BDD specifications/Cucumber features. These rules act

as functional requirements and are adopted by the tool implemented for the project

(also, to help answer the project’s research question). The tool is in the form of an

Eclipse IDE (integrated development environment) plugin named SEED20.

The rules for detecting duplications does not describe how duplications are detected

but what situations are considered as occurrences of duplication. The process of

20 SEED [Online]. Available at: https://github.com/waisuan/SEED

https://github.com/waisuan/SEED

Page 48 of 110

developing the rules was based on the author’s extensive use of the Cucumber tool.

The rules had to fit within the aim of the project. Therefore, the process (of developing

the rules) began with an overview of what the project was trying to achieve and how

SEED fit into all of it. The overview is shown in Figure 3.7. The main entities involved

in the project were the Cucumber specifications, SEED, and the user who will be using

SEED. The aim of SEED is to detect bad duplications in the specifications. The user

uses SEED in order to reduce/avoid duplications in the specifications that they,

otherwise, would have to search for manually. Therefore, the result of using SEED is

having the specifications marked with helpful diagnostics on places that contain

duplicates (which we will see later on). In order for this to happen, SEED had to be

implemented with information (i.e. rules) and methods (i.e. algorithms) for detecting

the duplications.

It is worth noting that, due to insufficient implementation time, the rules only apply to

duplications in individual Cucumber features. It would have been better to detect

duplications across two or more Cucumber features. However, Cucumber feature titles

are still compared and checked for duplications.

Figure 3.7: A high level outlook of the goal of the project.

3.6.1 Rule 1

The first rule is directed towards detecting duplications in syntactically/textually

equivalent matches of Cucumber entities (e.g. feature, scenario, and steps). This means

that the duplicates can either be exact or equivalent matches. The rule is as follows:-

 Two or more Cucumber features are duplicates of one another if their titles are

syntactically equivalent.

Page 49 of 110

 Two or more Cucumber scenarios/scenario outlines are duplicates of one

another if their titles and/or list of steps are syntactically equivalent.

 Two or more Cucumber steps in a scenario/scenario outline/background are

duplicates of one another if they are syntactically equivalent.

 Two or more rows in a scenario outline’s examples table are syntactically

equivalent.

 Duplication is found if a step(s) in a Cucumber scenario/scenario outline is

syntactically equivalent to a step(s) in the background section.

Exact matching is not enough to locate the duplicates since the matches need to be

character-by-character identical. For example, if the Cucumber entities consisted of

extra trailing spaces, the match would be broken. Therefore, the rule takes that into

account by including equivalent matches. Equivalence matching is similar to

comparing parse/syntax trees where wasteful information (e.g. extra spaces) is not

included in the matching process.

3.6.2 Rule 2

The second rule deals with near-duplications (briefly discussed in Section 3.5) of

Cucumber entities. When syntax matches fail to produce any results, it is worth

looking at semantic matches/equivalences. However, it is difficult (for SEED) to

confirm whether the semantic/similar matches should be considered as duplications.

There may be cases where further evaluation from the user of SEED on the matches

found is required. The rule is as follows:-

 Two or more Cucumber features are duplicates of one another if their titles

have the same meaning.

 Two or more Cucumber scenarios/scenario outlines are duplicates of one

another if their titles have the same meaning.

 Two or more Cucumber steps in a scenario/scenario outline/background are

duplicates of one another if they have the same meaning.

 Duplication is found if a step(s) in a Cucumber scenario/scenario outline has

the same meaning as a step(s) in the background section.

3.6.3 Rule 3

The third rule focuses on the pre-condition step(s) (i.e. given steps) of the Cucumber

scenarios in a feature. As mentioned in Section 2.5.1, Cucumber provides a

Page 50 of 110

background section for pre-condition steps that are required by all of the scenarios in

the feature. The section helps reduce the number of steps in a scenario, making it

smaller and easier to read. The user of Cucumber might not always be aware of this.

Therefore, if a syntactically or semantically equivalent pre-condition step(s) is

repeated in all of the scenarios in the feature, they are considered as duplicates.

However, if there are only two scenarios in the feature, it might not be necessary to

move the pre-conditions into the background.

3.6.4 Rule 4

The fourth rule deals with Cucumber scenarios that are different from one another only

by their input or output values as shown in Section 2.5.1. They are not wrong but if

there are many of these scenarios, the feature can get quite large. In Cucumber, the

scenario outline section is able to solve this issue by combining the scenarios into a

single section whilst using the examples table to hold the different input/output values.

Therefore, if two or more scenarios differ only by their input/output values, they are

considered as duplicates. However, if the scenario outline makes it harder to read (e.g.

through the examples table) than the individual scenarios, combining them might not

be the best option.

3.6.5 Decision Tree

As a visual aid of the rules (of detecting duplication) discussed previously, a decision

tree diagram (as shown in Figure 3.8) was constructed. The decision tree encompasses

the decision-making process that comes with looking for duplications in a Cucumber

feature. The flowchart-like structure starts with a Cucumber feature and progresses

according to yes or no answers. The goal is to reach either one of the following results:

No duplicates, Duplicates found, and Invalid. Additionally, the decision tree made it

easier to track the development progress of SEED since each block represents a

behaviour/action that SEED should have. Therefore, by following the flow of the tree,

the development of SEED could be done incrementally until completion.

Page 51 of 110

Figure 3.8: Decision Tree Diagram.

3.7 Duplicate Detection Algorithm

The algorithms (implemented in SEED) for detecting duplications is divided into two

categories; exact- and near-duplication. Although both algorithms differ in logic and

steps, their intentions are the same; searching for duplications in BDD

specifications/Cucumber features.

3.7.1 Exact Duplicate Detection

The following equation is used to indicate when two Gherkin expressions are equal.

Gherkin1 = Gherkin2

In Cucumber features, plain text follows the Cucumber keywords. The plain text is

first extracted from a Cucumber entity (e.g. scenario, step, and feature) before being

used as input(s) for the detection algorithm. The algorithm can be broken down into

the following important points:-

 The pieces of text are compared character-by-character.

Page 52 of 110

 In order to avoid getting false negatives (e.g. two pieces of text are actually

duplicates but the algorithm failed to detect it), each character of the text is

converted into lower case before comparison. The algorithm also removes

extra (trailing) spaces within the text before comparison. As long as two pieces

of text have the exact same characters, they are considered as duplicates.

 To avoid unnecessary checks, candidates (i.e. two pieces of text) that differ in

length are excluded from duplicate detection.

3.7.2 Near-Duplicate Detection

The following equation is used to indicate when two Gherkin expressions are

equivalent.

Gherkin1 ≡ Gherkin2

As mentioned in Section 3.5, near-duplicate detection not only covers minor

differences in syntax but also semantic equivalences. The algorithm chosen for

detecting semantic equivalences is based on the Dice coefficient algorithm.

Dice coefficient is a “term based similarity measure” [27]. The calculation for the

similarity measure is based on the formula shown in Equation 3.1 where C is the

number of common terms (in the form of bigrams) found in both pieces of text, L1 is

the number of terms in the first piece of text, and L2 is the number of terms in the

second piece of text. A bigram is “a pair of consecutive written units such as letters,

syllables, or words”21. For the algorithm, words are used as bigrams. In summary, the

measure is defined as twice the number of common terms divided by the total number

of terms in both pieces of text. The result of this algorithm is a value ranging between

0 and 1 whereby 0 indicates (complete) dissimilarity between the pieces of text and 1

indicates that the pieces of text are identical.

Equation 3.1: Dice coefficient formula.

21 Bigram [Online]. Oxford Dictionaries. Available at:
http://www.oxforddictionaries.com/definition/american_english/bigram

http://www.oxforddictionaries.com/definition/american_english/bigram

Page 53 of 110

The algorithm can be broken down into the following steps:-

1. Let the first piece of text be S and the second piece of text be T

2. Split S and T into two arrays of bigrams.

3. Calculate the length of each array.

4. Combine both arrays into a single array of bigrams.

5. Calculate the length of the single array.

6. Calculate the total number of common terms/bigrams found in S and T.

7. Finally, calculate Dice coefficient based on the formula shown in Equation 3.1.

Figure 3.9 illustrates an example of the Dice coefficient algorithm applied to two

pieces of text. The intersection process collects the bigrams that exist in both pieces

of text. The formula is only applied after they have been collected. The vertical bars

in the formula represents the magnitude of an array. In conclusion, the similarity

between “MALAYSIA” and “MALDIVES” is 30% (the coefficient value is expressed

in percentage for easy viewing and is rounded to the nearest whole number) i.e. they

are not similar.

Figure 3.9: A working example of the Dice Coefficient algorithm.

It is possible that the algorithm can produce a misleading result i.e. sometimes state

that two strings are similar when a typical native speaker would disagree. At the time

of writing, there is ongoing research on improving the strength of finding near-

Page 54 of 110

duplicates amongst strings. Therefore, for this MSc project, it is necessary to choose

a threshold/Dice coefficient for recognizing equivalent statements in BDD

specifications. This threshold must be carefully selected to reduce the number of false

matches. In other words, two pieces of text are regarded as similar if their Dice

coefficients are above or equal to the threshold. To establish this threshold, the

algorithm had to be run against a set of situations where near-duplicates should be

found and could exist in Cucumber features. The results are shown in Table 3.5.

Context Example
Similarity

Measure

Steps differ in only

their input/output

values.

“there are 12 cucumbers”

“there are 20 cucumbers”
93%

“the cow weighs 450 kg”

“the cow weighs 500 kg”
92%

Statements differ by

placement of

punctuation mark(s).

