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Abstract 

There is a wealth of data available related to drug ontologies which can be explored in order 

to extract important relationships between drugs. This is particularly important in cases 

where drugs share the same biomarkers such as a group of drugs targeting a specific type of 

cancer. This research aims to use Molecular and Gene Ontology matching between drugs, to 

highlight similarities and differences with respect to their Mechanisms of Action (MOA). The 

research was carried out on ‘Melanoma’ cancer-related drugs with a focus on developing a 

generic pipeline that can be extended to other groups of drugs. A numerical value of similarity 

was established between drugs using a combination of “Chemical Entities of Biological 

Interest (ChEBI)” for molecular ontology matching and “Gene Ontology Consortium” for Gene 

ontology matching. Data was then represented as a graph network where drugs represented 

nodes, relationships between drugs represented edges and weight represented level of 

similarity between drugs. First important relationship extracted was by ranking drugs with 

reference to their importance across graph centrality parameters including Degree, 

Closeness, Betweenness, PageRank and Eigenvector centrality. Unsupervised learning graph 

clustering techniques, including Chinese Whispers and Louvain Modularity, were applied to 

explore clusters between the drugs. Two important relationships were highlighted as a result 

of clustering; drugs that share the same dominant MOA were grouped together in a cluster 

and drugs that tend to have different MOA were placed in different clusters. Drugs were 

further ranked inside each cluster using centrality parameters of the network. Overall, drugs 

were clustered in groups, ranked in order of importance for both the whole network and 

inside individual clusters. The primary evaluation was done using silhouette coefficient, while 

secondary evaluation was done via general inspection by a domain expert. The confidence of 

results was strengthed by identifying similarities in clusters across multiple algorithms. 
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Chapter 1: Introduction 

Natural Language Processing (NLP) is a relatively emerging field of Computer Science, though 

its emergence can be traced back to 1950 when Alan Tuning proposed the “turing test” [1]. 

Advancements in supervised and unsupervised machine learning algorithms over the last two 

decades have shown new prospects in making data driven decisions across a range of 

application areas. In NLP domain, training text mining models open room for more advanced 

application areas such as social media analysis, sentiment and machine translation, fighting 

spam, etc. This research focuses on using Unsupervised Learning for biomedical text analysis. 

 

The amount of historical data available in the biomedical field is immense which presents 

certain challenges for its analysis. First of all, data available is predominantly unstructured 

and untagged i.e. not stored in relational databases from where specific things can be queried 

as desired. Though a lot of text is available for analysis in medical journals, the information is 

scattered within lines of text. So, the first challenge is extracting the information from 

multiple sources and storing it in a presentable and machine-readable format.  Secondly, 

merely extracting the information is not enough as it is not new knowledge; the main task is 

to learn from this information i.e. drawing pertinent conclusions that are not apparently 

visible and hidden deep within the data. 

 

A team of researchers have extracted information about cancer drugs and its interactions 

with other drugs and proteins at the National Centre for Text Mining (NaCTeM), the first 

publicly funded text mining center in the world. Researchers at NaCTeM used an online 

resource of biomedical papers, PubMed Library to extract drug references and their 

interactions into a single file. Their research acts as a building block for this research. Details 

of their research will be discussed later in this thesis. 

 

1.1 Motivation 

Cancer has one of the highest mortality rates. In 2012 alone, approximately 14 million cases 

were registered [2]. In next two decades following 2012, new cancer cases are expected to 

rise by about 70% [2]. There are different stages and types of cancer but usually, it is 

progressive, chronic and has a mild phenotype. The impact of cancer on human race is 
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overwhelming and the above statistics are a testimony to this fact. It not only highlights its 

significance but also makes it an important area for further exploration/research. 

 

In 2010, only two New Molecular Entities (NME) were approved by the United States’s Food 

and Drug Administration Authority to treat cancer. The maximum number of NMES registered 

raised to 11 in 2012 between the period of 2010 to first quarter of 2015 [3]. Failure of drugs 

has usually risen in phase 2 and 3 of testing due to under achievement of desired therapeutic 

effect or toxicity problems [4]. There is a need to explore new techniques in drug discovery 

to improve these numbers. There has also been a significant shift in research trends from 

focusing on selective drug target to multiple target approach[5].  

 

Hence, the motivation of the idea is to involve a more generalized novel approach to studying 

drug relationships by using similarities in drug ontologies in order to highlight a cluster of 

drugs that share the same MOA, rank dominant drugs in cancer research and rank dominant 

drugs sharing the same mechanism of action (MOA). It is hoped that uncovering these 

relationships will increase our current knowledge of cancer drugs and open new gateways for 

further research.  

 

1.2 Aim  

To cluster cancer-related drugs based on their drug ontologies in order to highlight similarities 

and differences in their mechanism of action (MOA) followed by ranking all cancer drugs (in 

their order of importance) and ranking top drugs inside individual clusters as well. 

 

1.3 Overview  

List of drugs and other important drug relationships are extracted from the input file provided 

by NaCTEM. The goal of the project is to cluster these drugs into different groups based on 

the similarity they project with respect to their MOA. The criterion of determining similarity 

in MOA is based on two types of drug ontologies; their molecular structure and gene ontology. 

Using the two ontologies, a numeric value of similarity is established that varies from 0 to 

100. The numeric value is calculated by first obtaining both molecular and gene drug ontology 
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trees for drugs in comparison and then finding out the overlapping terms in their ontological 

trees. Exact technicalities of calculating this numeric value would be established later.  

 

Once pairwise similarity of drugs is established then these results can be shown as an 

undirected and weighted graph network. Drugs inside the graph structure are then ranked 

using five different centrality parameters including Degree, Closeness, Betweenness, 

PageRank and Eigenvector Centrality.  

 

To explore hidden patterns of groups inside graph structure, three different unsupervised 

graph clustering algorithms are applied including Chinese Whispers, Louvain Modularity with 

Resolution 1 and Louvain Modularity with Resolution 0.6.  

 

Drugs are ranked inside each individual cluster of different experiments using same five 

centrality parameters used before to rank drugs for the whole graph network.  

 

1.3.1 Expected Outcome 

Expected outcome of research is to highlight vital relationships between drugs. Primarily: 

1. Highlighting groups of drugs that are similar according to their MOA. 

2. Highlighting groups of drugs that are different according to their MOA.  

3. Providing general ranking of all cancer-related drugs available in the data set. 

4. Providing ranking of drugs that corresponds to a specific MOA. 

 

1.4 Objectives 

1.4.1 Learning Objectives  

1. Research and select distinctive ontologies that would become the criterion of similarity 

between drugs. 

2. Devise a practical method to calculate similarity based on the ontologies selected. This 

includes understanding large databases of ontologies and then calculating the similarity 

between drugs based on each individual ontology. 

3. Exploring unsupervised graph clustering techniques including but not limited to Chinese 

Whispers and Louvain Modularity. 
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4. Exploring state of the art tools already available to implement the research including 

developing an application in Python using Pandas Library and using graph visualization 

tool, GEPHI. 

 

1.4.2 Deliverable Objectives  

1. Implement a text mining workflow that integrates several sources of ontologies together. 

2. Extract ontologies of each drug and calculate pairwise weight (similarity) with all other 

drugs in the data set for different ontologies. 

3. Clustering of drugs into groups of similarity and publish graphs for visual understanding. 

4. Report the performance of using different clustering algorithms such as number of 

clusters detected, distribution of clusters and the percentage accuracy of the cluster etc.   

5. Report recommendations for future work/research. 

 

1.5 Thesis Breakdown 

Chapter 1: Introduction- gives a generic introduction to the research, while explaining the 

motivation behind it. Expected outcomes, aim and objectives of the research are also 

established here.  

 

Chapter 2: Background- identifies and describes different components which are used as 

building blocks for the research. Specifically, it explains: 

1. What is MOA?  

2. Describes the source of drug data set. 

3. Presents the two drug ontologies that are used to find similarity between drugs. 

4. Introduces graph clustering algorithms that are used for unsupervised learning. 

5. Introduces centrality indices that are used for drug ranking. 

 

Chapter 3: Literature Review- explains the extant literature concerning research 

methodology of using drug ontologies for cancer research. Furthermore, relevant literature 

with respect to the clustering algorithms used in this research and other similar machine 

learning approaches used for cancer research is also shared. 
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Chapter 4: Methodologies and Implementation- aspects related to project flow and research 

methodology employed are discussed. Important aspects are enumerated below: 

1. Details about scope of the project.  

2. All input data sources including NaCTEM input file, databases of molecular and gene 

ontologies.  

3. Choice of relevant tools for data processing and data visualization. 

4. A summary of experiment flow. 

5. Details of individual implementation steps.  

6. Establishment of evaluation parameters.  

 

Chapter 5: Results and Analysis- some important points discussed in this section are: 

1. General statistics of the graph network are calculated for different data sets. 

2. Results of drug ranking across centrality parameters are shown. 

3. Clustering results across different algorithms are shown with analysis of the results. 

4. Top drugs inside individual clusters are also listed with respect to overall centrality 

parameters. 

5. Evaluation results are discussed. 

6. Views on future of research are discussed including recommendations and improvements. 

 

 

 

  



17 
 

Chapter 2: Background 

2.1 Mechanism of Action 

As already stated, the aim is to cluster drugs together on the basis of their MOA. MOA is a 

broad term and can be used interchangeably with different words depending on the context. 

In the biomedical domain, it refers to “biochemical interaction” that results in a drug 

producing its desired therapeutic pharmacological effect [6]. It usually involves an interaction 

of drug and molecular drug targets such as enzyme, receptors, ion channels, transporter 

proteins etc. to which a drug binds [7]. These reactions can cause two things; drug can either 

stimulate receptors (Agonists Drugs) or hinder stimulation of a receptor (Antagonists Drugs). For 

instance, HMG-CoA reductase (a rate controlling enzyme of the mevalonate pathway) inhibitors give 

improved regulation of cholesterol biosynthesis thus reducing the occurrence of heart 

diseases, asthmatic patients can now enjoy a better quality of life due to Leukotriene receptor 

antagonists, and the list goes on and on [8]. After having gained a basic understanding of 

MOA, let us have a look at their importance.  

1. Generally, if drugs have similar MOA, then they share the same inducing effect; either 

good or bad which can be used to foresee issues concerning clinical safety. For example 

in case of anti-inflammatory drug development, targeting cytoplasmic membrane or 

electron transport chain is more likely to cause toxicity problems [9]. 

2. In depth understanding of MOA gives us an insight as to how a drug affects a drug target, 

which acts a stepping stone to the synthesis of new drugs. Similar drugs can be 

synthesized to replicate these reactions. 

3. In some cases, it can lead to delivery of more customised medication for better treatment.  

For example, [10] mentions that “Trastuzumab” drug is known to target “HER2” protein 

but only a particular strain of breast cancer contains this protein. Patients can be screened 

for “HER2” and if the protein is found then a customized treatment plan can be 

recommended using Trastuzumab. 

4. Cancer patients have often been advised a cocktail of drugs targeting multiple drug targets 

to ensure a small alteration in tumour DNA will not result in cancer treatment failure [11]. 

 

How does this research fits in to the bigger picture? Clustering of drugs according to their 

MOA will divide the drugs into groups that share common mechanism of action. This provides 

a stepping stone for cocktail generation as different clusters should target different MOA, 

thereby inhibiting multiple targets simultaneously. It will also help doctors make better 
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decisions, for example if a drug does not work well in the first round of chemotherapy then 

he may choose drugs for the second round from some other cluster. Likewise, distinctions 

and similarities between groups of drugs should highlight new insights in their MOA. In this 

research, the focus will only be on clustering of drugs. However, further biomedical analysis 

may be carried out to experimentally verify the relationships. 

 

2.2 Cancer Research 

There have been impressive breakthroughs in modern medicine over the last century. By 

focusing specifically on the MOA i.e. receptor subtype profile, better medication is now 

available for HIV, osteoporosis, migraine headaches etc. [8]. However, there still exists a lot 

of room for improvement in the realm of drug discovery particularly for diseases like cancer 

which still presents a potent challenge. Cancer is not something very rare; according to a 

research by British Journal of Cancer, 1 in 2 people will get cancer in their lifespan if they are 

born in England after 1960 [12]. There are two main troubles with cancer treatment. Firstly, 

its ability to evolve i.e. if a single drug receptor that is being targeted changes, the whole 

treatment for cancer fails. Hence the use of cocktail of drugs to target multiple drug receptors. 

Secondly, some tumours appear at places where their extraction from the body can become 

life threatening for the patient. 

 

2.2.1 PubMed 

A text mining approach to drug discovery can only work if there exists enough text mining 

data available to mine. At the moment, there is huge amount of data available on cancer 

research across different platforms, but one of the single biggest libraries on biomedical 

journals is PubMed with over 27.3 Million records, with 16% of them associated  to cancer 

entries as of 2016 [13]. For Text Mining community, it is indeed a decent starting point. 

 

2.2.2 Argo 

After having established a source for text mining data, the second vital aspect is the selection 

of the data mining platform. There are many text mining platforms with their pros and cons 

but the best-suited seems to be Argos; developed by a team of researchers at NACTEM. It is 

a web based workbench with a modular approach to mining. It provides ability to drag and 
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drop text mining modular components and combining them together to create one seamless 

text mining pipeline as per requirement of a specific case study[14]. 