“the weather is good today”

“the weather is good today.”
97%

“however, this is still incorrect”

“however this is still incorrect”
98%

Statements that have

different arrangement

of words but have the

same meaning (e.g.

active/passive verb

forms) (i.e. semantic

equivalency).

“the professor teaches the students”

“the students are taught by the

professor”

73%

“James washes the dishes”

“the dishes are washed by James”
85%

“I repaired the car”

“the car was repaired by me”
85%

“she is making dinner tonight”

“dinner is going to be made by her

tonight”

74%

“I have to complete the project before

the deadline”

“the project will have to be completed

by me before the deadline”

90%

Table 3.5: Dice coefficient for syntactically and semantically equivalent statements.

Page 55 of 110

Table 3.5 highlights three situations where near-duplicates could occur in Gherkin

expressions. Multiple examples were used to ensure that the similarity measure

threshold is consistent against a given situation. The challenge resided in identifying

whether two pieces of text are semantically equivalent. Therefore, more tests were run

for that particular situation. From the results shown in the table, a safe/reasonable

threshold for identifying near-duplicates in Cucumber features (with the Dice

coefficient algorithm) is 73%. The percentage is taken from the lowest (possible)

similarity measure generated within the given situations. In conclusion, if statements

within a Cucumber feature are checked for near-duplication and the similarity measure

is above or equal to 73%, they are considered as near-duplicates/equivalent/similar. It

is important to note that there is still a need for the user of SEED to decide whether

the statements are truly similar/dissimilar (to avoid false positives/negatives).

There are other algorithms similar to Dice coefficient that focus on measuring

similarities between pieces of text (i.e. strings). Due to the nature of the project

requirements for detecting near-duplicates in Cucumber features (as shown in Table

3.5), the Dice coefficient algorithm was deemed to be the most suitable for the project.

However, this was only decided after a series of experiments (as shown in Table 3.6)

using various other algorithms to determine their strength in identifying equivalency

within the context of BDD. These algorithms were chosen based on their popularity

in the field of approximate string matching. As shown in Table 3.6, the Dice

coefficient algorithm proved to be the most consistent in identifying similarity

between the chosen statements.

Example
Levenshtein

Distance

Longest

Common

Substring

Jaro-

Winkler

Distance

Dice

Coefficient

“the cow weighs 450 kg”

“the cow weighs 500 kg”
90% 29% 98% 92%

“however, this is still

incorrect”

“however this is still

incorrect”

97% 25% 99% 98%

Page 56 of 110

“the professor teaches the

students”

“the students are taught by

the professor”

40% 68% 78% 73%

“James washes the dishes”

“the dishes are washed by

James”

37% 67% 66% 85%

“I repaired the car”

“the car was repaired by

me”

35% 62% 0% 85%

“she is making dinner

tonight”

“dinner is going to be

made by her tonight”

46% 76% 0% 74%

“I have to complete the

project before the

deadline”

“the project will have to

be completed by me

before the deadline”

54% 68% 77% 90%

Table 3.6: String similarity-matching algorithms ran against syntactically and

semantically equivalent statements.

3.7.3 Model of Duplication

Figure 3.10 shows a representation of the duplication model in SEED. The model was

created based on the rules in Section 3.6. Each component in the model represents a

specific (class of) duplication in Cucumber. Duplicates detected by SEED are grouped

together under the components of the model. The model is described as follows:-

 Step in Scenario/Outline/Background. This duplication is part of Rule 1 and 2

whereby two or more Cucumber steps are either equivalent or have the same

meaning.

 List of steps. This duplication is part of Rule 1 where two or more Cucumber

scenarios/scenario outlines have the same list of steps.

Page 57 of 110

 Feature title. This duplication is part of Rule 1 and 2 whereby two or more

Cucumber feature titles are equivalent or have the same meaning.

 Scenario. This duplication is part of Rule 4 whereby two or more Cucumber

scenarios differ only by their input/output values and can be combined into a

scenario outline.

 Step already exists in background. This duplication is part of Rule 1 and 2

whereby steps in the background section and steps in the Cucumber

scenarios/scenario outlines are equivalent or have the same meaning.

 Scenario/Scenario outline title. This duplication is part of Rule 1 and 2

whereby two or more Cucumber scenario/scenario outline titles are equivalent

or have the same meaning.

 Examples table row. This duplication is part of Rule 3 whereby two or more

rows in an Examples table are equivalent.

Figure 3.10: Duplication Model in SEED.

3.7.4 Process Flow

Figure 3.11 shows where the algorithms (discussed earlier) fit in the overall process

of detecting duplication in Cucumber features. Note that the entire process takes place

within the Eclipse IDE (where SEED resides).

SEED has a parser for parsing Cucumber features. The parser uses the Gherkin

grammar to convert the strings (from the Cucumber feature) into an abstract syntax

tree (AST) during runtime. An AST is a representation of the source code (which in

this case is the Gherkin grammar) as a tree whereby each node in the tree represents a

Page 58 of 110

construct occurring in the source code (e.g. step keywords and step descriptions). 22

Figure 3.12 shows an example of the tree after the parser is run against a Cucumber

feature. The leaf nodes represent the strings of the Cucumber entities. The parsing of

a Cucumber feature (by the parser) is triggered (automatically) when the feature file

is opened on the Eclipse IDE editor.

After the Cucumber feature(s) has been parsed, SEED is able to call upon the

implemented methods (encompassing the algorithms) to detect exact- and near-

duplication (from the AST). The leaf nodes of the AST are the core entities in

determining whether duplication has been found or not. In SEED, every rule defined

in Section 3.6 has its own (implementation) method and each method takes in the

appropriate Cucumber entity (as an input parameter) that is related to the rule. For the

example shown in this process flow, duplicate Cucumber scenario titles were found.

The method for checking whether duplicate scenario titles exist accepts the Scenario

node/entity as its input parameter. The method compares the scenario titles by their

string (the leaf nodes of the AST) using the exact- and near-duplicates detection

algorithms.

At the implementation level, each of the detected duplicates is contained in a wrapper

object. The wrapper object was specifically designed and implemented for this project.

The wrapper consists of the following details: Cucumber entity type (e.g. Scenario),

the string of the entity, and the message to appear on the Eclipse IDE editor for the

duplicate text found. The contents of the wrapper are passed (through a method call)

to the internal components of the Eclipse IDE and Eclipse underlines the duplicates in

its editor (similarly to how Eclipse typically marks issues on its editor). Apart from

duplication detection and creating the wrapper, this operation is done entirely by

Eclipse. The underlined/marked duplicate is also shown in the process flow figure (at

the end of the process).

22 Abstract Syntax Tree [Online]. Available at: http://c2.com/cgi/wiki?AbstractSyntaxTree

http://c2.com/cgi/wiki?AbstractSyntaxTree

Page 59 of 110

Figure 3.11: Flow of Duplication Detection.

Page 60 of 110

Figure 3.12: Abstract syntax tree produced by the parser after parsing a Cucumber feature.

Page 61 of 110

3.7.5 Limitations

As mentioned, there is a risk of getting misleading results when searching for near-

duplication/similar matches. The Dice coefficient threshold established in the previous

section does not guarantee that there will be no false matches. Additionally, string

similarity matching algorithms are more suited for checking syntactic equivalence

than semantic equivalence. It is difficult to judge whether two pieces of text have the

same meaning (through a software tool) since the text can have different arrangements

of words but still contain their meaning.

An idea for a more reliable alternative would be comparing parse trees. A parse tree

represents the syntax of a string in the form of an ordered tree and is generated from

the parser. Duplication is detected if two or more strings have the same parse trees. To

bypass the different arrangements of strings, one could just compare the leaf nodes of

the trees. If the trees have the same list of leaf nodes, then they are considered as

equivalent and are duplicates.

3.8 Refactoring

"Refactoring is the process of changing a software system in such a way that it does

not alter the external behaviour of the code yet improves its internal structure." (p. 9

[24]). The refactoring process typically refers to the software code. However, this

process can also be adopted in BDD specifications. It generally means making

descriptions of computational behaviour (like code and BDD specifications) cleaner

and clearer without changing its underlying functionality (e.g. step definitions/glue

code).

After providing helpful diagnostics to the Cucumber user regarding potential

duplications in the specifications, the next step for the user/creator of the specifications

would be to remove the duplications i.e. refactor. The refactoring operation can be

automated. The Eclipse23 IDE does this by listing down all valid refactoring steps for

a particular issue (as shown in Figure 3.13) and allows the user of the IDE to choose

which to apply. SEED also acts similarly (as shown in Figure 3.14). Automation

removes the need for making the refactoring changes manually, leaving it open to

23 Eclipse [Online]. Available at: https://eclipse.org/home/index.php

https://eclipse.org/home/index.php

Page 62 of 110

careless mistakes as described previously. However, in order for it to be useful, the

refactoring options (through automation) should reflect the same options that human

experts generally think of e.g. would a Cucumber user typically migrate repeated pre-

conditions into the Background such that it becomes a valid refactoring option?

Figure 3.13: An example of quick fixes on Eclipse.

Figure 3.14: SEED’s quick fixes.

Figure 3.18 shows the overall process flow of refactoring Cucumber features with

SEED. SEED uses the information from the duplications detected to carry out the

refactoring operations. SEED’s refactoring operations/methods are responsible for

locating the duplications on the Eclipse editor and manipulating the string of the

duplications. The updated strings are passed (by SEED) to Eclipse’s internal

components for the actual removal of the duplications on the editor (by replacing the

duplications with the updated/new strings). There are multiple options that the user (of

SEED) is able to choose for removing duplications. The following is a list of the

available refactoring options that SEED provides:-

 Rename. This option is available when exact duplicates (e.g. feature titles,

scenario titles, and step descriptions) are found (Rule 1 & 2). SEED appends

the duplicate’s line number (in the Eclipse editor) onto the to-be-refactored

text (as shown in Figure 3.15). It would have been better to put up a dialogue

for the user (of SEED) to enter the new name since appending the line number

does not necessarily improve the quality of the Cucumber feature.

Unfortunately, there was insufficient time to implement this functionality.

Page 63 of 110

Figure 3.15: Example of renaming duplications.

 Remove. This option is available when exact/equivalent duplicates (e.g.

feature titles, scenario titles, and step descriptions) are found (Rule 1 & 2).

SEED will remove the duplicate text entirely.

 Migrate to Background. This option is available when repeated pre-

conditions are found in the Cucumber feature (Rule 3). SEED moves these

steps into the background portion (will be created if it does not exist) of the

feature. An example of this is shown in Figure 3.16.

Figure 3.16: Example of moving pre-condition steps to the background.

 Combine. This option is available when similar scenarios are found in the

feature i.e. scenarios with steps that differ in only input/output values (Rule

4). SEED offers to help combine these scenarios into a scenario outline. Figure

3.17 shows an example of this. The question marks serve as placeholders for

the examples table’s column header names. The naming is left to the users of

SEED.

Page 64 of 110

Figure 3.17: Example of combining scenarios into a scenario outline.

Figure 3.18: Flow of refactoring.

3.9 Methodology

The following sub-sections outline the steps taken in the project.

3.9.1 Information Gathering

The majority of the effort and time during the initial phase of the project was dedicated

towards gathering information on the existing ATDD/BDD tools and our current

understanding of the ATDD/BDD process. The aim was to gain a strong understanding

of the project requirements. A problem domain (i.e. duplications in BDD) was then

selected to focus on following the conclusion of the background research.

The tasks undertaken are as follows:-

Page 65 of 110

1. Reading theses and scientific papers – The literature covered the study of

ATDD and BDD. This helped highlight the advantages and drawbacks of both

concepts.

2. Surveying online resources, specifically blogs and forums focused on ATDD

and BDD tools – These contained discussions of the problems that users faced

whilst using the tools.

3. Investigating existing support tools – The support tools are extensions/plug-

ins to the parent tools (e.g. FitNesse/Cucumber/Robot). They were created

either to ease the use of the parent tools or solve an identified issue with the

parent tool. (For example, a plug-in that gives Python support to FitNesse).

The project aimed to tackle an unsolved problem(s) surrounding the tools.

Therefore, it was necessary to exclude existing work and solved problems from

the project.

4. Hands-on use of FitNesse and Cucumber – In order to gain a perspective on

the issues surrounding these tools, both the tools were experimented with.

3.9.2 Development

A plugin tool was developed for the project. The design of the tool took place after the

project context had been fully understood. The development process followed a

broadly agile approach of organising the tasks into small iterations. An iteration lasted

for two weeks. Each iteration consisted of the following phases: requirements

gathering, design & implementation, and testing.

1. Requirements gathering: Requirements of the tool were gathered through

discussions with the supervisor.

2. Design: Feature designs of the tool were discussed with supervisor before

coding.

3. Testing & Implementation: This phase followed the process of TFD (Test-First

Driven Development) where unit tests were written before any coding took

place. The tests helped measure the progress of development.

3.9.3 Deliverables

The final set of deliverables are divided into the following artefacts:-

Page 66 of 110

1. A survey of ATDD/BDD tools (and their respective supporting tools) with the

results compiled into a tabular format for easy viewing. The table describes the

key features of the tools and the issues that have been observed for each tool.

2. A set of rules for detecting duplications within BDD specifications.

3. A plugin tool that detects duplications in Cucumber features.

4. A plugin tool that proposes refactoring suggestions to the detected

duplications.

5. A dataset containing the results from the evaluation of the tool.

3.9.4 Evaluation

The evaluation process occurred towards the end of the project. The process sought to

answer the research question introduced in Chapter 1. The project’s final results were

the outcome of this process. For the approach, Cucumber features were retrieved from

open source projects that make use of the Cucumber tool. These projects were located

within GitHub.

3.10 Conclusion

This chapter has provided a detailed outlook on the problem tackled by the project and

the implications of having (bad) duplication in BDD specifications. The methods used

to tackle the duplication problem were also shown. At the time of writing,

Cucumber/BDD tools have yet to address the problem outlined in this chapter. The

following chapter gives an overview of the architecture design and implementation

details of the tool implemented for the project.

Page 67 of 110

Chapter 4 : Realizing the SEED tool

4.1 Overview

This chapter will give an overview of SEED’s architectural design as well as its

implementation details.

4.2 Software Design

This section discusses the overall design and architecture of SEED.

4.2.1 Eclipse Plug-in Architecture

As stated in Section 3.6, SEED is an Eclipse IDE plug-in application. Before

discussing SEED’s components, it is necessary to show the overall architecture of an

Eclipse IDE plug-in and how it fits into the Eclipse IDE.

An IDE is a software development workspace that integrates multiple development

utilities into a single location such that developers can maximize their productivity by

not worrying about configuration/setup tasks. The Eclipse IDE architecture is made

up of layers of plug-ins. Each plug-in represents a specific task and it is these plug-ins

that bring end user functionality to Eclipse. It is important to note that these plug-ins

are dependent on the IDE and don’t work by themselves. The IDE/platform itself

manages the complexity of integrating these plug-ins together to form a running

application. Eclipse comes with a few default plug-ins that represent the basic

functionality of the IDE. However, the IDE is able to integrate with additional plug-

ins for adding (more) functionality to the platform.

Figure 4.1 shows a high level overview of the Eclipse plug-in architecture. The

workbench UI component represents the interfaces in Eclipse (e.g. menus and editors)

and allows new UI/interface components to be added to it. The extension point serves

as an extension slot for the Eclipse component that is able to be extended for new

functionality (e.g. Workbench UI). The plug-in interface comprises of the services of

the plug-in’s behaviour/functionality. Eclipse connects the interface to the extension

point in order for the new functionality (i.e. the plug-in) to work.

Page 68 of 110

Figure 4.1: Overview of Eclipse plug-in architecture.

The minimal requirement for an Eclipse plug-in to work is having a manifest file (in

the plug-in). The file provides important details about the plug-in such as the plug-in

name, ID, version number, and the implementation code that makes the plug-in work.

An example of a simple Eclipse plug-in that adds a new item to the Eclipse menu is

shown in Figure 4.2.

Figure 4.2: A simple plug-in that adds a new item to the menu.

4.2.2 SEED Architecture

Figure 4.3 shows an (abstract) overview of SEED’s internal components. SEED is

made up of two main components: parser and engine. At the moment, SEED is geared

towards Cucumber features. However, it is possible to extend the plugin’s

functionality towards other BDD-based tests in future work.

Page 69 of 110

Figure 4.3: Architecture of the SEED plugin.

The purpose and functionality of the parser was examined in Section 3.7.4. ANTLR24

was used to generate the parser component. ANTLR is a “parser generator for reading,

processing, executing, or translating structured text” 25. In order for ANTLR to

generate the parser that is able to recognize the Gherkin language, it needs a grammar.

A grammar is defined as a set of rules for constructing valid strings/text according to

a language’s syntax. For this project, a grammar needed to be built around the Gherkin

language. With the help of the Cucumber development team26 and external work27 on

integrating Cucumber into the Eclipse IDE, we managed to construct a working

Gherkin grammar. The full Gherkin grammar can be found in Appendix A.

The engine component contains the sub-components for detecting and refactoring

duplications in Cucumber features. The methods for detecting duplication are

24 ANTLR [Online]. Available at: http://www.antlr.org/
25 ANTLR [Online]. Available at: http://www.antlr.org/
26 BNF [Online]. Available at: https://github.com/cucumber/gherkin/wiki/BNF
27 Cucumber Xtext [Online]. Available at:
https://github.com/rlogiacco/Natural/blob/master/org.agileware.natural.cucumber/src/org/agileware/na

tural/cucumber/Cucumber.xtext

http://www.antlr.org/
http://www.antlr.org/
https://github.com/cucumber/gherkin/wiki/BNF
https://github.com/rlogiacco/Natural/blob/master/org.agileware.natural.cucumber/src/org/agileware/natural/cucumber/Cucumber.xtext
https://github.com/rlogiacco/Natural/blob/master/org.agileware.natural.cucumber/src/org/agileware/natural/cucumber/Cucumber.xtext

Page 70 of 110

contained in the duplication detector sub-component. The rules and algorithms

discussed earlier are also implemented in this sub-component. They are used to

process the AST (generated from the parser component) for duplications. The

refactoring provider sub-component consists of the refactoring methods discussed in

Section 3.8 and is in charge of removing duplications from Cucumber features.

Figure 4.4 illustrates a deeper look at SEED’s architecture and where SEED’s

components are actually called/executed during runtime (i.e. when SEED is running

in Eclipse). As seen in the figure, Xtext plays a pivotal role in the runtime of SEED.