 

2.3 Drug Ontologies 

We need to establish certain parameters that would act as a measure of similarity between 

drugs. The most obvious choice for this is to use known drug ontologies. There are a number 

of different classification of drug ontologies based on their biological function, molecular 

structure and physico-chemical properties [15]. This research will make use of Chemical 

Entities of Biological Interest (ChEBI) database for extracting molecular ontologies and Gene 

Ontology (GO) database for extracting gene ontologies of drugs. A brief introduction to both 

databases is summarized below: 

1. Chemical Entities of Biological Interest (ChEBI) contains a dictionary for small molecular 

entities that are manually annotated [15]. Small molecular entities refer to synthetic or 

naturally occurring compounds that are unique. ChEBI does not contain molecular entities 

encoded by the genome. Some important characteristics of the database are: 

a. These entities are connected to each other to highlight a parent-child relationship 
to form a structured tree where parent is more generalised and child is a specialised 
term. 

b. There are four different types of ontology trees based on varying properties. 
i. Molecular Structure based on connectivity and composition. 

ii. Biological Role based on biological contexts such as coenzymes, antibiotics, 
hormones etc. 

iii. Application based on intended use such as fuel, pesticides, drugs etc. 
iv. Sub atomic particle based on categorization of particles smaller than atom. 

c. There are nine parent-child relationships in ChEBI. Few important ones are listed 
below: 

i. Is a: Highlighting relationship between specific and generalised term. 
ii. Is part of: Highlighting relationship of belonging between the two entities. 

iii. Is conjugate acid/Is conjugate base: Highlighting acid/base relationships that 
are acylic.  

iv. Has functional parent: Highlighting relationship that molecular entities in 
comparison are derivative of each other if some functional modification is 
done. 

 

2. Gene Ontology (GO) is an effort to streamline the annotation and representation of 

controlled vocabulary for gene and gene products [16]. It is part of a larger effort by Open 

Biomedical Ontologies to control vocabularies shared in medical and biological domain. 

Some important aspects of GO are: 
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a. Terms are organised in a tree structure, where connection between entities 
represents some sort of “observable relationship”. Parent represents a more 
generalised term in the hierarchy whereas the child represents a more specific term. 

b. A tree usually starts from a gene product or gene and leads up to some root domain. 
The relationships are directed acyclic graph where each term can point to multiple 
terms from different domains. 

c. The tree structure leads up to three main root domains. 
i. Cellular component: Structural component of a cell or gene product group. 

ii. Biological Process: A development of events accomplished by involvement 
of multiple molecular functions.  

iii. Molecular Function: Referring to molecular activities such as binding, 
catalytic, activating etc. 

 

2.4 Graph Theory 

A graph can be defined as a visual representation of relationships between terms. A graph is 

composed of two parts; nodes and edges. Nodes are the actual terms whose relationships are 

to be represented. Edges are links between nodes defining the relationships. 

 

Edges have further two properties; they can be directed/undirected and 

weighted/unweighted. Weighted graph has a scalar value assigned to each edge which 

indicates the strength of connection between the nodes connected by the edge. In 

unweighted graph, all edges are considered to have equal strength of connection. In a 

directed graph edges are directional, pointing from parent node to child node, whereas 

undirected graphs do not have any such distinction. 

 

Relationships between entities that interact together can be represented in a graph structure, 

where entities represent nodes and edges represent relationship between entities. 

Representation in graph structure leads to two main advantages. Firstly, it can represent the 

bigger picture of how different nodes interact rather than just focusing on parent-child 

individual edges. Secondly, further analysis of graphs can be carried out to highlight 

identifiable structures based on different parameters. One of the ways to identify structures 

is based on connectivity of edges. Groups of nodes that are densely connected with each 

other and sparsely connected with rest of the graph can be grouped together. The idea of 

grouping nodes based on their connectivity is called clustering. 
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Let us now review how graph theory fits the case study being done in this research. First step 

would be to establish a level of similarity (weight) between drugs based on their drug 

ontologies. The output can then be represented in a graphical form where nodes represent 

drugs, edges represent a connection between drugs and weights represent strength of the 

relationship between drugs. No edge between two drugs signifies that drugs are unrelated to 

each other. 

 

2.5 Clustering Algorithms 

At this stage, the major challenge was to cluster the drugs together to find communities of 

similar drugs inside the graph structure. Community refers to a collection of nodes inside the 

larger graph structure that are sparsely connected to the rest of the network and more 

densely connected to each other [17]. These communities are unique as they may have 

significantly different local parameters compared with each other and when compared with 

average parameters of the graph, which include Betweenness centrality, Degree centrality, 

clustering coefficient etc. [18]. To identify communities, there are two major optimisation 

problems in clustering; firstly, the weight of edges and secondly, the connectivity of the 

structure. Two algorithms are used for this purpose, Chinese Whisper [19] and Louvain 

Modularity [20]. The choice of clustering algorithm is not random and will be explained in 

subsequent sections. At this stage, it is important to understand that ‘cluster’ or 

‘communities’ refers to the concept of highlighting similar group of nodes and will be used 

interchangeably in this thesis. 

 

2.5.1 Chinese Whisper  

Chinese Whisper (CW) is graph clustering algorithm designed for unidirectional graphs that 

may be either weighted or unweighted [19]. The algorithm has been successful across 

multiple applications in NLP related tasks such as “language separation, acquisition of 

syntactic word class and word sense disambiguation” [21]. Since 2005, it has been widely 

accepted by NLP community and used across different domains. It best works for graphs that 

have small world property i.e. small average distance between arbitrary nodes and high 

clustering coefficient. 
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2.5.1.1 Steps   

1. All nodes inside the graph structure are randomly assigned different classes i.e. number 

of nodes equal to number of classes. 

2. Then, in a randomized fashion, any node is selected inside the structure and the node 

adapts the highest class among its immediate neighbours. If there is a tie among two or 

more neighbouring classes, any class is chosen among them.  The step is repeated for all 

nodes inside the graph. This is marked as one iteration. 

3. The algorithm undergoes multiple iterations before it either converges or comes to a state 

where it is oscillating between two or more states. To avoid the oscillation forever, a 

threshold for the number of iterations is set. A graph with 10000 nodes does not change 

much after forty to fifty iterations [21]. 

 

2.5.1.2 Properties   

1. Hard partitioning: The property signifies that each node in CW cluster belongs to a 

particular class. Unlike soft partitioning where, there exists a probability distribution for 

likelihood of a node belonging to different classes. 

2. Randomized: The result of communities identified inside a graph is different each time 

algorithm is applied. Reasoning for this behaviour stems from the fact that algorithm 

employs randomization in one of optimization steps resulting in different outcomes each 

time algorithm is applied. Nevertheless, the results are not totally the same but high 

degrees of similarity can be seen if the algorithm is applied multiple times. Moreover, the 

effect of randomisation is also inversely proportional to the size of graph.  

3. Flat clustering: Clusters produced are unique without having any structural relationship 

to each other. 

4. Time Linear: Computational time is quick even for high number of nodes which are 

densely connected. 

 

2.5.2 Louvain Modularity 

Louvain Modularity (LM) is a community detection algorithm inside a graph structure based 

on greedy optimization. The method optimizes network modularity, which is a measure of 

connectivity of a network. Modularity has a scale of -1 to 1 which is a density comparison of 

links inside community vs links connecting communities [20]. 

 

Greedy optimization algorithms try to find a locally optimal solution without considering the 

bigger problem and then try to find a global result based on local solutions [22]. Similarly, 
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rather than identifying multiple communities and optimizing their modularity all at once, the 

algorithm starts by optimising modularity on local nodes and these communities are 

combined. The step is repeated iteratively until we have optimized community structures. 

 

2.5.2.1 Steps 

1. All nodes are declared as a community. 

2. Phase 1:  

a. Then for each node, modularity is calculated by placing it in neighbouring 
communities.  

b. Node is then moved to the community which results in highest increase in 
modularity. If no change in modularity then the node community is not changed. 

c. Step a and b are repeated sequentially until no further change is detected in 
modularity. 

3. Phase 2: 

a. Once Phase 1 is completed, all nodes inside all communities are declared as new 
nodes.  

4. Phase 1 and 2 are repeated again until there is no further change in community structure. 

 

2.5.2.2 Properties   

The algorithm shares all the properties of Chinese Whisper mentioned earlier. Algorithm 

output hinges on ordering of the nodes but the test experiments done by the author suggest 

that it is not very significant [20]. 

 

2.5.2.3 Advantages 

Louvain Modularity has multiple advantages over other clustering techniques; it is 

exceptionally fast, simple to implement and does not require any additional parameters like 

definite a number of clusters. Unlike other modularity optimisation techniques, it does not 

suffer from “resolution limit” which gives it an unprecedented advantage [20]. Resolution 

limit is a common problem in modularity optimisation where communities that are smaller 

than a certain threshold are not detected; the exact threshold is dependent upon density of 

the structure and degree of nodes [23]. 
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2.5.2.4 Resolution 

This is possible due to intrinsic multilevel approach of the algorithm which is created by the 

phases of implementation. There is no guarantee though that the resolution limit can be 

completely avoided as first phase identifies individual communities which might get 

combined in phase 2 in later iterations. The ability to decompose the evolution of 

communities through multiple iterations is referred to as resolution. The parameter is finely 

tuned to display intermediate clusters. The value varies from 0 to 1. Here, 0 represents the 

initial stage of algorithm where all nodes are assigned to its own distinct class resulting in 

maximum clusters; equal to total number of nodes. 1 is the optimal resolution, where all 

possible clusters have been combined i.e. iterating phase 1 and 2 will not result in any further 

change in modularity. Though it is important to highlight that the intermediate clusters where 

resolution has not fully optimised also show promising results; highlighting sub communities 

where the difference between the communities is not clearly apparent [20]. The rate of 

convergence of modularity is very high at the start of the algorithm and it reduces as the 

resolution is increased; most of the clusters merge together in earlier iterations of the 

experiment and changes in resolution near optimization has minimal effect on clusters. 

 

2.6 Centrality Indices 

Important nodes in a connected graph structure can be ranked based on certain parameters 

called centrality indices. These indices represent influence of individual nodes from different 

perspective in the network. Influence is a generalised term; different indices focus on 

different aspects in which nodes can be ranked. Some commonly recognised centrality indices 

are Degree, Closeness, Betweenness and Eigenvector [24]. We also make use of another 

parameter page rank centrality. A brief introduction to these algorithms is given below: 

1. Degree Centrality: The importance of each node is measured by the number of immediate 

neighbours it is connected with.  Highest possible degree would be in case when a node 

is connected with every other node in the structure. 

2. Closeness Centrality: Nodes are ranked based on shortest distance between each node 

and all other nodes in the structure [25]. 

3. Betweenness Centrality: Relevance of node is ranked with respect to the number of times 

a node crossed over for routing shortest path between each node and all other nodes in 

the network [25]. Hence, it is the number of times a node is crossed when calculating 

closeness centrality.  
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4. PageRank Centrality: PageRank was originally presented as web page ranking algorithm in 

[26] but it can be used for any generalised graph theory problem. It computes probability 

distribution considering the likelihood of randomly landing onto a page when traversing 

through pages that are linked together.  The algorithm is designed to take into 

consideration the number of neighbours and quality of connections by these neighbours. 

Quality of the connection is decided based on degree of neighbour extended by that 

connection. PageRank is a popular ranking measure and has been one of the algorithms 

among many others that are employed by Google for search engine ranking. For 

undirected graph, the results are similar to degree distribution. In-case degree is 

consistent for all nodes in the structure then PageRank and degree distribution are exactly 

the same [27]. 

5. Eigenvector Centrality: Also a popular ranking method proposed in [28]. The base idea is 

the same as PageRank centrality measure based on influence of neighbouring node. If 

Node A is only connected to Node B and Node B has many neighbours which further have 

many other neighbours, then that implies that Node A is a strong node as it is very 

influential on the network [29]. Mathematically, it is defined as principal eigenvector of 

the adjacency matrix of a graph network. The base equation is represented by: 

𝜆𝑣 = 𝐴𝑣 

Where 𝜆 it the eigenvalue, 𝑣 is the eigenvector and 𝐴 is the adjacency matrix of the 

network. 

 

2.7 Graph Drawing Algorithm 

There are no established standards for graphical representation of the network but there are 

a couple of things that need to be considered such as minimum overlap of edges, even 

distribution of nodes with respect to spacing and placement of nodes to highlight sense of 

structure.  It is a widely researched area of interest with several feasible solutions. One of the 

classes of algorithms is force directed algorithms for plotting undirected graphs which have 

been widely accepted. Usually, force directed graphs optimize energy values in a graph by 

placing them together based on different spring like forces either attractive or repulsive or 

both between nodes.  There are a number of algorithms that fall under this class e.g. Yifan Hu 

algorithm [30] , Kamada & Kawai algorithm [31] and Fruchterman & Reingold algorithm[32]. 