Xtext28 is a framework that assists in the development and integration of domain

specific languages (e.g. Gherkin) on the Eclipse IDE. It simplified the job of creating

SEED by automating some of the work and removing the need of creating the plug-in

from scratch. Xtext provides the necessary dependencies (libraries, files, and source

folders) and requirements (manifest) for an Eclipse plug-in to work. All we had to do

in order for SEED to fully function was to implement the duplication detection (and

refactoring) code for Xtext to call/execute and the grammar for the parser. Xtext can

be seen as the foundation of SEED’s architecture and is responsible for facilitating the

communication between Eclipse and SEED’s components. When a Cucumber feature

is opened (by the user) on Eclipse’s editor, Eclipse alerts Xtext to start the duplication

detection process. Xtext then passes this “message” on to SEED. During

runtime/duplication detection, Xtext facilitates the execution of the parser (i.e. we do

not have to explicitly call the parser in the implementation code) and passing of the

AST (from the parser) to the duplication detection methods (as input parameters).

SEED passes (any) detected duplications (in the form of wrappers) and refactoring

outcomes (updated/new strings) to Xtext before Xtext hands them over to Eclipse.

Eclipse then proceeds to update the Cucumber feature(s) accordingly i.e. underline

duplicates and/or replace duplicates with new strings.

28 Xtext [Online]. Available at: https://eclipse.org/Xtext/index.html

https://eclipse.org/Xtext/index.html

Page 71 of 110

Figure 4.4: Detailed outlook of SEED's architecture.

4.2.2 Domain Model Diagram

Following the architecture of the system shown in the previous section, a conceptual

model was constructed. In software engineering, this is known as a domain model. It

represents a high level abstraction of real world entities and their relationships that

cover the problem domain [28]. The model can go on to be translated into code and be

used to solve problems related to the problem domain. In other words, the domain

model diagram describes a link between the problem domain (in the real world) and

the code. The purpose of creating the diagram was to illustrate how the (key)

components within the SEED architecture interact with one another. The domain

model diagram for SEED is shown in Figure 4.5 and was constructed/derived from the

implementation code. Most of the models in the diagram have already been mentioned

in the previous sections. The user model corresponds to the person who is using SEED

and is writing the Cucumber features.

Page 72 of 110

Figure 4.5: Domain Model of SEED.

4.2.3 Class Diagram

The classes in the domain model was then translated into programming code for a

more detailed outlook on the software structure. These detailed models are illustrated

as classes in a class diagram (as shown in Figure 4.6) which was also reverse-

engineered from the implementation code. The arrows indicate dependency whereby

the entity at the back of an arrow is dependent on the entity that the arrow is pointing

to. Looking at the diagram, each class has its own responsibilities and minimal

dependencies to one another. The GherkinValidator class was generated from Xtext.

It is called when SEED wants to detect duplications in Cucumber features (after

parsing). GherkinValidator then triggers the necessary classes into carrying out

specific tasks. It acts as a gateway to the rest of the classes and is therefore, dependent

on those classes. The classes are as follows:-

 CucumberDuplicateChecker. This class contains methods responsible for

detecting exact- and near- duplicates.

 CucumberBackgrounder. This class contains methods responsible for

identifying repeated pre-condition steps in the Cucumber feature.

 CucumberFileHandler. This class contains methods responsible for comparing

all Cucumber features within the Eclipse project workspace for duplications.

 GherkinQuickfixProvider. This is the class of the refactoring provider

component. It is dependent on the GherkinValidator class because each

refactoring option/method is unique to the type of duplication found.

Page 73 of 110

Figure 4.6: Class Diagram.

4.3 Version Control System

“A version control system is a repository of files, often the files for the source code of

computer programs, with monitored access. Every change made to the source is

tracked, along with who made the change, why they made it, and references to

problems fixed, or enhancements introduced, by the change.” [29]

It is important for any software development project to adopt a backup strategy for its

source code. This is to avoid the risk of losing any of the project’s important files.

Also, any unwanted changes made to the code can be reverted to its previous version.

For this project, Git29 was the tool used to handle the version control. Backup copies

of the source files are stored in a remote repository. The working/original copy is kept

in the local environment/repository for development. Git offers several useful

commands for manipulating these repositories but the following had the most uses in

the project:-

 Commit. Save any changes to the source files into the local repository.

 Push. Send these changes to the remote repository for saving.

 Pull. Retrieve the latest copy of the files from the remote repository and into

the local repository.

29 Git [Online]. Available at: https://git-scm.com/

https://git-scm.com/

Page 74 of 110

GitHub and GitLab were used in this project as well. They are web-based versions of

Git i.e. they provide access to remote repositories through a web browser and various

other protocols. GitLab (a repository server provided by the University of Manchester)

was used to store the source code whereas a public GitHub account served as the

download/update site for users to install the SEED plugin. Eclipse requires a URL/site

for downloading and installing plugins into the IDE. They can be accessed through the

following links:-

 GitLab: https://gitlab.cs.man.ac.uk/waisuan.sia/seed

 GitHub: https://github.com/waisuan/SEED

4.4 Functionality

The following sub-sections illustrates examples and the pseudocode of SEED’s

implemented functionality. Each functionality conforms to the rules defined in Section

3.6.

4.4.1 Duplicate Cucumber Feature Titles Detection

The pseudocode for detecting Cucumber feature titles is shown in Figure 4.7. The

process of detecting duplications is slight different from detecting them within

individual Cucumber features. SEED has to firstly read all of the files in the currently

active project workspace on Eclipse. SEED then iterates through the files and a file is

detected for duplication if it is a Cucumber feature file and it is not the same file as the

currently opened/active Cucumber feature file (on the Eclipse IDE editor). After a file

has been selected for detection, SEED’s parser converts the file into an abstract syntax

tree (AST). We will refer to this file as other feature to distinguish itself from the

active feature file. The titles are then extracted from the active Cucumber feature and

the other feature. Both titles are subjected to the removal of extra spacing and changed

into lower cases so that they do not escape from (possibly) being detected as

duplications. As seen in the pseudocode, exact matches (==) are first checked. If no

matches were found, the titles are then checked for near-duplications (diceCoefficient).

The input of this algorithm/pseudocode is the (active) Cucumber feature node/object

from the feature’s AST. The output, however, is a list of duplications that were

detected. Each duplication (i.e. Cucumber feature object) is stored in a wrapper object

which was briefly discussed in Section 3.7.4. Figure 4.8 and 4.9 shows examples of

duplicate Cucumber feature titles detected by SEED.

https://gitlab.cs.man.ac.uk/waisuan.sia/seed
https://github.com/waisuan/SEED

Page 75 of 110

Figure 4.7: Pseudocode for detecting duplicate Cucumber feature titles.

Figure 4.8: Two different feature files with the same title.

Figure 4.9: Two different feature files with similar titles.

Page 76 of 110

4.4.2 Duplicate Cucumber Scenario Titles Detection

The pseudocode for detecting duplicate Cucumber Scenario titles (in a feature) is

shown in Figure 4.10. The logic/process applies to Scenario Outline titles as well. The

steps are quite similar to detecting duplicate feature titles in terms of detecting exact-

and near-duplications. As seen in the pseudocode, the implementation consists of

nested loops. SEED iterates through all of the scenarios in the feature for the detection

process. For each scenario in the loop, SEED then iterates through all of the scenarios

(again) excluding the current scenario (that is being compared against) and compare

their titles. Figure 4.11 and 4.12 illustrates examples of duplicate scenario titles

detected by SEED.

Figure 4.10: Pseudocode for detecting duplicate Cucumber Scenario titles.

Page 77 of 110

Figure 4.11: Two scenarios with the same title/description.

Figure 4.12: Two scenarios with equivalent title/descriptions.

4.4.3 Duplicate Cucumber Scenario Steps Detection

The pseudocode for detecting duplicate list of Cucumber steps between scenarios is

shown in Figure 4.13. The pseudocode is slightly different from the earlier

pseudocodes. There are a total of three (nested) loops. The first two loops serve the

same purpose of iterating through all of the scenarios. The third loop compares both

scenarios step-by-step. The comparison is done between the step’s descriptions

(strings). Again, the descriptions are first checked for exact matches before checking

for near-duplications. However, the duplications (i.e. Cucumber scenario objects) are

not added to the list of wrappers right away. Since we are dealing with a list of steps,

each step has to be compared before determining whether both scenarios have the same

list of steps. The numberOfDuplicationsDetected counter is responsible for keeping

Page 78 of 110

track of the number of duplicate steps that has been detected so far. After each step

has been compared, the counter is compared against the total number of steps that the

scenarios have. If they are equal, it means that there are duplicates. If not, it means

that there are different step(s) in each of the scenario. Figure 4.14 shows an example

of duplicate list of steps detected by SEED.

Figure 4.13: Pseudocode for detecting duplicate list of Cucumber steps.

Figure 4.14: Two different scenarios having similar list of steps.

Page 79 of 110

4.4.4 Duplicate Cucumber Examples Table Rows Detection

The pseudocode for detecting duplicate rows in Cucumber Examples tables is shown

in Figure 4.15. The input is a Cucumber Scenario outline object. For this

implementation, a collection object/data structure is used to track the duplicates in the

table. The collection does not contain duplicate elements. Before adding a row into

the collection, if the row already exists in the collection, then duplication is found.

Also, each row is compared in its entirety i.e. not cell by cell. This is done by (first)

converting the entire row into a string. Figure 4.16 shows an example of duplicate

table rows detected by SEED.

Figure 4.15: Pseudocode for detecting duplicate Examples table rows.

Figure 4.16: Repeated rows in Examples table.

4.4.5 Duplicate Cucumber Steps Detection

The pseudocode for detecting duplicate Cucumber steps within a Scenario/Scenario

Outline/Background is shown in Figure 4.17. The implementation code is very similar

Page 80 of 110

to detecting duplicate Scenario titles (Section 4.4.2). Instead of comparing titles, the

step descriptions are compared for duplications. Figure 4.18 shows an example of

duplicate steps detected by SEED.