 

This research uses Yifan Hu algorithm, which places the nodes based on optimizing internode 

repulsive forces between nodes [33]. Only adjacent nodes are considered when computing 

repulsive forces to optimize the computational time. A problem with calculating optimized 
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energy between attractive and repulsive forces result is local minima points. To tackle this 

problem, Yifan Hu uses a technique called “adaptive cooling scheme” [30]. The algorithm 

starts with a high step size that reduces over time allowing faster convergence and avoiding 

local minima. 

 

GEPHI platform has an implementation of Yifan Hu layout which is used for displaying clusters. 

A basic understanding of Yifan Hu has been given in this section but as this is not the main 

focus of this research, Yifan Hu algorithm will not be discussed in more detail.  
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Chapter 3: Literature Review  

Extensive literature was reviewed targeting individual aspects of the research. Current trends 

in cancer research were explored while giving special attention to literature that was 

analogous to using drug ontologies to explore MOA.  Focused areas of interest were types of 

the drug ontologies and their application in cancer domain, graph clustering techniques and 

their application in cancer domain, research related to protein clustering and drug ranking 

methodologies. Drug Discovery in cancer research is being targeted from many different 

angles. The basic idea of this research i.e. clustering drugs based on some similarity parameter 

has gained a lot of interest in recent years from researchers, though the exact specifications 

and research objectives vary greatly. 

 

3.1 Research Approaches 

One of the common approaches used by researchers is using gene expression gene profile for 

clustering either proteins or drugs. For example, a team of researchers clustered lung cancer 

drugs based on their gene expression profiles and drug sensitivity to multiple lung cancer cell 

lines [34]. The results suggested that one of the drugs acted particularly different than the 

rest of the drugs, hence might be useful in second line chemotherapy if it was not part of it 

initially. A similar attempt was made in [35], where the research focused on clustering 37 

breast cancer drugs based on their sensitivity to 42 breast cancer cell lines. The results divided 

the drugs into 6 clusters, with 5 of them showing drugs with similar MOA while highlighting 

both new and known list of drug relationships between drugs and their sensitivities. 

 

A somewhat different research was presented in [36]. In a more generic approach to 

“unweighted” graph clustering, researchers made use of drug bank database and imported 

all the drugs with their respective Drug to Drug Interactions (DDI). They made use of a 

clustering and visualisation tool GEPHI (More on GEPHI in Methodology Section) to find communities 

using Louvain modularity algorithm. 1141 nodes and 11688 links were divided into 9 different 

clusters. On a closer look, these clusters were broadly generalising a specific class of drugs 

such as one cluster represented drugs that specifically target immune system, another cluster 

represented drugs that work on nervous system, epilepsy related drug and so on. Only 15% 

of the drugs were not correctly classified, even on which the author urged that these drugs 
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need further study as the currently known DDIs for drugs might be inconsistent with their 

actual true DDIs. Nevertheless, research was able to identify known functional drug categories 

and relationships between them. Drugs were also ranked across five centrality parameters; 

Degree, Betweenness, Closeness, PageRank and Eigenvector centrality.  

 

Research mentioned above is similar to our own research and hence, it validates the research 

methodology used in this research. Some similarities are; it clusters DDI relationships, it uses 

Louvain Modularity for clustering and it ranks drugs across five centrality parameters.  

 

3.2 Choice of Ontology 

3.2.1 Chemical Entries of Biological Interest (ChEBI): 

The choice of clustering based on molecular and gene ontology was inspired by [37] which 

proposed how drugs can be classified into possible drug classes. The research proposes that 

all drugs can be divided based on 4 classes; their chemical structure, MOA, biomarker 

reactions and shared therapeutic outcomes. Based on this understanding of drug classes, drug 

ontologies were researched to find ontologies which best fulfil the set criteria. Chemical 

Entities of Biological Interest, a database of ontologies, an effort by European Molecular 

Biology Laboratory presented in [15] was the best fit as it had ontologies based on molecular 

structure, biological role, application and subatomic particles. Some finer intricate of ChEBI 

have already been established in the background section. This seems quite relevant to drug 

class distribution and was chosen as one of the similarity criterion between drugs. 

 

3.2.2 GO  

Calculating similarity between drugs merely based on ChEBI did not seem to be enough. 

Despite the fact that it satisfied all requirements of drug class but another fundamental aspect 

in which drugs can be categorized is drug targets. 400 out of 30,000  genomes in the human 

body are used for encoding protein for drug targets [38]. A lot of research in the area has 

been focused on clustering based on gene expression profiles. One of the examples of similar 

research is presented in [39] that discusses the use of both unsupervised and supervised 

learning approaches for analysis of gene expression profiles which can be used for cancer 

classification. 
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Another interesting research is presented in [40], which uses protein targets in ChEMBL 

(manually curated database of bioactive molecules) [41] and maps them to high level Gene ontologies 

by using QuickGO tool [42] which uses the GO database annotations. The research bridged 

the gap between chemical and biological information by mapping 6200 protein targets in 

ChEMBL to 300 GO terms. In short, their research focused on classifying different proteins 

under high level GO terms.  

 

In this research, the author extended the idea to match drugs on the basis of similarity in their 

corresponding gene product ontologies. Gene ontologies extracted from GO terms become 

the second criterion of matching; first being molecular structure extracted from ChEBI. 

 

3.3 Clustering Analysis 

3.3.1 The Bigger Picture 

Clustering algorithms have extensively been used in NLP related task. Recent developments 

in biomedical domain led to the availability of large amount of data to be processed. 

 

One such example is microarray analysis, which has gained interest from researchers for 

unsupervised learning from data. Microarray analysis is parallel monitoring of gene 

expression levels in thousands of genes during a biological process across different 

environment or tissue sample (such as tumour sample). It is like taking screenshots of gene 

expression levels along different steps of the process [43]. Research carried out by [44] based 

on 8000 genes and 60 cell lines by National Institute of Cancer (NCI-60) using hierarchical 

clustering of microarray analysis showed that two of the breast cancer cell lines were similar 

to melanoma cell lines suggesting some sort of relationship between some breast cancers and 

melanoma. Some of the formerly known facts were validated and a new functional 

relationship came to light. 

 

Another team of researcher did k-means clustering on gene expression data to understand 

the mechanism of cells; particularly understanding changes in mitochondrial proteins inspired 

by mitochondrial DNA depletion [45]. Their research revealed some vital relationships such 
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as how cells compensate for mitochondrial DNA depletion and identification of proteins that 

repair this particular DNA depletion. 

 

It is also important to highlight that clustering is just one aspect of how ML based approaches 

are supporting research in NLP. Various other ML based approaches are actively being used 

such as supervised learning and neural networks in facilitation of cancer research. [46] uses 

supervised machine learning algorithm to train classifier to successfully distinguish between 

normal and tumour cell based on data of microarray analysis.  

 

Another research across multiple institutions led to a promising breakthrough in drug 

discovery engines. The team trained a 7-layer neural network based on 6525 compounds 

profiled on MCF-7 cell line based on NCI-60 cell line assay data. Neural Network was then 

tested with 72M molecules in PubChem database to identify molecules that are most likely 

to contain anti-cancer properties. This resulted in 69 molecules, some of them with known 

anti-drug properties and some new anti-cancer molecules were also identified. More 

information can be found in [47]. 

 

Clustering/Community detection algorithms are very useful to evaluate large connected 

structures such as the ones that arise in analysis of world wide web, citation networks, social 

media networks, transportation networks, biochemical structures and other connected 

networks [48]. As previously explained, clustering is basically identifying groups of nodes 

based on the structure of network connectivity. Communities have a high density of 

connectivity inside the group of nodes and low density between other communities [49]. One 

of the commonly known community detection algorithm is Givan-Newman algorithm [50]. 

The algorithm focused on identifying “edges between communities” by shortest path 

between all nodes. The output of the algorithm is dendrogram, a hierarchical top down 

structure representing split of communities. Newman calculated spectral optimization of 

modularity which is reformulation of modularity into simpler matrix representation of 

eigenvectors [51]. Both these researches have been important breakthroughs in community 

detection. They have been used by different authors with slight variations to optimise the 

running time such as [52], [53] and Louvain Modularity [20]; one of the algorithms that is used 

in this research and is briefly explained below. 
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3.3.2 Louvain Modularity 

Finer details of Louvain Modularity algorithm have been established in the background 

section. Focusing on current application areas of Louvain Modularity, the original author uses 

it in two experiments; Mobile Phone Network (2.6M nodes) and Web Graph (118M nodes) [20]. 

 

Another research [54] used it to evaluate and compare the algorithm with spectral partition 

algorithm called METIS [55] over twitter data set of 2.4M nodes and 38M links and Orkut data 

set of 3M nodes and 223M links. Based on criteria of intra partition edges, use of Louvain 

Modularity clustering with weighted graphs outperformed other techniques. Applications of 

Community detection are endless. One group of researchers used it in citation network [56] 

to do clustering based on ISI category classification. Another used it to do market analysis by 

clustering of retail transactional data in [57].  Social media analysis has many publications 

such as [58] which uses it to analyse Freesound data (audio clip sharing site), [59] uses LinkedIn 

data to explore how use of clustering data along with normal search method can be combined 

to improve search result relevance in social media websites and [60] uses three sources, 

Flicker, Live journal and YouTube data to improve efficiency of Delay Tolerant Networks (DTN). 

 

Biological networks show a high degree of modularity; hence it is viable to use modularity 

based techniques for community detection such as Louvain Modularity and Markov Clustering 

to find communities in the network. Over the recent years, modularity based techniques have 

gained interest from researchers to modularise and study complex structures that occur in 

nature especially Protein to Protein Interactions (PPI) and brain networks. Modularity in 

networks can also be used to simplify parameter optimisation in-order to tackle curse of 

dimensionality in large scale biochemical models [61]. One such application case is induced 

apoptosis of CD95 to understand the transduction network; where modularity helped reduce 

58 unknown parameters to just 18 parameters [62]. The intermediate results of Louvain 

Modularity algorithm portray useful information [20]. These results can be extracted by 

varying the resolution of the experiment. Most of the convergence occurs in initial phase 

which gives an advantage that if we extract results before the final stage, we would be able 

to identify super-clusters relevant to our final result. After doing some experiments and trying 

different resolution levels, 0.6 resolution was found to be optimal choice to extract sub-

clusters while overall base clusters remain the same. 
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3.3.3 Chinese Whisper: 

Chinese Whisper was first proposed in [19] as an unsupervised approach for multilingual text 

corpora sorting based on sentences. A weighted graph is constructed where nodes represent 

words, edges as associations and weights of edges represent concurrence of words. Their 

results suggested a high degree of success comparable to supervised learning approaches. 

 

Realising the broader scope of the application of the algorithm, a same team of researchers 

came up with another research paper formally explaining the algorithm as a generic 

unsupervised graph clustering approach in [21] and its applications in NLP domain. 

Specifically, they performed experiments for Language Separation, Acquisition of Word Class 

and Word Sense Induction. CW has not been directly used for drug to drug clustering, 

although it has been used for gene to gene interaction (G-G) clustering, which has remained a 

key area of interest over the past few years. As clustering G-G relationship of a biological 

process can highlight molecular signatures related to a specific process and identify relevant 

biomarkers, this is one of the first steps towards identifying gene functions and it can also be 

used to identify drug targets. 

 

A team of researchers presented a leader gene approach which clusters genes involved in a 

disease or cellular process using Chinese Whispers Algorithm [63]. The clustering is based on 

the data extracted from multiple sources including Search Tool for the Retrieval of Interacting 

Genes (STRING) [64] The weight of interaction between genes is calculated based on 

parameters extracted from STRING. They were able to cluster together classes of genes and 

also rank them according to the number of interactions of each gene. This is similar to our 

research with two key distinctions; this research focuses on drug to drug classification and 

weight between links is calculated based on drug ontologies extracted from CHEBI and GO 

Consortium. Another research proposes soft clustering algorithm; purifying and filtering the 

coupling matrix (PFC) [65]. A comparison is carried out between PFC, CW, C Finder [66] and 

Betweenness [67] for clustering Protein to Protein Interactions (PPI). Soft clustering means a 

node can belong to more than one class. Soft clustering can be advantageous in certain 

scenarios where a node behaves according to the environment such as context dependent 

protein functionalities. In unweighted graphs, the experiments suggest that PFC outperforms 

all other algorithms based on the comparison of average protein enrichments of clusters.  
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Chapter 4: Methodologies & Implementation 

4.1 Scope Definition 

1. Scope of the project has been limited to clustering of Drug to Drug Interactions (DDI) using 

drug ontologies extracted from ChEBI and GO. 

2. For both ontologies, a tree depth level of three is chosen. The whole tree is not considered 

for matching as it is computationally impossible to compute and furthermore as we move 

towards the root of the tree the ontologies become more similar i.e. it will give higher 

matching for all the drugs. 

3. Drugs and protein relationships are only limited to ARGO Event File. 

4. Clustering of the network is limited to three algorithms; Chinese Whispers, Louvain 

Modularity with resolution 1 and Louvain Modularity with resolution 0.6.  

5. Ranking of drugs is limited to 5 centrality measures; Degree, Closeness, Betweenness, 

PageRank and Eigenvector centrality. 

 

4.2 Data 

4.2.1 ARGO Event File 

ARGO event file is an output of an event extraction pipeline constructed in ARGO that focuses 

on highlighting Drug to Drug Interactions (DDI) and Drug to Protein Interactions (DPI). 