Figure 4.17: Pseudocode for detecting duplicate Cucumber steps.

Figure 4.18: Exact and equivalent steps detected.

Figure 4.19 shows the pseudocode for detecting steps (in scenarios/scenario outlines)

that already exist in the Cucumber background section. The implementation code

works by comparing each step in the background against each step in every

scenario/scenario outline. Figure 4.20 shows an example of steps that are already in

the background section.

Page 81 of 110

Figure 4.19: Pseudocode for detecting steps that already exist the Background

section.

Figure 4.20: Exact and equivalent steps already exist in the background section.

4.4.6 Duplicate Cucumber Pre-condition Steps Detection

The pseudocode for detecting pre-condition steps that exist in every Cucumber

scenario (or scenario outline) in the feature is shown in Figure 4.21. The

getAllPreconditionSteps is responsible for gathering the given-and steps (there may

be more than one) from a scenario. As for comparing the precondition steps, the

method is similar to Section 4.4.3 where the comparison is done between lists of steps.

A COUNTER is used to keep track of the number of duplicates. If the number matches

the total number of scenarios in the feature, then there are duplicates. Figure 4.22

shows the refactoring provider of SEED suggesting to put the repeated pre-conditions

into the background section.

Page 82 of 110

Figure 4.21: Pseudocode for detecting pre-condition steps repeated in every

scenario.

Figure 4.22: Pre-condition steps repeated in every scenario of the feature.

Page 83 of 110

4.4.7 Duplicate Cucumber Scenarios Detection

Figure 4.23 shows the pseudocode for detecting whether two or more scenarios in a

feature can be combined into a single scenario outline. This is done by comparing the

scenarios’ titles and steps. If they are different by a single value/word, then they can

be combined. For example, “the cow weighs 450 kg” and “the cow weighs 500 kg”

differ in only their weight. Figure 4.24 depicts scenarios that have different

input/output values and SEED offers the option of refactoring them. The “?”

placeholder in the generated scenario outline allows the user (of SEED) to rename the

column headers according to his/her preference.

Figure 4.23: Pseudocode for detecting similar scenarios.

Figure 4.24: Scenarios that differ in their input/output values can be combined into

a scenario outline (through refactoring/quick fix).

4.5 Testing

Testing is an important aspect of any software engineering project. The purpose of

creating tests is to ensure that the software application works as expected and fulfils

Page 84 of 110

the needs of the customer/user. It is no different for this project and the development

of SEED.

4.5.1 Unit Testing with Xtext

“At a high-level, unit testing refers to the practice of testing certain functions and

areas – or units – of our code. This gives us the ability to verify that our functions

work as expected.” [30]

Unit tests help ensure that the methods in SEED work as expected. Each failing test

indicates a possible error in the implementation. This helps a lot when changes are

made to source code or when new methods are introduced. By having a suite of unit

tests, the functionality of SEED can be quickly and continually verified. When a test

fails after the changes have been made, the new piece of code can be quickly

debugged/fixed. SEED’s unit tests are ran frequently to ensure that the functionality

is not broken at any time during development.

Xtext and JUnit were used to facilitate the testing process. JUnit30 is a unit testing

framework designed for testing Java code. Xtext simplified the procedure of testing

SEED. Due to the nature of SEED’s functionality i.e. it relies on parsed Cucumber

feature files in order to detect duplications, the parsing of the Cucumber features had

to be simulated before SEED’s functions could be tested. Xtext provides the

tools/libraries necessary for carrying out these tests. These tools can be seen on the

test code (for detecting duplicate scenario titles) shown in Figure 4.25. The test begins

by initialising a string consisting of a Cucumber feature with two scenarios. The

parser object is provided and executed by Xtext. It is used to convert the string into a

Java object (i.e. model). The assertNoErrors method is also provided by Xtext and its

function is similar to JUnit’s assertion methods. Internally, the method would go on

to call SEED’s duplication detection methods. In this case, the method is expecting no

errors (i.e. no duplications) from the execution of the methods. The execution of the

test is done by JUnit (called by Xtext) i.e. provides the pass or fail results for the tests.

30 JUnit [Online]. Available at: http://junit.org/

http://junit.org/

Page 85 of 110

Figure 4.25: Unit test code for detecting duplicate scenario titles.

Unfortunately, Xtext does not provide a method for expecting errors in the tests.

Therefore, the expectation of running SEED’s tests is to see failures. In this case, a

failed test is equivalent to passing the test. That is, duplication should be detected and

the appropriate warning/error messages should be displayed (as would be shown on

the Eclipse IDE editor). Figure 4.26 shows SEED’s suite of tests cases.

Figure 4.26: JUnit test cases for SEED.

Figure 4.27 shows the failure message containing the expected and actual output

results after running the test (from Figure 4.25). By looking at the failure message,

SEED’s functionality works as intended since duplicate scenario titles should be

Page 86 of 110

detected. The test is stating that it was expecting no errors from the Cucumber feature

but it received an error for the respective duplication detected.

Figure 4.27: Expected vs. actual results from a failed unit test.

4.6 Conclusion

The chapter showed an overview of SEED’s architectural design. Also, SEED’s

implementation details were shown in the form of pseudocode and example diagrams.

The next chapter will be examining the evaluation process of the project as well as

answer the project’s research question.

Page 87 of 110

Chapter 5 : Evaluation

5.1 Overview

The final phase of the project consists of evaluating the rules proposed in Section 3.6

for detecting and removing duplications in Cucumber features. This chapter begins by

laying out the purpose of evaluation and the expected evaluation results. It will then

go on to examine the approach taken for the evaluation process and the series of

experiments undertaken in the process. The results generated from the evaluation

process are compared with our predicted results and producing an answer to the

research question proposed in the project.

5.2 Hypothesis & Prediction

The research question can be broken down into the following:-

i. Can a software tool detect the same duplications in Cucumber features as

human experts do?

ii. Can a software tool provide refactoring operations in Cucumber features that

human experts think are worth applying?

The results in the evaluation process can be divided into several classes. This

classification is illustrated in Figure 5.1 and their definitions are as follows:-

 False Positives. Results in this class indicate that a Cucumber feature has

duplications when in fact it does not. Additionally, SEED proposes refactoring

changes that worsens the quality of the Cucumber feature.

 True Positives. Results in this class indicate that a Cucumber feature has

duplications and it truly does. Additionally, SEED proposes refactoring

changes that genuinely improves the quality of the Cucumber feature. The

intersection in the figure refers to the duplication/refactoring proposals

detected by both SEED and the human experts i.e. confirmed as true by the

human experts.

 False Negatives. Results in this class indicate that a Cucumber feature does not

have duplications when in fact it does.

If the tool does well, it would spot the same sets of duplications and make the same

refactorings as human experts do. We will declare SEED a success if it detects some

(though probably not all) of the duplications found by the human experts (of

Page 88 of 110

Cucumber) and proposes refactoring changes that match the actions of the human

experts. We also aspire to a small number of false positives from SEED and high

proportion of confirmed true positives.

Figure 5.1: Classification of evaluation results.

5.3 Approach

The approach taken for evaluating the effectiveness and usefulness of SEED was to

run SEED against a set of Cucumber features from external/third-party software

development projects. The projects were chosen for their use of the Cucumber tool.

They are also open-source and hosted on GitHub. Fortunately, the Cucumber team has

compiled a list of projects that specifically used Cucumber on Cucumber’s own

GitHub page. This list can be found in the following link:-

https://github.com/cucumber/cucumber/wiki/Projects-Using-Cucumber

The aim of running these tests against SEED is to determine if it is able to detect the

same issues as developers of the project did with the tests and refactor them in similar

ways as the developers. This method of comparison utilizes the commit/change log

that GitHub provides for each file in the project repository. The log encompasses the

history of changes that have been made to each file. Each commit in the changelog

represents one snapshot of the whole project. An example of a GitHub changelog

(taken from the Cucumber project: https://github.com/cucumber/cucumber-ruby) is

shown in Figure 5.2. From the log, specific answers can be deduced to questions such

as “what was the original content of the Cucumber feature?” and “what changes did

the developer(s) make to the feature and were the changes related to removing

https://github.com/cucumber/cucumber/wiki/Projects-Using-Cucumber
https://github.com/cucumber/cucumber-ruby

Page 89 of 110

duplications from the feature?” These answers help determine whether SEED is doing

the same or similar things as the developers.

Figure 5.2: History of Git commits.

The reason for using GitHub projects in the evaluation process is due to the need for

subjective views of human experts on the Cucumber features and for us to compare

SEED’s actions to. It would prove challenging to gather together lots of Cucumber

developers into a single location and carry out the evaluation process in their presence.

Therefore, as a proxy for the opinions of human experts, the GitHub changelog was

used. The changelog denotes past actions of the developers/human experts. An

assumption of this evaluation approach is that all changes made by the human experts

in the changelog are assumed to be necessary and right. SEED’s behaviour would then

be matched against these changes for verification.

The steps undertaken in the evaluation approach were as follows:-

1. Select a project (that has Cucumber features).

2. Select a Cucumber feature from the project.

3. If the feature does not have any changes in its changelog, go back to step 2.

4. Select the first/initial version of the feature file from the changelog.

5. Run the feature file against SEED (in the Eclipse IDE).

Page 90 of 110

6. Identify the warnings/errors generated by SEED.

7. Examine the versions/snapshots after the first version of the feature file. The

examination includes noting down the differences between versions i.e. what

changes were made by the developers.

8. Deduce whether the duplication issues identified and changes made to each

version correspond to SEED’s behaviour.