Biomedical event extraction involves identification and extraction of structured and 

categorical association between biochemical entities [68]. Not only just drug names but some 

other relevant event features are also extracted based on information in the sentence about 

the interaction of entities such as event type, event trigger, etc. Table 1 shows key features 

of the ARGO data set with description of each term and unique categories belonging to that 

term. 

 

ARGO event file contains a lot of features, though not all of these are used in our experiment. 

It is important to understand the data set in order to establish its authenticity. The file 

contains events extracted from 6529 melanoma related papers referring either drugs or 

proteins or both.  
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Term Description Category 

Event ID Unique Identification Key  

Event Type 
Type of Reaction between Primary and Secondary 
Argument 

26 Unique Categories 

Event Trigger Key word identifying initiation of the event.  

Primary Argument 
Text 

Name of Entity (Drug or Protein)  

Primary Argument 
Ground ID 

ID of ChEBI or UniProt  

Secondary Argument 
text 

Name of 2nd Entity in (Drug or Protein)  

Secondary Argument 
Ground ID 

ID of ChEBI or UniProt  

Negation 
Highlights events which have a contradicting 
relationship between them 

Boolean 

Uncertainty 
Value indicating whether event seems to be true 
from a linguistic point of view 

Boolean 

Confidence Probability of an event being correctly extracted Range 0-1. 

Sentence Sentence in which event occurs 
Sentences in which 
event occurred 

Paper ID Unique Paper ID 
6529 unique papers 
were scanned 

Table 1: Key features of ARGO data set. 

 
4.2.2 Event Types 

There are three different categorize of Event Types in the event file. 

1. Drug to Drug Interaction (DDI): Both Primary and Secondary Arguments are drugs. (Total 

Unique Instances: 155) 

2. Drug to Protein Interaction (DPI): One of the Primary or Secondary Argument is drug and 

the other one is protein. (Total Unique Instances: 467)  

3. Protein to Protein Interaction (PPI): Both Primary and Secondary Arguments are proteins. 

(Total Unique Instances: 8981) 

 

Protein to Protein Interactions will not be clustered in the clustering process as we want 

to focus on drug to drug classification. Total unique drugs are 831. Total unique drugs with 

a protein relationship are 703. 
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4.2.3 Molecular Ontology Database [ChEBI] 

ChEBI database is available for download in three formats “Flat file and Tab Delimited”, 

“Oracle binary table dumps” or “Generic SQL (Structured Query Language) table dumps”. In this 

research, we will use “Flat File and Tab Delimited” database; files are available in .tsv format. 

ChEBI database is extremely large and only a fraction of it will be used in this research. Let us 

discuss few important tables. 

 

Vertex: Table describing each individual vertex/node: 

Column Description 

Id Unique Identifier 

vertex_ref ChEBI ID of drug  

compound_id 
Foreign key of Compound table, which contains more information about the 
drug name, definition, source, creation date, etc. 

ontology_id Foreign Key of Ontology Table 

Table 2: Description of Vertex table. 
 

Relation: Table describing relationship between vertices. 

Column Description 

Id Unique Identifier 

Type Type of ontology relationship 

Init_id Parent vertex 

Final_id Child vertex 

Status 
Status “C” signifies that entity has been manually checked by database 
curators anything else means it needs to be checked. 

Drug_id Empty Field for future development 

Table 3: Description of Relation table. 
 

4.2.4 Gene Molecular Ontology [GO Consortium] 

GO Consortium database is available in a number of formats including .obo, .owl and SQL 

dump format. There are a number of third party applications that use GO data. Tools 

supported and developed under GO are AmiGO and OBO-Edit. GO database is also extremely 

large and like ChEBI, only a fraction of it will be used in this research. Few important tables 

are discussed below. 
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Dbxref: Table referencing terms from other databases. 

Column Description 

Id Unique Identifier. 

xref_dbname 
Reference Database Name from which the terms originally came from such 
as UniProt, PubMed, ChEBI, etc. 

xref_key ID of the entity from the reference database. 

xref_keytype Deprecated column 

xref_desc Deprecated column 

Table 4: Description of Dbxref table. 
 

gene_product: Table joining UniProt to gene Products. 

Column Description 

Id Unique Identifier 

symbol Short label of Gene Product referencing another referencing database. 

dbxref_id Foreign Key of dbxref table referencing original entity.  

species_id Species to which gene product belongs. 

type_id Term id of gene_product 

Table 5: Description of gene_product table. 
 

term2term: Table representing structural relationship between two entities i.e. each tuple 

represents an edge in the ontology graph. 

Column Description 

Id Unique Identifier 

relationship_type_id 
Relationship category between term1 and term2. [Categories are: Is a, Is part 
of, Is conjugate acid/Is conjugate base, Has functional parent] 

term1_id Node ID of Parent Node in the relationship  

term2_id Node ID of Child Node in the relationship.  

complete N/A-Term under development for future use.  

Table 6: Description of term2term table. 
 

4.3 Framework Language & Tools 

4.3.1 Python Pandas 

It became clear in the early stages of this research that conventional methods would not apply 

in this case owing to a large magnitude of the data sets. 

1. Molecular and gene ontologies databases were very large; some having millions of tuples. 

2. Calculations were computationally intensive, particularly the ones encountered in 

creating and matching drug ontologies. 
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3. Some of the queries were recursive which caused problems like memory leaks, long 

execution times and debugging also became a challenge under these conditions. 

 

These problems present a challenge for normal SQL engine database even with using multiple 

indexes. Simpler queries of ‘where’ clause took few seconds and complex ones took few 

minutes but iterative calls to some queries made the system wait for long hours. SQL functions 

were used to resolve the issue but they also did not provide much improvement in execution 

time. To tackle these problems, an application was built in Python using Pandas Library. It is 

a data analysis library based on data structures. The uniqueness of the library is its capacity 

of in-memory database i.e. it calls the whole table in RAM thereby making searching and 

retrieval of tuples extremely efficient. The table can just be accessed by a variable called “Data 

frame” and the library provides multiple functions to do operations on the whole data frame 

simultaneously. Data frame can be loaded directly from a .csv comma delimited file or from 

a SQL database table. Due to these functionalities, Python Pandas seemed to be most viable 

option for data processing in this research. The library is free to use under BSD License. 

 

4.3.2 GEPHI 

It is an open source platform for analysis of data and visualisation, particularly the graph data. 

First introduced in [69], the tool has since been used in multiple journals to manipulate 

structures, discover new patterns and represent data. It has a plugin library which offers 

features such as clustering algorithms, graph layout options, node filter library, options to 

compute general statistics related to graph network and many other smaller features related 

to graph network processing. Further literature for using GEPHI in network analysis is 

available on [33]. It’s still in active development with last stable release v0.9.1 in February 

2016.Though, there were some major changes in v0.9.0 which meant that all the clustering 

algorithms needed some modifications to make it compatible with revised version. Some 

algorithms including Chinese Whispers were not working in the latest version (date of last check 

was 4th July, 2017).  Hence, this research uses v0.8.2 which has all the major clustering 

algorithms in a working state. Development team of GEPHI was also reached out to ask the 

status of clustering algorithms in latest version and they responded that they may be able to 

complete it in next couple of months. 
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GEPHI is easy to use, both Chinese Whisper [21] and Louvain Modularity with variable 

resolution [20] are available as ready to use plugins. Other than that, it provides complete 

framework for data analysis. Notable features are data loader functionalities, layout options 

for visualisation, node filtering options based on multiple criteria etc. Owing to paucity of 

time, scope limitation of the project and completeness of the available tool, it was decided 

not to build a new implementation of the clustering algorithm. Instead, data processing was 

carried out in Python Pandas followed by clustering and visualisation in GEPHI. 

4.4 Experiment Flow  

Before discussing details of system flow, it is important to establish a general understanding 

of components in the whole workflow. This section focuses on identifying and introducing 

individual components in the workflow. Whereas, technical details and steps of 

implementation will be discussed in section 4.5. 

4.4.1 Flow Breakdown 

4.4.1.1 Input Event File 

Two types of relationships are extracted from the input event file: DDI and DPI. For molecular 

and gene ontology matching, we require a pair of drugs whose separate ontologies were 

calculated first and then compared together for similarity. There are very few DDI and DPI 

drug pairs listed within the event file. If ontologies of the listed drug pairs are matched only 

then they create very sparsely joint clusters. To take advantage of the clustering algorithms 

we need a method that would create more connected clusters. For this purpose, rather than 

focusing on drug pairs in DDI, we make use of all unique drugs from DDI and DPI. A combined 

data set is created for all unique drugs in DDI/DPI called [Drug Data Set A]. The data set is the 

input for both Molecular Ontology Matching and Gene Ontology Matching. 

4.4.1.2 Molecular Ontology Matching 

Ontologies of each individual drug are calculated using ChEBI database to a tree depth of 

three levels as mentioned earlier. The structural information is discarded and only terms in 

the ontological tree are stored out corresponding to each drug. Molecular similarity is 

calculated by matching ontologies of every drug with all the drugs in the drug data set. The 
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count of common ontology terms in ontologies of two drugs that are being compared is 

calculated. The value of count represents a scalar measure of molecular similarity between 

drugs. Result of this stage is output file containing drug pairs and their respective count of 

matches in their ontologies. 

 

4.4.1.3 Gene Ontology Matching  

In calculating gene ontology matching, only DPI relationships from the event file are used as 

input to this stage. First step is to extract gene products for all proteins in the DPI using the 

GO database and then calculate gene ontology up to a depth of three levels for all the gene 

products. Finally, these gene ontologies are added together against its corresponding drug. 

 

Each drug may correspond to one or more proteins. Each protein may refer to one or more 

gene products and each gene product has its own ontology tree as shown in figure 1. All the 

relationships between drug and ontologies are then collapsed. Each drug now corresponds to 

a combined gene ontology that is derived from gene products, which are derived from 

proteins belonging to the drug.  

 

 

 

Figure 1: Combining hierarchy of relationship between drug entities. 

Once we have corresponding gene ontologies for all drugs, next step is to compare them 

together. Each drug gene ontology is compared with all other drug ontologies. Results are 

listed as drug pair and weight that corresponds to number of terms that were common to 

both the drug’s gene ontologies. 

Drug

Protein

Gene Product

Gene Ontology

Drug

Gene Ontology
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4.4.1.4 Normalisation 

At this stage, we have two data sets: one is output of molecular matching and the other is 

output of gene matching. To carry out any comparison between the two, we need to first 

normalise both the data sets although molecular matching and gene matching are features of 

the drug but they have different scales i.e. they have different maximum and minimum 

values. To combine the ontologies of drug pairs together, equalisation of scale difference is 

necessary which is done by normalizing the data set. Normalisation is a straightforward 

method; dividing column with maximum weight. After division, the scales are balanced as the 

new calculated value represents a ratio. The weight varies between 0 and 1 which is a very 

small range and to make calculation easier, it is multiplied with 100. This updated range varies 

from 0 to 100. Normalization is carried out to the weights of both molecular and gene weights. 

4.4.1.5 Thresholding 

Next step is to carryout thresholding as most of the weights are insignificant; which if used in 

plotting data distribution, will result in a very strong positively skewed data. This means there 

would be many drug pairs with very small weights which do not have much effect. These 

weights are dropped due to their minimal effect. Data distribution will always remain 

right/positively skewed but better threshold means 1st and 3rd quarter is spread across the 

data. Thresholding value is chosen after performing experiments to find the ideal threshold. 

Its found to be 10% of normalised weights for both drug pairs of molecular and gene ontology. 

4.4.1.6 Combining Ontologies 

Now, there are multiple options available; we can either combine molecular and gene 

ontology or cluster them separately. Furthermore, both can be combined in two different 

ways either combining exact drug pairs in both ontologies or combining all drug pairs in both 

ontologies. Multiple iterations of the experiments are performed exploring these options. 

4.4.1.7 Clustering & Ranking 

Once the data set is finalised, it is loaded in GEPHI where clustering is carried out based on 

Chinese Whispers algorithm, Modularity with Resolution 1 and Modularity with Resolution 

0.6.  There are a couple of layout options to visually display the clusters. Ranking of drugs is 

also done across 5 centrality parameters for the whole network and individual clusters. 
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4.4.2 Iteration of Experiments 

Iteration Drug Data Set Used Type of Join 

First Drug Data Set A Inner 

Second Drug Data Set A Outer 

Table 7: Highlights relationship between Iteration, Drug Data Set and Type of Join. 
 

First and Second Iterations are the obvious choices and they contain sum of both DDI and DPI 

interactions from the input files. First iteration only takes into account drug pairs that are 

common to both Molecular and Gene ontologies. As these drug pairs show some level of 

similarity across two ontologies, it is expected that the graph would have dense structure. 

Densely connected structures have optimized small world property, thereby it is expected 

that the output clusters would portray clear distinctions between them. Second Iteration is 

done with an outer join; it contains all the drug pairs from first iteration plus also the drugs 

that are not common to both ontologies but show a high normalised weight of above 50%. 

Considering drugs with significant high normalised weight if they are not common to both 

ontologies ensures that the added drug pairs are reliable and will not result in adding noise 

to overall clusters. 