 Do the refactoring suggestions match with what the developers have

done?

 If so, are they sensible?

9. Repeat steps 2 – 8 until every cumber feature in the project has been

examined/evaluated.

10. Go back to step 1 until three projects have been examined.

After every Cucumber feature has been tested against SEED, the results are gathered

and analysed (as shown later on). The experiments (on the projects) are conducted in

order to gather the results. The discussion section will be assessing the success criteria

of the evaluation process.

5.4 Experiment 1

The Cucumber features used in this experiment were taken from the official Cucumber

project stored in the following repository:-

https://github.com/cucumber/cucumber-ruby

Running SEED against the Cucumber features that were created by the Cucumber

team themselves is a good indication of how useful SEED is. The expectation here is

that the Cucumber team is following their own recommended practices for writing

Cucumber features and that they are also careful about what to put on them. SEED

will then try to detect any (bad) duplications that the team might have missed out on.

Table 5.1 shows the total number of Cucumber features that were evaluated against

and analysed as part of the experiment.

Total No. of Cucumber features Total No. of commits/changes

69 375

Table 5.1: Total amount of feature files and commits in the Cucumber project.

https://github.com/cucumber/cucumber-ruby

Page 91 of 110

Since this was the first experiment conducted, the prediction made here was that most

of the exact/equal duplications would be detected by SEED. There might be some

similarity matches/near-duplicates detected as well. Also, every refactoring proposal

by SEED would match with the human expert’s commit actions.

The experiment began by identifying and splitting different types of errors/warnings

that were discovered by both SEED and the Cucumber developers. The findings were

then calculated and tabulated into Table 5.2. Duplication refers to the total number of

duplications found (by SEED) within the Cucumber features and their respective

versions in the changelog. Two or more of the same duplicates are calculated as one

duplication. Errors refer to issues detected when parsing the Cucumber features e.g.

missing scenario titles.

Type Count

Duplication 55

Errors 7

Table 5.2: Count of duplications & errors detected within the Cucumber features.

5.4.1 Duplication

The commits in the changelog help determine whether the human experts have

detected duplications in a Cucumber feature. A commit related to duplications is

understood to mean that the human experts have detected duplications in the feature

and has made an attempt to fix them if the changes made (in the commit) relates to

removing duplications.

Duplication Count of Duplicates

Detected by SEED and Human Expert 6

Should have been detected by Human

Expert

22

Should not have been detected by

SEED

27

Table 5.3: Count of duplications detected.

Page 92 of 110

Figure 5.3: Coverage of Duplication Detection in Experiment 1.

Figure 5.3 shows an in-depth analysis of the total number of duplications found in the

Cucumber features. The results for the Cucumber project were positive in terms of

duplications coverage. SEED managed to detect every single duplication that the

human experts (i.e. developers) found (i.e. confirmed true positives) and also those

that were not found by the human experts. According to Table 5.3, 6 out of the 55

duplicates (10%) were detected by both SEED and the human experts. The human

experts only realized the duplications after the Cucumber feature has been created and

therefore, required a separate/new commit in order to rectify this error. The

duplications found were from exact matches. There were a total of 6 exact match

duplications found by SEED.

40% of the duplications found by SEED were not detected by the human experts (i.e.

unconfirmed true positives). However, they should have been. This part of the

coverage was determined by whether the duplications corresponded to the rules stated

in Section 3.6 and the severity of the duplications. If the duplications were caused by

exact matches between two/more pieces of text in the Cucumber feature, then it should

have been resolved by the human experts. The near-duplicates were analysed before

they were tabulated in order to determine if they were considered as true or false

positives i.e. “were they semantically or syntactically equivalent?” The analysis was

done by referring to the discussion in Section 3.7.2. Additionally, if the near-duplicates

degraded the readability of the test (the similarities were too close to one another such

Page 93 of 110

that it was difficult to distinguish between them), they were put into this category. The

duplications consisted of 7 exact- and 15 near-duplicates.

The rest of the duplications (49%) detected by SEED were considered as false

positives. They were not detected by the human experts and (possibly) should not have

been detected by SEED as well. The duplications stemmed from the similarity

matching portion of the Cucumber features. There were a total of 27 near-duplicates

found. Apart from one false near-duplication, the rest of the similarities were correct

in terms of being near-duplicates. For example, “Exception before the test case is run”

and “Exception after the test case is run”. Nevertheless, they did not fit into the rule

of being near-duplicates within the context of BDD/Cucumber as discussed in Section

3.7.2 i.e. semantically equivalent.

5.4.2 Refactoring

In order to determine if the refactoring changes made by the human experts towards

the Cucumber features were the same as SEED’s suggestions, the duplications

detected by both SEED and the human experts had to be further examined. The

findings are shown in Table 5.4.

5 out of the 6 duplicates found by both SEED and the human experts had the same

refactoring suggestions by both SEED and the human experts. The suggestions

stemmed from the removal and renaming of duplicate text. The process began by first

identifying what sort of refactoring suggestions/options SEED provided for the

detected duplication. From there, the actual change made by the human experts was

observed and compared against SEED’s behaviour. If they matched, then it can be

deduced that SEED was behaving correctly.

There was only one occurrence whereby the refactoring done by the human experts

did not match with SEED’s suggestions. The Cucumber feature had a pre-condition

step repeated in every scenario. The feature did not have a background section. SEED

detected this and suggested to move the pre-condition into the background section.

However, the human experts opted to remove the pre-conditions entirely. Both are

viable options in handling the duplication. It is possible that the human experts deemed

the pre-condition unnecessary for the scenarios.

Page 94 of 110

Refactoring Count of Refactorings

Suggested by SEED and Human

Expert

5

Suggested by Human Expert only 1

Suggested by SEED only 1

Table 5.4: Count of refactorings suggested/done.

5.5 Experiment 2

The Cucumber features used in this experiment were taken from the official Gitlab

project stored in the following repository:-

https://github.com/gitlabhq/gitlabhq

Table 5.5 shows the total amount of Cucumber features that was evaluated against and

analysed as part of the experiment.

Total No. of Cucumber features Total No. of commits/changes

70 408

Table 5.5: Total amount of feature files and commits in the Gitlab project.

The project used in this experiment had significantly more cucumber features and

commits than in Experiment 1.

Learning from Experiment 1, we know that SEED is able to capture exact duplications.

Therefore, the success criteria remains the same. However, it is expected that there

would be more near-duplicates (similarity matches) than exact duplicates detected.

Refactoring proposals are still expected to match with the human experts.

Table 5.6 shows the total number of duplications found in this experiment.

Type Count

Duplication 347

Errors 0

Table 5.6: Count of duplications & errors detected within the Cucumber features.

5.5.1 Duplication

There were more duplications found in this experiment than in Experiment 1. The

average size of the Cucumber features were large i.e. had many lines. That may have

contributed to the number of duplications discovered (more opportunities for finding

https://github.com/gitlabhq/gitlabhq

Page 95 of 110

similarities in the feature). The duplications detected in this experiment had a

significantly high number of near-duplicates compared to exact duplicates. Most of

the Cucumber scenarios were long and focused too much on how things should be

done instead of what should be done which is considered to be a bad practice as

mentioned in Section 3.4. Figure 5.4 shows one of the Cucumber features in the project

that consisted of this bad practice. As one can see, the similar steps make it harder to

read and comprehend the scenario. Table 5.7 and Figure 5.5 show the coverage of

duplications detected in Experiment 2.

Figure 5.4: snippet_search.feature

Duplication Count of Duplicates

Detected by SEED and Human Expert 21

Should have been detected by Human

Expert

196

Should not have been detected by

SEED

130

Table 5.7: Count of duplications detected.

Page 96 of 110

Figure 5.5: Coverage of Duplication Detection in Experiment 2.

The results were positive as none of the duplicates went undetected by SEED i.e.

duplicates that were detected by the human experts were also detected by SEED. Out

of 347 duplications, 21 of them (6%) were detected by both SEED and the human

experts. Among the 21, there were 5 exact- and 16 near-duplicates.

56% of the duplications were considered as true positives but were not

detected/confirmed by the human experts. The process for determining this was

elaborated in Experiment 1. In this part of the coverage, there were 50- exact and 146

near-duplicates.

38% of the duplications were considered false positives. They were correct in terms

of being similar to one another. However, there is a need for further verification (from

the human experts) in order to confidently consider them as truly duplicates i.e. “do

the human experts consider the findings as duplications?” The duplications consisted

of only near-duplicates. There were a total of 130 near-duplicates in this part of the

coverage.

5.5.2 Refactoring

As shown in Table 5.8, SEED managed to propose nearly all of the same refactoring

options as the human experts’ behaviour in the changelog. 20 out of the 21 duplicates

found by both SEED and the human experts had the exact same refactoring behaviour.

The refactoring proposed dealt with the removal of the duplicates.

Page 97 of 110

There was only one occurrence whereby the refactoring proposed by SEED did not

match with the human experts’ actions. It had to do with the Cucumber feature having

the same pre-condition step in all of its scenarios. The feature had a background

section with three steps in the section. SEED proposed for a migration of the pre-

condition step into the background section. However, the human experts removed the

pre-condition instead.

Refactoring Count of Refactorings

Suggested by SEED and Human

Expert

20

Suggested by Human Expert only 1

Suggested by SEED only 1

Table 5.8: Count of refactorings suggested/done.

5.6 Experiment 3

The Cucumber features used in this experiment were taken from the official

RadiantCMS project stored in the following repository:-

https://github.com/radiant/radiant

Table 5.9 shows the total amount of Cucumber features that was evaluated against and

analysed as part of the experiment.