 

It is an experimental approach and nothing similar has been done in the past. Results of all 

these experiments will be evaluated by a biomedical domain expert to manually check if 

clusters were able to extract any meaningful division between drugs. 

 

4.5 Implementation 

Individual components of the experiment are listed below. 

1. Data Preparation 

2. Molecular Ontology Matching 

3. Gene Ontology Matching 

4. Normalisation 

5. Thresholding 

6. Combining Ontologies 

7. Clustering & Ranking 

Figure 2 highlights flow of important steps with respect to each component. Details of 

individual components are discussed in subsequent sections.  
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Figure 2: Flow of experiment. 

 



43 
 

4.5.1 Data Preparation 

As a standard, .csv comma delimited file will be used for loading, exporting and storing of 

data. It is a lighter format which makes loading and reading of files easier for other 

software/tools. 

 

4.5.1.1 Event File:  

1. The event file is available in .tsv file format; first step is to change the file format to .csv. 

This can be easily done by opening a new excel file, going to data tab and selecting “From 

Text/CSV” file and giving path to .tsv file. Once the import is complete just save as .csv.   

2. Before loading the data file into Python, we need to drop extra columns that are not 

required in this research. Drop all columns except Event ID, Primary Argument Ground ID, 

Secondary Argument Ground ID and Negation. 

3. .csv files are loaded into Python Dataframes. 

4. Protein to Protein Interactions are not used in the experiment and need to be dropped. It 

means that all tuples where Primary Argument Ground ID & Secondary Ground ID starts 

with “UniProt” are dropped. 

5. For consistency, duplicates are checked and dropped for combination of Primary 

Argument ID and Secondary Ground ID. 

 

4.5.1.2 Molecular Ontology:  

1. “Flat File and Tab Delimited “database file is downloaded from ChEBI website.  

2. Vertex and relation table are exported from .tsv file format to .csv.  

3. Both Tables are loaded into Python Dataframes. 

 

4.5.1.3 Gene Ontology:  

1. SQL database dump is downloaded from GO website.  

2. Database is loaded into a local server. 

3. Three tables gene_product, dbxref and term2term are exported to.csv file format. 

4. These files are then imported into Python Dataframes. 

 

4.5.2 Molecular Ontology Matching: 

Separate ontologies are calculated for each drug and then matched with all drug ontologies 

in Drug Data Set A. 
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4.5.2.1 Event File:  

1. For both first and second iteration, unique drug ids are extracted from DDIs/DPIs in the 

event file by extracting all drugs where Primary Argument Ground ID is Drug and 

Secondary Argument Ground ID is Drug or either one of them is drug and other one is 

protein.  

2. Next step is to calculate individual ontologies of drugs using ChEBI database. Each ChEBI 

Drug ID corresponds to a vertex in the ontology tree. Vertices combine together in a 

bottom up fashion to form an ontology tree. In the vertex table, vertex_ref column is 

searched for drug id and corresponding vertex id is noted.  

3. This id is then searched in final_id of the relationship table. All corresponding init_id are 

parent nodes of that drug. This process marks completion of level 1 ontology matching.  

4. For finding level 2 matching all the init_id found in level 1 matching are iteratively 

searched for their parent vertices. All parent ids in level 1 matching become child ids in 

level 2 tree ontology. So now, each child id is searched for parent id by searching for all 

init_ids that match the corresponding final_id.  

5. The process is repeated one more time for level 3 matching. An example ontology tree for 

CHEBI: 10043 is shown in figure 2. 

 
Figure 3: Ontology tree of level three depth for Wogonin drug [15]. 

6. The terms in the extracted tree are stored against their drug id; both structural 

information and depth information is discarded.  

7. Once we have the ontologies of each drug, pair wise matching is done between ontologies 

of each drug with every drug in the data set. All common terms in ontologies of drugs 

being compared are considered as matches. Total count of the matches is said to be 

weight of similarity between the drug pair being matched.   

8. Output of Molecular Ontology matching is a list of pairwise drugs with their corresponding 

weights. 

9. When matching the ontologies of two drugs rather than just matching terms in the tree 

structure, their structural position is also considered i.e. term level in the tree is also 
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matched for similarity in the corresponding drug ontology tree, in this scenario the 

matching becomes too strict. An experiment was performed where structural position 

was also considered as a matching matrix but the results did not look very promising. 

 

4.5.3 Gene Ontology Matching: 

1. Extract all DPI relationships, all tuples where one of the primary or secondary ground id is 

drug id and other one is protein id.   

2. For all proteins extracted from DPI, their corresponding gene products are found using GO 

database.  

a. Break protein ID into two parts. First part is always “UniProt:” and the second part 
contains the actual identifier ID.   

b. In dbxref table, search for id where xref_dbname equal ’UniProt’ and xref_key is 
equal to second part of protein id. This id is the unique identifier of the drug in GO 
database.  

c. Next step is to search for gene products for all proteins. ‘Type’ field in gene_product 
table represent individual term or node in the ontology tree.  Gene_prodcut table is 
searched for type (Gene product id) corresponding to protein which is represented by 
dbxref key as found in the previous step. Each dbxref key (protein) can have one or 
more type (gene product).  

3. Once we have all gene products against proteins, next step is to find ontologies of each 

gene product. Term2term table defines each edge as parent and child relationship. Term1 

represent parent node and term2 represent edge node as described in data section. 

a. All gene products have their own ontology tree. Gene product ids found in step 2 
are considered as base child nodes. For every gene product, their parents are found 
from gene_product table by finding term1 where term2 is gene product id. This is 
level 1 ontology.  

b. The process is repeated where all the term1 parent nodes in the previous part 
become term2 child nodes in this repetition to find another layer of ontology. 

c. The step is repeated again to find 3rd level of ontological terms. 
d. Similar to molecular ontology, all information about level and structural positioning 

of the tree is discarded, only terms are stored corresponding to gene product. 
e. Terms of Gene product ontologies are combined together based on gene products 

that correspond to the same protein. 
f. Ontological terms stored against protein are further combined based on protein 

correspondence to drugs. To summarise, multiple trees are combined based on their 
protein relation and further these relations are combined based on their drug 
associations. The final output is drugs and their ontological tree terms. 

4. Next step is to carry out a comparison between drugs and their ontologies. Each Drug 

ontology is pairwise matched with all other drug ontologies. The count of number of 

similar terms in their ontologies is stored as weight, a measure of similarity between two 

drugs based on their gene ontology. The output of this step is pair of drug list and their 

corresponding weights. 
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4.5.4 Normalisation 

In the First and Second iteration, we want to combine the weights of gene and molecular 

ontology corresponding to drug pairs. This is not directly possible as these are two different 

features of drugs and naturally have different weight ranges. Normalisation is done to 

standardise data values from a dynamic range to a specific range [70]. Therefore, 

normalisation is done on both drug pair weights of both ontologies.  

a. To carryout normalisation, maximum weight in both the data sets is chosen and whole 

data set is divided by it. Output is a ratio of weights varying from 0 to 1.   

b. Then, to redistribute the ratio of weights over some range, all weights are multiplied by 

the highest value of range we want to distribute it over. In this case, weight range is 

chosen to be 0 to 100 which meant multiplying whole data set with 100. 

 

4.5.5 Thresholding 

1. Both data sets consist of pair of drugs correlating each drug with every other drug.  After 

observing the data set, it can be clearly seen that most of the data sets have fairly small 

weights. These weights are very small compared to the rest of the Data Set And add 

negligible information. Connectivity is also one of the parameters that is considered when 

clusters are computed for both Chinese Whispers and Louvain Modularity. To avoid these 

small weights to overpower cluster connectivity, these weights are removed. 

a. Maximum normalised weight varies from 0 to 100; a threshold limit is placed over 
lower 10% of the data set range which reduces this to 10 to 100. 

 

4.5.6 Combining Ontologies   

1. For the First iteration, we perform an inner join between drug pairs of two ontologies. 

Inner Join means drug pairs that are common to both molecular and gene data sets are 

retained and their weights averaged.  

2. For the second iteration, outer join is applied for combining drug pairs of two ontologies 

together. Outer Join means all drug pairs belonging to molecular and gene data sets are 

retained. Drug pairs which are common to both are combined but drugs which belong to 

only one of the two data sets are penalised with a minimum threshold of 50% to ensure 

consistency of the data set. 

 

Ontologies are combined in different ways for different experiment iterations. Output is 

exported in .csv files. 
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4.5.7 Clustering & Ranking 

For both iterations, a similar process is followed for doing clustering. 

1. Data set is loaded in GEPHI via Data Laboratory. 

2. “YifunHu” [30] is chosen as graph visualisation algorithm.  

3. As a post data processing step, a filter is applied to filter out scattered nodes. The filter 

removes nodes which are not part of the larger graph structure. 

4. Nodes are ranked across 5 centrality parameters including Degree, Closeness, 

Betweenness, PageRank and Eigenvector centrality. Ranking of top 10 drugs is discussed 

in results section. 

5. Three clusters are drawn for each iteration, Chinese Whispers, Modularity with Resolution 

1 and Modularity with Resolution 0.6. 

6. Drugs are ranked inside each cluster using the same centrality measures used to rank the 

whole network. Ranking of top 3 drugs is discussed in results section. 

7. Steps 1-3 are repeated for first and second iteration. 

 

4.6 Evaluation  

Goal of clustering was to combine similar drugs together based on the objective function that 

maximises intra-cluster connectivity and minimise inter cluster connectivity with the 

underlying assumption being “higher the connectivity, similar the drugs”. 

 

4.6.1 Internal Criterion: 

The quality of intra and inter clusters is internal criterion of clustering [71]. There are different 

parameters available to measure this internal criterion such as modularity of clusters, Davies–

Bouldin index, Dunn index, Silhouette coefficient etc. All these algorithms have a common 

goal to standardise the quality of clusters based on density of edges within clusters and their 

connecting edges. There are few problems and limitations of internal criterion 

1. Problems: These internal criterions are biased if the mode optimizes the same parameter 

as the parameter being used to evaluate the cluster, the results would be correct from 

just one perspective. For example, if Louvain Modularity is used to draw communities and 

modularity is used as an internal criterion, the results would be biased; as modularity was 

the parameter that was being optimized by the algorithm.  

2. Limitations: It has been observed that good internal criterion does not necessarily mean 

that the clustering results would be effective [71]. Effectiveness usually varies from case 

to case basis. In our case, high internal criterion does not necessarily mean that clusters 

represent similar drugs in terms of their dominant MOA. 
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4.6.1.1 Silhouette Coefficient 

For evaluating clusters of different experiments, a parameter known as mean silhouette 

coefficient [72] is used. The technique was first proposed in 1987 and since then has been 

widely accepted as an internal criterion to judge quality of clusters where class labels are not 

known. Silhouette coefficient takes into account both “cohesion and separation” of a node. 

Cohesion focuses on the quality of inter clustering whereas separation focuses on the quality 

of intra clustering as shown in figure 4. The goal of good clustering is to have high separation 

value between clusters where each cluster also has high cohesion value. In this research, 

silhouette coefficient is used to validate clusters but it can also be used to find the optimized 

cluster. For example, clusters with low cohesion can be split for better clusters whereas, low 

separation and relatively similar cohesion clusters can be combined to form better clusters. 

 

Figure 4: Difference between cohesion and separation [73]. 

Let’s discuss method to calculate Silhouette coefficient for each node. 

1. Calculate the distance between node in observation with all other nodes of cluster as {𝑎𝑖}. 

2. Now, we compare the node in observation with all clusters that do not contain that node. 

Calculate average distance between node and all nodes of a given cluster. Iterate the 

process for all cluster to find the minimum average distance as {𝑏𝑖} 

3. For any object silhouette coefficient is represented by 𝑠𝑖 =
(𝑏𝑖−𝑎𝑖)

max(𝑎𝑖,𝑏𝑖)
 

 

The coefficient varies from -1 (minimum coefficients value) to 1 (maximum coefficients value). For the 

final value of coefficient, anything positive is considered good clustering and anything less 

than zero is not desirable.  {𝑎𝑖} should be less than {𝑏𝑖} for good clustering and ideally it should 

be close to zero. Average (mean) Silhouette coefficients of all nodes inside a graph is calculated 

for clusters produced by different algorithms. The mean silhouette coefficient value 

represents overall cohesion and separation for clusters produced by a specific algorithm.  

Therefore, the coefficient value is used to compare quality of clusters in different algorithms. 
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Quality of an individual cluster can be measured by averaging silhouette coefficients of all 

nodes belonging to that cluster. To improve mean silhouette coefficient of the network where 

mean silhouette coefficient of network is particularly bad certain steps can be taken. 

1. Mean silhouette of individual clusters is calculated.  

2. Clusters that have poor silhouette coefficient are then dropped from the network. As 

these clusters add poorly to the mean silhouette coefficient of the network, dropping 

them increases silhouette value. 

This is an extreme measure but necessary when clustering algorithm fail to place few nodes 

in correct clusters to optimize cohesion and separation. In certain scenarios, the problem can 

also arise due to limitations of the graph structure itself such as cases where some pairs of 

nodes are unconnected to the larger structure of the network.  