Total No. of Cucumber features Total No. of commits/changes

9 60

Table 5.9: Total amount of feature files and commits in the RadiantCMS project.

The amount of data analysed in this experiment was less than in Experiment 1 and

Experiment 2.

Learning from Experiment 1 and 2, the success criteria remains the same. Again, it is

expected that there would be more near-duplicates (similarity matches) than exact

duplicates detected. Although, the refactoring proposal for repeated pre-condition

steps is expected to be different between SEED and the human experts.

Table 5.10 shows the total number of duplications found in this experiment.

Type Count

Duplication 26

https://github.com/radiant/radiant

Page 98 of 110

Errors 0

Table 5.10: Count of duplications & errors detected within the Cucumber features.

5.6.1 Duplication

Experiment 3 was the only experiment to have the majority of the duplications be

detected by both SEED and the human experts. Table 5.11 and Figure 5.6 show the

coverage of duplications detected in Experiment 3.

Duplication Count of Duplicates

Detected by SEED and Human Expert 10

Should have been detected by Human

Expert

8

Should not have been detected by

SEED

8

Table 5.11: Count of duplications detected.

Figure 5.6: Coverage of Duplication Detection in Experiment 3.

There were a total of 10 out of 26 of the duplicates (38%) detected by both SEED and

the human experts. Again, no duplications went undetected by SEED. Of those 10, 2

were exact duplicates and 8 were near-duplicates.

The total number of duplicates that fell under the category of unconfirmed true

positives and false positives were equal. The true positives consisted of 6 exact- and 2

near-duplicates. The false positives, however, consisted of only 8 near-duplicates.

Page 99 of 110

5.6.2 Refactoring

As shown in Table 5.12, there were no discrepancies for the refactoring proposals

between Experiment 3 and the other experiments. There was only one occurrence

whereby the refactoring proposed by SEED did not match with the human experts’

actions. It had to do with repeated pre-conditions in the feature. The feature did not

have a background section. The repeated pre-conditions were renamed by the human

experts instead of being moved into the background section as suggested by SEED.

Refactoring Count of Refactorings

Suggested by SEED and Human

Expert

9

Suggested by Human Expert only 1

Suggested by SEED only 1

Table 5.12: Count of refactorings suggested/done.

5.7 Results & Discussion

The overall results of the experiments undertaken in the evaluation process proved to

be positive. By experimenting with different sized external project repositories, the

conclusions drawn became more trustworthy. Additionally, experimenting with more

than one repository helped to gauge the consistency of SEED’s behaviour and results.

SEED managed to detect every single duplication that were found by the human

experts i.e. no duplicates that were detected by the human experts but not by SEED.

Among the duplications detected, SEED also proposed the same refactoring options

as the actual actions of the human experts albeit with minor differences. However,

alongside the true positives, there were false positives detected in each of the

experiments.

The occurrence of near-duplicates was high in all three experiments compared to the

number of exact duplicates found. The reason for this was that the similarity matching

algorithm used (Section 3.7.2) not only looked for semantic equivalence but also

syntactically equivalent pieces of text. Therefore, the near-duplicates detected

consisted of both equivalence types. The assessment of near-duplicates proved to be

challenging as the similarities could fall under either (unconfirmed) true or false

positives. Close examination of the similarities had to be carried out before a decision

was made and the data was tabulated. Even though some of the similarity matches

Page 100 of 110

were categorized as false positives, it did not mean that they were incorrect (an

example was shown in Section 5.4.1). It meant that the false positives were not

considered as duplications within the BDD/Cucumber context but could still possibly

assist the user/human expert in improving their Cucumber features. Near-duplicates

that had a high syntax equivalence match (as shown in Section 5.5.1) were placed

under the (unconfirmed) true positive category since they worked against the

readability of the Cucumber feature.

Exact duplicates were managed well by SEED. Those that were not caught by the

human experts were categorized as (unconfirmed) true positives. However, there

might be an undisclosed reason as to why some exact duplicates went undetected such

as choosing to remove the duplicates at a later date or that the human experts did not

consider the duplications as problematic to the Cucumber features. Therefore, further

evaluation from on-site human experts may be required in order to verify the matches

found.

Refactoring proposals made by SEED were consistent throughout the experiments.

The refactoring mainly dealt with removal and renaming of the duplicates. They

proved to be viable options for the human experts to take when it came to fixing

duplications in the tests. However, the experiments shared a similarity of proposing

different refactoring actions for repeated pre-condition Cucumber steps than SEED.

This was the only refactoring suggestion that differed from the human experts. The

reason for this could possibly be that the human experts did not want to create a

Cucumber background section for only one pre-condition step.

All three experiments showed that there was a correlation between SEED and the

human experts in terms of what was considered as duplication in a Cucumber feature.

Figure 5.7 shows the overall results gathered for Experiment 1. It can be seen that the

results of SEED encapsulates the results of the human experts; results being the

duplications discovered. The number of false positives were significantly high in this

experiment compared to the rest of the detected duplications.

Page 101 of 110

Figure 5.7: Results for Experiment 1.

Figure 5.8 shows the overall results gathered for Experiment 2. The number of

(unconfirmed) true positives that went undetected by the human experts is higher than

the number of false positives in this experiment.

Figure 5.8: Results for Experiment 2.

Figure 5.9 shows the overall results gathered for Experiment 3. The number of

(confirmed) true positives that were detected by both SEED and the human experts is

higher than both the (unconfirmed) true positives that went undetected by the human

experts and the false positives that were detected by SEED. Additionally, the number

Page 102 of 110

of unconfirmed true positives is equal to the number of false positives in this

experiment.

Figure 5.9: Results for Experiment 3.

Overall, it can be deduced that SEED is able to capture the same duplicates as human

experts and refactor them in the same manner as human experts would. However,

further evaluation (by the human experts) might be needed for verifying the near-

duplicates detected by SEED and the ones that went undetected by the human experts.

Additionally, SEED has been deployed onto the Eclipse Marketplace. A snapshot of

this can be seen on Figure 5. 10. SEED can be found on the following link:

https://marketplace.eclipse.org/content/seed. The marketplace serves as a repository

for users of Eclipse to download Eclipse plug-ins. From the snapshot shown, SEED

has been downloaded/installed a total of five times since it was put on the marketplace.

https://marketplace.eclipse.org/content/seed

Page 103 of 110

Figure 5.10: SEED deployed on Eclipse Marketplace.

5.8 Conclusion

The chapter has explained in detail of the evaluation approach undertaken in the

project. The approach spanned over a total of three experiments. The raw data were

then collected and analysed accordingly. The results then lead to answering the

research question proposed in the project.

Page 104 of 110

Chapter 6 : Conclusion

The project began by establishing its aim of determining whether a software tool could

simulate the actions of a human expert in terms of detecting and refactoring

duplications in BDD specifications. As a result, the tool would help reduce

duplications in BDD specifications.

A thorough background research was conducted in order to gain a strong

understanding of the duplication problem. Through the research, the author learned

about the following concepts:-

 The limitations of gathering requirements in a software development project.

 The purpose of Specification-by-Example.

 The definitions of Acceptance Test-Driven Development and Behaviour-

Driven Development.

 The functionality of the FitNesse tool.

 The functionality of the Cucumber tool.

The author also learned that having duplications in BDD specifications make the

specifications difficult to maintain and read. However, removing these duplications is

not a simple task. Therefore, it was necessary to experience and experiment with

plausible sources of duplications in BDD specifications in order to define a set of rules

that are able to tell (whoever is reading these rules) that duplications exist in the

specifications. This process was done by the author’s extensive use of the Cucumber

tool. Then, the learning process extended towards algorithms that could be used to

detect exact- and near-duplications in the specifications.

The implementation portion of the project focused on developing an Eclipse plugin to

detect and refactor duplicates residing in Cucumber features. The algorithms and rules

were implemented into the plugin as well. The plugin was created to help answer the

aim/research question of the project.

The evaluation of the plugin and duplication rules proved to be successful according

to the results gathered from the process. As part of the evaluation process, the plugin

was compared against human experts’ actions in terms of GitHub commits done to

Cucumber features. After experimenting with three different GitHub repositories, the

evidence showed that the plugin was able to detect duplications that were also detected

Page 105 of 110

by the human experts and refactor them in the same way as the human experts did.

However, apart from the positive results, there were unconfirmed findings as well.

These unconfirmed findings consisted of duplications that were found by SEED but

not by the human experts. These duplications could be further broken down into

duplications that should have been detected by the human experts i.e. helpful and

duplications that possibly should not have been detected by SEED i.e. not helpful.

These duplications were determined by the author’s analysis and observations of the

findings. Therefore, further evaluation by the human experts may (still) be required to

verify the extra duplicates reported by SEED.

6.1 Future Work

Although SEED succeeded in answering the project’s research question, there is still

room for improvement. Currently, SEED only accommodates for Cucumber features.

Since Cucumber is not the only BDD tool out there, it would be beneficial to port

SEED’s functionality to span across other BDD-based tools. Therefore, SEED can

help reduce duplications in specifications that were not only created with Cucumber.

The rules created in this project for detecting duplications could be re-used and re-

applied for the other tools as well.

Detecting near-duplicates in specifications could also be improved and made to be

more reliable. As stated previously, alternative solutions could be looked at such as

comparing parse trees. The goal is to reduce the number of misleading results (false

positives) gathered when searching for near-duplications.

Work could also be done towards detecting duplications across multiple Cucumber

features aside from only their titles. This way, SEED is able to detect duplicate

scenarios that exist in two or more features. In addition, new rules will have to be

introduced and defined for this newfound functionality.