 

The technique was employed to improve results of second iteration where the network had 

a lot of broken nodes, unconnected to the larger structure. As expected, these broken nodes 

were negatively affecting the silhouette value. A comparison of silhouette value of before and 

after dropping the nodes is also discussed in section 5.5.1.  

 

4.6.2 External Criterion 

Due to the problems and limitations of internal criterion, it is not the only way in which results 

are evaluated. To verify if the drugs share some biological identifiable property between 

groups, an external criterion is employed i.e. the clusters are manually checked by a biological 

domain expert. This is different from internal criterion which parametrised results based on 

inter and intra cluster quality whereas this criterion focuses on true natural distinction 

between nodes and clusters. 

 

The ideal way to do it is the formation of gold standard clustering data set by more than one 

evaluator with significant high inter-judgement agreement. 

 

1. Though, it is not straight forward as there is no fine line that distinguishes between drugs 

of different clusters. The gold standard may be designed focusing on therapeutic effects 

of drug but this is not ideal MOA which will be reflected by different communities; 

different groups may reflect different dominant MOA. So, formation of gold standard 
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clusters is out of question as a domain expert may know MOA but a drug may have more 

than one MOA and deciding dominant MOA of the drug is also a question. Furthermore, 

calculating similarity weights and observing patterns in connectivity of drugs to identify 

which drugs belong together is also not feasible. 

  

Simplifying the graph structuring by ignoring weights of edges in the graph network and 

only considering connectivity of the graph structure as unweighted graph even for that 

scenario considering the size of the database and dense connectivity, it is not humanly 

possible to decide the property on which clusters would be formed before performing the 

experiment. Similarly, in this research, the only thing that can be stated certainty is that 

there will be some level of similarity between the clusters. The exact MOA that similarity 

highlights and level of similarity needs to be judged manually. Identifying and verifying 

MOA of clusters is not within the scope of this research.  

2. If we still manage to make a gold standard with some overlaps, there also exists a problem 

of granularity. Some clusters would be split into further (two or more) clusters in original 

Data Set As compared to gold standard.  On the other hand, some clusters would be 

combined together into one class as compared to gold standard where they might be 

represented in two or more classes. The clustering is not wrong but is a matter of 

granularity. 

 

Having explained the two problems, the most viable option seems to be manually 

checking each cluster for consistency by a biomedical domain expert based on the 

property of similarity highlighted in the cluster. For this purpose, each cluster is divided 

into two classes; these are just nodes that are correctly classified (True Positive) and nodes 

that are wrongly classified (False Positive). Just highlighting true positive and false positive 

is not similar to doing comparison with gold standard data. While evaluating with gold 

standard data true class labels are known so result set is divided into 4 parameters: True 

Positive, True Negative, False Positive and False Negative. These values combine together 

to form a confusion matrix. Confusion matrix can make further evaluation comparatively 

easy, as multiple evaluation parameter can be evaluated on its basis including Rand 

measure, F-measure, Dice index and Fowlkes–Mallows index & Jaccard index. 

 

Evaluation of clusters based on exterior criterion either against a gold standard (creating 

manually annotated class labels) or manually checking each node for belongingness to a specific 

cluster is a time-consuming process and requires expertise in biomedical domain. In our 

case, owing to time and resource limitations, each cluster was not separately analysed by 

the domain expert and feedback was only generic in nature after going over some specific 

drug clustering cases.  
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4.6.3 Comparison of Chinese Whispers Vs Louvain Modularity 

To further strengthen the results, clusters of all algorithms were compared to each other in 

order to identify generic similarities. The purpose of comparing clusters is to ensure that the 

results are consistent to a certain degree of confidence across multiple algorithms.  

Expectation is that clusters should remain similar across algorithms with slight changes in 

boundary nodes, which is acceptable based on computational variations across algorithms. 

Another expected output is that clusters produced by different algorithms might represent 

super-cluster and sub-cluster relationships. The output of comparison would be a hierarchical 

breakdown of clusters across different algorithms; this is discussed in section 5.2.6 and 5.3.6.  
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Chapter 5: Result and Analysis 

 

5.1 Overview 

  
  Algorithms 

   
Chinese 
Whisper 

(CW) 

Louvain 
Modularity with 

Resolution 1 
(LM[R=1]) 

Louvain 
Modularity with 
Resolution 0.6 

(LM[R=0.6]) 

Iteration 
First Inner Join 1 2 3 

Second Outer Join 4 5 6 

Table 8: Shows experiment number corresponding to iteration and algorithm used. 

 
A total of six experiment were performed. The experiments were broken down in two 

iterations; where each iteration was repeated using three algorithms: Chinese Whispers, 

Louvain Modularity with Resolution 1 (LM[R=1]) and Louvain Modularity with resolution 0.6 

(LM[R=0.6]). Both iterations made use of Drug Data Set A as input data. The major difference 

between the two iterations was the procedure of combining molecular and gene ontologies. 

For first iteration only drug pairs that were common in molecular and gene ontology result-

set are combined. For second iteration, all drug pairs in molecular and gene ontology result-

set are combined with certain threshold restrictions. It includes drug pairs that were common 

to both ontologies and additional drug pairs which had considerable high weight but are not 

shared by both ontologies. 

 

The result of each experiment i.e. clusters was represented in the form of graph using Yifan 

Hu Algorithm. The algorithm has been introduced earlier in the methodology section. For 

comparison purposes, each cluster will be assigned a cluster id. For each cluster, its cluster 

distribution will also be calculated to show cluster’s coverage of the overall network. Cluster 

distribution is calculated by finding percentage of nodes inside the cluster with respect to 

total number of nodes in the graph structure. 
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5.1.1 Statistics of Data set 

Serial Characteristics of Network 
Inner Join        
[First Iteration] 

Outer Join Old             
[Second Iteration] 

1 Total Node 43 89 

2 Nodes in Connected Structure 43 72 (80.9% Visible) 

3 Total Edges 145 260 

4 Edges in Connected Structure 145 251 (96.54% Visible) 

5 Graph Density 0.161 0.098 

6 Average Degree 6.744 6.972 

7 Average Path Length 2.205 2.712 

8 Average Clustering Coefficient 0.712 0.699 

Table 9: Statistic of connected graph structure in two iterations. 

1. Total Node: Drugs/Vertex 

2. Nodes in Connected Structure: Nodes which are part of the large connected structure in 

the network. 

3. Total Edges: Relationship between Drugs/Vertices 

4. Edges in Connected Structure: Edges which are part of the large connected structure in 

the network. 

5. Graph Density: It represents the density of connectivity for the whole graph. The value 

varies from zero to one. One is the highest density achievable, in case where every node 

is connected with every other node. For undirected graphs, it is calculated by the formula: 

𝐺𝑟𝑎𝑝ℎ𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
2(𝑁𝑜.𝑜𝑓𝐸𝑑𝑔𝑒𝑠)

|𝑁𝑜.𝑜𝑓𝑣𝑒𝑟𝑡𝑖𝑐𝑒|(𝑁𝑜.𝑜𝑓𝑣𝑒𝑟𝑡𝑖𝑐𝑒−1)
 [74] 

6. Average Degree: It represents the average number of edges for each node in the network. 

Calculated by the formula. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐷𝑒𝑔𝑟𝑒𝑒 = 
(𝑑𝑒𝑔𝑟𝑒𝑒(𝑛𝑜𝑑𝑒1) + 𝑑𝑟𝑔𝑟𝑒𝑒(𝑛𝑜𝑑𝑒2)…𝑑𝑒𝑔𝑟𝑒𝑒(𝑛𝑜𝑑𝑒3))

𝑡𝑜𝑡𝑎𝑙𝑛𝑜. 𝑜𝑓𝑛𝑜𝑑𝑒𝑠
 

 

Two data sets are chosen deliberately to ensure that they have an increasing number of drugs 

in each consecutive data set from left to right. Some important observation about the data 

set are listed: 

 Inner join data set is small but it has a higher data density. This is consistent with the fact 

that inner join data set only contains drug pairs that are common to both drug and gene 

ontology. This means that each drug pair shows a high level of confidence in the similarity 

that they represent; as each drug pair has support of both molecular and gene ontology.    

 Second data set is outer join which contains all the drug pairs from inner join data set. 

Additionally, it also contains drugs that are not common to both the ontologies but have 
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high weight associated with them. Drug pairs that are not shared by both ontologies have 

a threshold limit of 50% normalised weight. The addition of these drug pairs means more 

nodes in comparison to inner join as the criterion for the node to be added in data set is 

less sensitive. But the disadvantage of this flexibility is that it leads to addition of sparsely 

connected nodes. So, graph density of outer join is slightly less than that of inner join. 

 Both Graph Density and Average Degree are directly correlated; higher the degree, higher

the density if the number of nodes remains constant. Both these parameters have an

impact on quality of clusters; very small graph density implies that there would be many

small clusters. Comparatively very large cluster density would cause formation of network

where every node is connected with every other node which is also not ideal as it would

just result in one big cluster.

 Average clustering coefficient and average path length combined portray measure of

“small world property”.  Higher the small world property, better the result of clustering

for both algorithms. However, in this case both data sets share the same moderate path

length and clustering coefficient which implies that both data sets share the same small

world property.

5.2 First Iteration 

5.2.1 Centrality Parameter Distribution 

Appended below are the distributions of Degree, Betweenness, Closeness, Page Rank and 

Eigenvector Centrality for network of first iteration.  
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Figure 5: Degree distribution of network in first iteration. 

 

Figure 6: Betweenness distribution of network in first iteration. 
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Figure 7: Closeness distribution of network in first iteration. 

Figure 8: Eigenvector distribution of network in first iteration. 
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5.2.2 Drug Ranks Via Centrality 

Top 10 drugs across 5 centrality parameters were calculated for the whole network. Results are shown in table below: 

S# Label Degree Label 
Closeness 
Centrality 

Label 
Betweenness 
Centrality 

Label PageRank Label 
Eigenvector 
Centrality 

1 sirolimus 23 tyrosine 3.43 L-threonine 229.71 L-threonine 0.074 sirolimus 1.00 

2 sorafenib 21 
sphingosine 1-

phosphate 
2.90 sirolimus 208.06 sorafenib 0.072 sorafenib 0.91 

3 curcumin 20 (-)-cubebin 2.69 curcumin 148.56 sirolimus 0.070 curcumin 0.86 

4 L-threonine 19 cabozantinib 2.69 sorafenib 141.01 curcumin 0.066 vemurafenib 0.72 

5 vemurafenib 14 bryostatin 1 2.57 L-serine 64.97 L-serine 0.058 selumetinib 0.72 

6 selumetinib 13 prostaglandin E2 2.55 
hydrogen 
peroxide 

44.32 selumetinib 0.044 L-threonine 0.66 

7 L-serine 13 cholesterol 2.55 
L-threonine 

residue 
41.00 vemurafenib 0.042 trametinib 0.65 

8 trametinib 11 dihydroxyacetone 2.52 bortezomib 39.82 PLX-4720 0.035 PLX-4720 0.64 

9 PLX-4720 11 trans-resveratrol 2.52 trametinib 37.98 trametinib 0.033 lenvatinib 0.57 

10 U0126 10 3',5'-cyclic UMP 2.48 selumetinib 34.46 lenvatinib 0.032 U0126 0.55 

 

Table 10: Top 10 drugs with respect to five centrality parameters in first iteration.
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5.2.3 First Iteration & Chinese Whispers- Experiment 1 

 

Figure 9: Yifan Hu representation for clusters in 1st iteration using CW algorithm. 

 

5.2.3.1 Cluster Distribution: 

Cluster ID Colour Distribution 

CW_C1  67.44 

CW_C2  32.56 

Table 11: Clusters in experiment 1. 

 

 Outcome of first iteration is two large clusters identified using CW as shown in figure 9. 

Yifan Hu graph representation algorithm is used to plot the graph. 

 In Table 11 a cluster identification is assigned to each cluster, colour of each cluster is also 

shown corresponding to figure 9 and comparison of cluster size is also done by calculating 

node distribution across clusters. 
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5.2.3.2 Drug Raking in Clusters 

Cluster 
ID 

Rank Degree 
Closeness 
Centrality 

Betweenness 
Centrality 

PageRank 
Eigenvector 
Centrality 

CW_C1 

1 sirolimus (-)-cubebin sirolimus sorafenib sirolimus 

2 sorafenib cabozantinib curcumin sirolimus sorafenib 

3 curcumin 
trans-

resveratrol 
sorafenib curcumin curcumin 

CW_C2 

1 
L-

threonine 
tyrosine L-threonine L-threonine L-threonine 

2 L-serine 
sphingosine 1-

phosphate 
L-serine L-serine L-serine 

3 
hydrogen 
peroxide 

bryostatin 1 
hydrogen 
peroxide 

L-serine 
residue 

hydrogen 
peroxide 

Table 12: Top 3 drugs in each cluster for experiment 1. 

 

5.2.4 First Iteration & Louvain Modularity (Resolution 1)- Experiment 2 

 

 

Figure 10: Yifan Hu representation for clusters in 1st iteration using LM[R=1] algorithm. 
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5.2.4.1 Cluster Distribution: 

Cluster ID Colour Distribution 

LM_C1  34.88 

LM_C2  32.56 

LM_C3  16.28 

LM_C4  16.28 

Table 13: Clusters in experiment 2. 

 

 First iteration using LM[R=1] algorithm gives four clusters as shown in figure 10. 

 In Table 13 a cluster identification is assigned to each cluster, colour of each cluster is also 

shown corresponding to figure 10 and comparison of cluster size is also done by 

calculating node distribution across clusters. 

 Total modularity of the graph is 0.37 
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5.2.4.2 Drug Raking in Clusters 

Cluster 
ID 

Degree 
Closeness 
Centrality 

Betweenness 
Centrality 

PageRank 
Eigenvector 
Centrality 

LM_C1 

L-threonine tyrosine L-threonine L-threonine L-threonine 

L-serine 
sphingosine 1-
phosphate 

L-serine L-serine bortezomib 

bortezomib bryostatin 1 
hydrogen 
peroxide 

L-serine 
residue 

L-serine 

LM_C2 

sorafenib (-)-cubebin sorafenib sorafenib sorafenib 

vemurafenib cabozantinib trametinib vemurafenib vemurafenib 

trametinib 
2-(2-amino-3-
methoxyphenyl)c
hromen-4-one 

vemurafenib PLX-4720 trametinib 

LM_C3 

sirolimus doxycycline sirolimus sirolimus sirolimus 

selumetinib tandutinib selumetinib selumetinib selumetinib 

everolimus torkinib everolimus everolimus everolimus 

LM_C4 

curcumin trans-resveratrol curcumin curcumin curcumin 

acetylsalicylic 
acid 

dimethyl 
sulfoxide 

acetylsalicylic 
acid 

acetylsalicylic 
acid 

acetylsalicylic 
acid 

paracetamol cisplatin paracetamol paracetamol paracetamol 

Table 14: Top 3 drugs in each cluster for experiment 2. 
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5.2.5 First Iteration & Louvain Modularity (Resolution 0.6)- Experiment 3 

 

Figure 11: Yifan Hu representation for clusters in 1st iteration using LM[R=0.6] algorithm. 

 

5.2.5.1 Cluster Distribution: 

Cluster ID Colour Distribution 

LM0.6_C1  34.88 

LM0.6_C2  18.6 

LM0.6_C3  16.28 

LM0.6_C4  16.286 

LM0.6_C4  13.95 

Table 15: Clusters in experiment 3. 

 

 Using LM[R=0.6] produces five clusters as shown in figure 11. 

 In Table 15 a cluster identification is assigned to each cluster, colour of each cluster is also 

shown corresponding to figure 11 and comparison of cluster size is also done by 

calculating node distribution across clusters. 

 Total modularity of the graph is 0.36. 
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5.2.5.2 Drug Raking in Clusters 

Cluster ID Degree 
Closeness 
Centrality 

Betweenness 
Centrality 

PageRank 
Eigenvector 
Centrality 

LM0.6_C1 

L-threonine Tyrosine L-threonine L-threonine L-threonine 

L-serine 
sphingosine 1-
phosphate 

L-serine L-serine bortezomib 

bortezomib bryostatin 1 
hydrogen 
peroxide 

L-serine 
residue 

L-serine 

LM0.6_C2 

curcumin 
trans-
resveratrol 

curcumin curcumin curcumin 

acetylsalicylic 
acid 

dimethyl 
sulfoxide 

acetylsalicylic 
acid 

acetylsalicylic 
acid 

genistein 

genistein Cisplatin paracetamol paracetamol 
acetylsalicylic 
acid 

LM0.6_C3 

sirolimus Doxycycline sirolimus sirolimus sirolimus 

selumetinib Tandutinib selumetinib selumetinib selumetinib 

everolimus Torkinib everolimus everolimus everolimus 

LM0.6_C4 

sorafenib (-)-cubebin sorafenib sorafenib sorafenib 

lenvatinib Cabozantinib lenvatinib lenvatinib lenvatinib 

sunitinib Sunitinib sunitinib sunitinib axitinib 

LM0.6_C5 

vemurafenib 

2-(2-amino-3-

methoxyphenyl)

chromen-4-
one 

trametinib vemurafenib vemurafenib 

trametinib Dabrafenib vemurafenib PLX-4720 trametinib 

PLX-4720 U0126 U0126 trametinib PLX-4720 

Table 16: Top 3 drugs in each cluster for experiment 3. 
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5.2.6 Analysis 

The results were surprisingly accurate due to the fact that clustering was almost consistent 

for all three algorithms. Notable observations are: 

1. Number of clusters increased slightly in each consecutive experiment starting from CW, 

LM1 to LM0.6. CW showed two clusters, LM[R=1] showed four clusters and LM[R=0.6] 

showed five clusters. 

2. The modularity of the graph is the parameter being optimised by both LM[R=1] and 

LM[R=0.6] algorithms. Therefore, modularity of end clusters is a biased evaluation 

parameter and cannot be used in evaluation phase. Though, it is important to mention 

that both LM[R=1] and LM[R=0.6] maintain a high degree of modularity in their clusters. 

3. Clusters show a behaviour consistent with the concept of super cluster and sub-clustering. 

All algorithms consistently produced more fine-grained (sub-clusters) version of clusters 

(super-clusters) produced by their predecessor algorithm.  

 

CW produces only two super-clusters, whereas LM[R=1] produces four clusters and LM[R=0.6] 

breaks the network down to five clusters. Figure 12 shows the breakdown of clusters 

produced by the three algorithms in first iteration. 

 

 

Figure 12: Relationship between cluster of different algorithms in first iteration. 

 

The hierarchical structure between clusters can be explained by the fact that both Graph 

Density, Edge Weights or graph connectivity structure do not change by applying different 

clustering algorithms. The algorithms might perform differently such as choosing more sub-

clusters based on algorithms internal cut-off and accuracy but base partitions should show 

observable relationships between clusters of different algorithms. Second reason for 

LM-R1[4 Clusters]

CW[2 Clusters]

LM-R0.6[5-Clusters]

All Nodes

CW_C1

LM1_C2

LM0.6_C2 LM0.6_C5

LM1_C3

LM0.6_C3
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LM0.6_C2

CW_C2

LM1_C1

LM0.6_C1
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breakdown to be so ideal is high graph density and average path length, both Louvain 

Modularity and CW give optimized results. While considering the ranking of top 10 drugs 

across centralities for the whole network, 6 similarities across 4 centrality measures of ranking 

were discovered. Sirolimus, sorafenib, curcumin, L-threonine and selumetinib drugs were 

common across Degree, Betweenness, PageRank and Eigenvector centrality. 

 

Top 3 clusters across 5 centrality parameters were compared with analogous clusters (as 

identified by figure 12) across different algorithms. Following results were found:  

i. Top 3 drugs across 5 parameters in CW_C2, LM_C1 and LM0.6_C1 were the same.  

ii. Top 3 drugs in LM1_C3 and LM0.6_C3 clusters were also exactly the same.  

iii. Top 3 drugs in LM1_C4 and LM0.6_C2 had just one dissimilarity in eigenvector centrality 

and one in degree centrality.  

As the composition and size of related clusters across algorithms was relatively same due to 

that the centrality measures across these related clusters also remain the same. 

 

5.3 Second Iteration 

5.3.1 Centrality Parameter Distribution 

Attached below are the distributions of Degree, Betweenness, Closeness, Page Rank and 

Eigenvector Centrality for network of second iteration. 

 

Figure 13: Degree distribution of network in second iteration. 
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Figure 14: Betweenness distribution of the network in second iteration. 

Figure 15: Closeness distribution of the network in second iteration. 
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Figure 16: Eigenvector distribution of the network in second iteration. 
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5.3.2 Drug Ranks Via Centrality 

Top 10 drugs across 5 centrality parameters were calculated for the whole network. Results are shown in table below: 

S# Label Degree Label 
Closeness 
Centrality 

Label 
Betweennes
s Centrality 

Label 
PageRan

k 
Label 

Eigenvect
or 

Centrality 

1 
L-
threonine 

26 
L-gamma-
glutamyl-L-
cysteine 

3.63 L-threonine 890.65 L-threonine 0.052 sirolimus 1.00 

2 sorafenib 24 linifanib 3.59 sirolimus 416.51 Sorafenib 0.050 L-threonine 0.96 

3 sirolimus 23 PD-153035 3.59 sorafenib 400.83 L-serine 0.041 sorafenib 0.95 

4 curcumin 21 ibrutinib 3.52 curcumin 333.91 Curcumin 0.040 curcumin 0.86 

5 L-serine 18 ceritinib 3.52 L-serine 300.38 Sirolimus 0.039 selumetinib 0.73 

6 
vemurafe
nib 

14 GSK690693 3.52 tandutinib 280.78 tandutinib 0.029 vemurafenib 0.69 

7 
Glu-Phe-
Val 

14 desmosine 3.51 
L-
phenylalanin
e 

167.38 selumetinib 0.027 L-serine 0.66 

8 
selumetin
ib 

14 
L-seryl 
group 

3.39 selumetinib 164.15 Glu-Phe-Val 0.026 trametinib 0.66 

9 Phe-Asn 13 L-tyrosine 3.35 ombitasvir 162.31 vemurafenib 0.024 PLX-4720 0.60 

10 Thr-Ser 13 Glu-Met 3.23 trametinib 121.62 Phe-Asn 0.024 bortezomib 0.57 

 

Table 17: Top 10 drugs with respect to five centrality parameters in second iteration.
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5.3.3 Second Iteration & Chinese Whispers- Experiment 4 

Figure 17: Yifan Hu representation for clusters in 2nd iteration using CW algorithm. 

5.3.3.1 Cluster Distribution: 

Cluster ID Colour Distribution 

CW_C1 41.67 

CW_C2 27.78 

CW_C3 20.83 

CW_C4 9.72 

Table 18: Clusters in experiment 4. 

 CW identified four clusters as shown in figure 17 drawn using Yifan Hu graph

representation algorithm.

 In Table 18 a cluster identification is assigned to each cluster, colour of each cluster is also

shown corresponding to figure 17 and comparison of cluster size is also done by

calculating node distribution across clusters.
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5.3.3.2 Drug Raking in Clusters 

Cluster 
ID 

Degree 
Closeness 
Centrality 

Betweenness 
Centrality 

PageRank 
Eigenvector 
Centrality 

CW_C1 

sorafenib (-)-cubebin sirolimus sorafenib sirolimus 

sirolimus regorafenib sorafenib curcumin sorafenib 

curcumin cabozantinib curcumin sirolimus curcumin 

CW_C2 

L-threonine desmosine L-threonine L-threonine L-threonine 

L-serine L-seryl group L-serine L-serine L-serine 

L-phenylalanine L-tyrosine L-phenylalanine L-phenylalanine 
L-threonine 
residue 

CW_C3 

Glu-Phe-Val 
L-gamma-
glutamyl-L-
cysteine 

ombitasvir Glu-Phe-Val Thr-Ser 

Phe-Asn Glu-Met Thr-Trp Phe-Asn Thr-Trp 

Thr-Ser Ala-Asp-Pro Thr-Ser Thr-Ser Glu-Phe-Val 

CW_C4 

tandutinib PD-153035 tandutinib tandutinib tandutinib 

afatinib linifanib afatinib afatinib afatinib 

ibrutinib ibrutinib ibrutinib GSK690693 ibrutinib 

Table 19: Top 3 drugs in each cluster for experiment 4. 
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5.3.4 Second Iteration & Louvain Modularity (Resolution 1)- Experiment 5 

 

 

Figure 18: Yifan Hu representation for clusters in 2nd Iteration using LM[R=1] algorithm. 

 

5.3.4.1 Cluster Distribution: 

Cluster ID Colour Distribution 

LM1_C1  40.28 

LM1_C2  29.17 

LM1_C3  20.83 

LM1_C4  9.72 

Table 20: Clusters in experiment 5. 

 

 LM[R=1] identified four clusters as shown in figure 18 drawn using Yifan Hu graph 

representation algorithm.  

 In Table 20 a cluster identification is assigned to each cluster, colour of each cluster is also 

shown corresponding to figure 18 and comparison of cluster size is also done by 

calculating node distribution across clusters. 

 Total modularity of the graph is 0.556. 

 



72 
 

5.3.4.2 Drug Raking in Clusters 

Cluster 
ID 

Degree 
Closeness 
Centrality 

Betweenness 
Centrality 

PageRank 
Eigenvector 
Centrality 

LM1_C1 

sorafenib (-)-cubebin sirolimus sorafenib sirolimus 

sirolimus regorafenib sorafenib curcumin sorafenib 

curcumin cabozantinib curcumin sirolimus curcumin 

LM1_C2 

L-threonine desmosine L-threonine L-threonine L-threonine 

L-serine L-seryl group L-serine L-serine L-serine 

L-
phenylalanine 

L-tyrosine L-phenylalanine 
L-
phenylalanine 

bortezomib 

LM1_C3 

Glu-Phe-Val 
L-gamma-
glutamyl-L-
cysteine 

ombitasvir Glu-Phe-Val Thr-Ser 

Phe-Asn Glu-Met Thr-Trp Phe-Asn Thr-Trp 

Thr-Ser Ala-Asp-Pro Thr-Ser Thr-Ser Glu-Phe-Val 

LM1_C4 

tandutinib PD-153035 tandutinib tandutinib tandutinib 

afatinib linifanib afatinib afatinib afatinib 

ibrutinib ibrutinib ibrutinib GSK690693 ibrutinib 

Table 21: Top 3 drugs in each cluster for experiment 5. 