SEED currently renames duplications by appending the duplicates’ line numbers to

their text as part of the refactoring operation. However, as stated previously, this does

not improve the quality of the specifications i.e. it does not make it any more readable

than it previously was. A better solution would be to create a dialogue for the users (of

SEED) to type a new name of their choosing.

Page 106 of 110

Bibliography

[1] K. Pohl, Requirements Engineering: Fundamentals, Principles, and Techniques.,

Springer, 2010.

[2] M. Fowler, "SpecificationByExample," 18 March 2004. [Online]. Available:

http://martinfowler.com/bliki/SpecificationByExample.html . [Accessed February

2015].

[3] G. Adzic, Specification by example: How successful teams deliver the right software,

Manning Publications, 2011.

[4] J. Gregory, "ATDD vs. BDD vs. Specification by Example vs …," 31 August 2010.

[Online]. Available: http://janetgregory.blogspot.co.uk/2010/08/atdd-vs-bdd-vs-

specification-by-example.html. [Accessed February 2015].

[5] D. North, "Introducing BDD," 20 September 2006. [Online]. Available:

http://dannorth.net/introducing-bdd/. [Accessed February 2015].

[6] E. Hendrickson, "Acceptance Test Driven Development (ATDD): an Overview," 8

December 2008. [Online]. Available: http://testobsessed.com/2008/12/acceptance-test-

driven-development-atdd-an-overview/. [Accessed February 2015].

[7] T. u. Rehman, M. N. A. Khan and N. Riaz, "Analysis of Requirement Engineering

Processes, Tools/Techniques and Methodologies," Modern Education and Computer

Science Press, vol. 5, no. 3, p. 40 – 48, 2013.

[8] D. Pandey, U. Suman and A. K. Ramani, "An Effective Requirement Engineering

Process Model for Software Development and Requirements Management," IEEE

International Conference on Advances in Recent Technologies in Communication and

Computing, pp. 287 - 291, 2010.

[9] H. v. Vliet, "Requirements Documentation and Management," in Software

Engineering: Principles and Practice [2nd edition], Wiley, 1999, p. 241 – 242.

[10] L. Cao and B. Ramesh, "Agile Requirements Engineering Practices: An Empirical

Study," IEEE Computer Society, vol. 25, no. 1, p. 60 – 67, 2008.

Page 107 of 110

[11] B. Ramesh, L. Cao and R. Baskerville, "Agile Requirements engineering practices and

challenges: an empirical study," Information Systems Journal, vol. 25, no. 1, p. 449 –

480, 2010.

[12] M. Gartner, "Specification by Example – The Big Win," 5 February 2011. [Online].

Available: http://www.shino.de/2011/02/05/specification-by-example-the-big-win/.

[Accessed April 2015].

[13] L. Koskela, "Practical TDD and Acceptance TDD for Java Developers," in Acceptance

TDD explained, Manning Publications, 2007, p. 323 – 363.

[14] M. Fowler, "UnitTest," 5 May 2014. [Online]. Available:

http://martinfowler.com/bliki/UnitTest.html. [Accessed August 2015].

[15] A. Vlachou, "Test-Driven Development for Aspect-Oriented Programming,"

University of Manchester, 2014.

[16] J. Gregory and L. Crispin, "Getting Examples," in More Agile Testing: Learning

Journeys for the Whole Team, Addison-Wesley, 2014, p. 145 – 162.

[17] C. Solís and X. Wang, "A Study of the Characteristics of Behaviour Driven

Development," In Proceedings of the 37th EUROMICRO Conference on Software

Engineering and Advanced Applications (SEAA 2011), p. 383 – 387, 2011.

[18] D. North, "What’s in a story?," 11 February 2007. [Online]. Available:

http://dannorth.net/whats-in-a-story/. [Accessed April 2015].

[19] G. Esquivel, "Differences Between TDD, ATDD and BDD," 28 July 2014. [Online].

Available: http://gaboesquivel.com/blog/2014/differences-between-tdd-atdd-and-bdd/.

[Accessed August 2015].

[20] A. Hellesøy, "Behaviour Driven Development (BDD) in the Finance Sector," 22 June

2015. [Online]. Available: http://www.excelian.com/blog/behaviour-driven-

development-bdd-in-the-finance-sector/. [Accessed August 2015].

[21] J. Stenberg, "Behaviour Driven Development Tool Cucumber Questioned," 1 October

2013. [Online]. Available: http://www.infoq.com/news/2013/10/bdd-tool-cucumber-

questioned. [Accessed August 2015].

Page 108 of 110

[22] R. Lawrence, "Cucumber - Behavior Driven Development for Ruby," Methods &

Tools, vol. 19, no. 4, pp. 51 - 56, 2011.

[23] C. Parsons, "Make Cucumber features more readable with this one weird trick," 12

February 2014. [Online]. Available: http://chrismdp.com/2014/02/make-cucumber-

features-more-readable-with-this-one-weird-trick/. [Accessed August 2015].

[24] M. Fowler, Refactoring: Improving the Design of Existing Code, Addison Wesley,

1999.

[25] A. Ghahrai, "BDD Guidelines and Best Practices," 18 December 2014. [Online].

Available: http://www.testingexcellence.com/bdd-guidelines-best-practices/.

[Accessed August 2015].

[26] D. Kennedy, "Smelly Cucumbers," 13 January 2012. [Online]. Available:

http://www.sitepoint.com/smelly-cucumbers/. [Accessed August 2015].

[27] H. Chen, "String Metrics and Word Similarity [Master Thesis]," University of Eastern

Finland [School of Computing], 2012.

[28] D. Leffingwell, "Domain Modeling Abstract," 20 February 2014. [Online]. Available:

http://www.scaledagileframework.com/domain-modeling/. [Accessed August 2015].

[29] S. Yeates, "What Is Version Control? Why Is It Important For Due Diligence?," 1

January 2005. [Online]. Available: http://oss-watch.ac.uk/resources/versioncontrol.

[Accessed August 2015].

[30] T. McFarlin, "The Beginner’s Guide to Unit Testing: What Is Unit Testing?," 19 June

2012. [Online]. Available: http://code.tutsplus.com/articles/the-beginners-guide-to-

unit-testing-what-is-unit-testing--wp-25728. [Accessed August 2015].

Page 109 of 110

Appendix A: Gherkin Grammar (Gherkin.xtext)

grammar uom.ac.uk.msc.cucumber.Gherkin with

org.eclipse.xtext.common.Terminals

import "http://www.eclipse.org/emf/2002/Ecore" as ecore

generate gherkin "http://www.ac.uom/uk/msc/cucumber/Gherkin"

Feature:

 tags+=Tag*

 'Feature:'

 title=Title EOL+

 narrative=Narrative?

 background=Background?

 scenarios+=(Scenario | ScenarioOutline)+;

Background:

 backgroundKeyword=BackgroundKeyword

 title=Title? EOL+

 narrative=Narrative?

 steps+=Step+;

Scenario:

 tags+=Tag*

 'Scenario:'

 title=Title? EOL+

 narrative=Narrative?

 steps+=Step+;

ScenarioOutline:

 tags+=Tag*

 'Scenario Outline:'

 title=Title? EOL+

 narrative=Narrative?

 steps+=Step+

 examples=Examples;

Step:

 stepKeyword=StepKeyword

 description=StepDescription EOL*

 tables+=Table*

 code=DocString?

 tables+=Table*;

Examples:

 'Examples:'

 title=Title? EOL+

 narrative=Narrative?

 table=Table;

Table:

 rows+=TABLE_ROW+ EOL*;

DocString:

 content=DOC_STRING EOL*;

Title:

Page 110 of 110

 (WORD | NUMBER | STRING | PLACEHOLDER) (WORD | NUMBER |

STRING | PLACEHOLDER | STEP_KEYWORD | TAGNAME)*;

Narrative:

 ((WORD | NUMBER | STRING | PLACEHOLDER) (WORD | NUMBER |

STRING | PLACEHOLDER | STEP_KEYWORD | TAGNAME)* EOL+)+;

StepDescription:

 (WORD | NUMBER | STRING | PLACEHOLDER | STEP_KEYWORD |

TAGNAME)+;

StepKeyword: STEP_KEYWORD;

BackgroundKeyword: 'Background:';

Tag: id=TAGNAME EOL?;

terminal NUMBER: '-'? ('0'..'9')+ ('.' ('0'..'9')+)?;

terminal STEP_KEYWORD: ('Given' | 'When' | 'Then' | 'And' |

'But') (' ' | '\t')+;

terminal PLACEHOLDER: '<' !('>' | ' ' | '\t' | '\n' | '\r')+ '>';

terminal TABLE_ROW: '|' (!('|' | '\n' | '\r')* '|')+ (' ' |

'\t')* NL;

terminal DOC_STRING: ('"""' -> '"""' | "'''" -> "'''") NL;

terminal STRING:

 '"' ('\\' ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"' | "'" |

'\\') | !('\\' | '"' | '\r' | '\n'))* '"' |

 "'" ('\\' ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"' | "'" |

'\\') | !('\\' | "'" | '\r' | '\n'))* "'";

terminal SL_COMMENT: '#' !('\n' | '\r')* NL;

terminal TAGNAME: '@' !(' ' | '\t' | '\n' | '\r')+ ;

terminal WORD: !('@' | '|' | ' ' | '\t' | '\n' | '\r') !(' ' |

'\t' | '\n' | '\r')*;

terminal WS: (' ' | '\t');

terminal EOL: NL;

terminal fragment NL: ('\r'? '\n'?);