73 
 

5.3.5 Second Iteration & Louvain Modularity (Resolution 0.6)- Experiment 6 

 

 

Figure 19: Yifan representation for clusters in 2nd Iteration using LM[R=0.6] algorithm. 

5.3.5.1 Cluster Distribution: 

Cluster ID Colour Distribution 

LM0.6_C1  29.17 

LM0.6_C2  23.61 

LM0.6_C3  19.44 

LM0.6_C4  18.06 

LM0.6_C5  9.72 

Table 22: Clusters in experiment 6. 
 

 LM[R=0.6] identified 5 clusters as shown in figure 19 drawn using Yifan Hu graph 

representation algorithm.  

 In Table 22 a cluster identification is assigned to each cluster, colour of each cluster is also 

shown corresponding to figure 19 and comparison of cluster size is also done by 

calculating node distribution across clusters. 

 Total modularity of the graph is 0.219. 
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5.3.5.2 Drug Raking in Clusters 

Cluster ID Degree 
Closeness 
Centrality 

Betweenness 
Centrality 

PageRank 
Eigenvector 
Centrality 

LM0.6_C1 

L-threonine desmosine L-threonine L-threonine L-threonine 

L-serine L-seryl group L-serine L-serine L-serine 

L-
phenylalanine 

L-tyrosine L-phenylalanine 
L-
phenylalanine 

bortezomib 

LM0.6_C2 

sorafenib (-)-cubebin sorafenib sorafenib sorafenib 

curcumin regorafenib curcumin curcumin curcumin 

lenvatinib cabozantinib ombitasvir lenvatinib lenvatinib 

LM0.6_C3 

Glu-Phe-Val 
L-gamma-glutamyl-
L-cysteine 

Thr-Trp Glu-Phe-Val Thr-Ser 

Phe-Asn Glu-Met Thr-Ser Phe-Asn Thr-Trp 

Thr-Ser Ala-Asp-Pro Glu-Phe-Val Thr-Ser Glu-Phe-Val 

LM0.6_C4 

sirolimus doxycycline sirolimus sirolimus sirolimus 

vemurafenib 
2-(2-amino-3-
methoxyphenyl)chr
omen-4-one 

selumetinib selumetinib selumetinib 

selumetinib dabrafenib trametinib vemurafenib vemurafenib 

LM0.6_C5 

tandutinib PD-153035 tandutinib tandutinib tandutinib 

afatinib linifanib afatinib afatinib afatinib 

ibrutinib ibrutinib ibrutinib GSK690693 ibrutinib 

Table 23: Top 3 drugs in each cluster for experiment 6. 
 

5.3.6 Analysis 
Similar to first iteration, experiments across different algorithms in the second iteration 

produced analogous results to each other. 

1. There was no super or sub-clustering relationship between LM[R=1] and CW. Both 

algorithms produced similar clusters with respect to node composition. Although, there 
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were some minor changes in border nodes between the top three clusters with the 

highest distribution in clusters produced by both algorithms. 

2. Total number of clusters was the same for LM[R=1] and CW but LM[R=0.6] had one more 

cluster.  

3. Both experiments, LM[R=1] and LM[R=0.6] showed an acceptable overall modularity in 

their clusters. 

 

CW produces 4 clusters, LM[R=1] also produces 4 clusters with slight variation and LM[R=0.6] 

produces 5 clusters. Figure 20 shows the breakdown of clusters produced by three algorithms 

for second iteration. 

 

Figure 20: Relationship between cluster of different algorithms in second iteration. 
 

While considering the ranking of top 10 drugs across centralities for the whole network, 6 

similarities across 4 centrality measures of ranking were discovered. Sirolimus, sorafenib, 

curcumin, L-threonine and selumetinib drugs were common across Degree, Betweenness, 

PageRank and Eigenvector centrality. 

 

Clusters which extend each other in figure 20 were almost alike. This signifies that clusters 

which were in the same branch of hierarchy shown in the figure contain almost similar nodes 

excluding some boundary changes. When top 3 drugs across related clusters (as shown by figure 

20) were calculated it showed overlapping results. 

i. Top 3 drugs across 5 parameters in CW_C4, LM_C4 and LM0.6_C5 are exactly the same.  

ii. Top 3 drugs in CW_C3, LM1_C3 and LM0.6_C3 clusters have just one dissimilarity in 

betweenness centrality.  

iii. Top 3 drugs in CW_C2, LM2_C2 and LM0.6_C1 has just one dissimilarity in eigenvector 

centrality.  
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iv. For first branch extending from CW_C1, top 3 drugs are same for CW_C1, LM1_C1 and

LM0.6_C4, whereas LM0.6_0.4 is completely different.

There overall result is consistent with the fact that the clusters of a branch are very similar in 

size and composition. Hence, top 3 drugs in different clusters of the same branch are very 

similar. 

5.4 Trends across Bothe Data sets 

 By merely visualising the graph, it can be discerned that a drug might show more similarity

to some drugs than to others i.e. a drug may be more interconnected with one cluster and

might not have any connection to drugs in another cluster of the graph.

 Drug pairs which share high weight between each other are usually connected to each

other by more than one path. For example:  if NODE A connects to NODE B directly with

a high weight, then it is highly likely that NODE A shares another connection to NODE B

via neighbouring nodes with just two or more edge jumps.

 Top 10 ranked drugs for whole network were compared in both first and second iterations

across 4 centrality parameters to check for similarities while discarding their ranking

order. Due to the method by which closeness centrality is calculated, it is already known

that comparing closeness across different iterations will not yield any overlap. Table 24

highlights similarities in first iteration and second iteration across Degree, Betweenness,

PageRank and Eigenvector centrality.

S# Degree Betweenness Centrality PageRank Eigenvector Centrality 

1 curcumin curcumin curcumin curcumin 

2 L-threonine L-threonine L-threonine L-threonine 

3 selumetinib selumetinib selumetinib selumetinib 

4 sirolimus sirolimus sirolimus sirolimus 

5 sorafenib sorafenib sorafenib sorafenib 

6 trametinib trametinib trametinib trametinib 

7 L-serine L-serine L-serine - 

8 vemurafenib - vemurafenib vemurafenib 

9 -  -  - PLX-4720 

10  -  -  - lenvatinib 

Table 24: Common drugs across 4 centrality parameters for first and second iteration. 
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1. The results signify that for top 10 drugs there is 80% overlap between 4 centrality 

measures of first and second iteration. This shows that most important drugs had already 

been identified in inner join data set and additional drugs added by outer join do not have 

any significant change in top 10 drugs.  This indicates that the drugs which are most 

important were also the ones which had their relationships to other drugs verified by both 

molecular and gene ontologies. 

2. 6 out of 10 drugs were common across 4 centralities, serial number 1 to 6 as mentioned 

in the table. That means these drugs hold significant importance due to their presence in 

top 10 drugs across 4 centrality parameters of both inner and outer join data sets. 

Secondly, it also means that different centrality measures are closely related with each 

other with slight variation in order of ranking except closeness. 

 

5.5 Evaluation Results 

5.5.1 Internal Criterion 

As already mentioned, mean silhouette coefficient is calculated for all six experiments to 

validate quality of results. The computed mean silhouette coefficient value is also used to do 

comparison between different clustering techniques.  

 

An important aspect of silhouette coefficient is that it can be used as a parameter to optimize 

number of clusters in algorithms which do not automatically determine number of clusters in 

the network such as k-means. Multiple experiments are performed while varying number of 

clusters and calculating mean silhouette each time. The number of clusters with highest mean 

silhouette is chosen. This results in determining optimized silhouette coefficient value. This 

setup is not used for this research and silhouette coefficient is only computed to validate 

clusters. 

 

In this research study, all techniques that were used to calculate clusters estimate the number 

of clusters automatically based on optimisation of different parameters other than silhouette 

coefficient. This presents an advantage that we do not need to decide on number of clusters. 

Though, the disadvantage is that automatically chosen number of clusters will not result in 

optimized silhouette parameter. Different clustering techniques rely on different parameters 

to optimize the number of clusters. CW relies on random class distribution with fixed number 

of iteration and LM relies on optimizing modularity. To test the cluster quality silhouette is 
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calculated for all clusters. It is a non-biased parameter as both the algorithms do not try to 

optimize it directly. 

    Algorithms 

      

Chinese 
Whisper (CW) 

Louvain 
Modularity 

[Resolution 1] 
(LM[R=1]) 

Louvain 
Modularity 

[Resolution 0.6] 
(LM[R=0.6]) 

Iteration 

First Inner Join 0.54 0.21 0.14 

Second 
[After Post 
Processing] 

Outer 
Join 

0.050 0.042 0.024 

Table 25: Result of mean silhouette coefficient against each iteration and algorithm. 
 
 

The results are consistent with what was expected. First iteration results are considerably 

good as they are higher in positive range compared with second iteration. Performance across 

algorithms shows same trends across different iterations. CW algorithm performs 

considerably good followed by LM with Resolution 1 and LM with resolution 0.6 showed 

lowest silhouette in both iterations. Results suggest that the more we try to break down the 

network into smaller clusters, the poorer the cluster quality gets. 

 

Some important observations are: 

1. CW shows highest and lowest silhouette coefficient. Highest is for first iteration, it’s a 

densely connected structure split into two parts. Lowest is for LM[R=0.6] in second 

iteration, where the network is divided into 5 clusters.  

2. CW is only practical for dense structures and fails to produce satisfactory results where 

small world property is not met. On the other hand, LM is an easy to go algorithm, it’s not 

very efficient but shows flexibility in terms of applicability to different structures. 

 

There are no guarantees that one particular algorithm would produce better silhouette 

coefficient. It really depends on the graph structure itself which derives the decision of cluster 

quality for different algorithms. Nonetheless our results suggest that CW produced better 

silhouette coefficient. 

 

In the second iteration, there were some broken nodes unconnected to the main structure. 

These unconnected nodes were removed in a post processing step. To compare the effect of 
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the randomized broken nodes on the overall structure, mean silhouette coefficient was 

calculated before removing the nodes.  The results are shown in the table 26. 

  
  Algorithms 

      

Chinese 

Whisper (CW) 

Louvain 

Modularity 

[Resolution 1] 

(LM[R=1]) 

Louvain 

Modularity 

[Resolution 0.6] 

(LM[R=0.6]) 

Iteration 
Second [With 

All Nodes] 
Outer Join -0.39 -0.36 -0.26 

Table 26: Mean silhouette coefficient in second iteration before post-processing step. 
 
 

As clearly seen from the table, all the values are in negative range which suggest poor 

clustering performance. In comparison, value of mean silhouette is slightly low for each 

algorithm before and after applying post processing step. Although some broken nodes 

combine together to form structures with more than 2 nodes and the fact that they were 

separate from the larger structure also adds to their credibility. But their smaller size and no 

link with the larger structure suggest that drugs being considered were either extremely 

unique or might not be related to cancer at all. In order to ensure reliability, a post processing 

step to remove these smaller unconnected nodes was necessary. 

 

5.5.2 External Criterion 

The result of clustering was reviewed by an expert. As already explained in Section 4.6.2, due 

to time limitations clusters were not reviewed in detail. Although, some test cases of drugs 

that show similar MOA were tested.  

 

Following are the domain expert’s opinion/comments: 

1. Some of the test cases of drugs were successfully checked out by the expert and in his 

opinion the research showed promising results. 

2. He recommended extending the research by adding more cancer drugs from annotated 

drug data sets such as drug bank in-order to detect relationships of drugs from different 

perspectives such as highlighting cancer drugs that are closely associated to each other or 

highlighting specific drugs that might be strongly associated with melanoma. 

3. He seemed convinced that further research into highlighting dominant MOA of each 

cluster may uncover important relationships about drug interaction. 
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4. Another advice was to use hierarchical clustering. The clustering algorithm not only

clusters the nodes but also provides a tree structure in which these clusters can be

combined together to form a super-cluster on different levels. This tree structure is called

dendrogram and is useful when dealing with unsupervised learning in bio informatics

domain as it gives the ability to combine sub clusters into super-clusters, if needed.

Clustering drugs based on molecular and gene ontologies is a new approach. Experts seemed 

confident about viability of the research and expressed that it holds great potential. 

5.5.3 Comparison of Chinese Whispers Vs Louvain Modularity 

Clusters across CW and LM produced consistent results with little degree of variation in 

boundary for both first and second iteration. Although the relationship between super and 

sub cluster can be seen at some places but the base cluster remained the same. Overall, this 

adds confidence in our research as the results seems to be stable even across multiple 

algorithms.  
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Chapter 6: CONCLUSION 

The research revolved around the idea of highlighting similarity and dissimilarity between 

drugs i.e. putting groups of drugs together which show similarity with respect to drug 

ontologies and putting drugs into separate groups which show dissimilarity with respect to 

drug ontologies. In this research, 831 melanoma related cancer drugs were clustered in order 

to highlight similarities in their MOA. ChEBI was used to measure similarities in Molecular 

ontology whereas GO was used to measure similarity in Gene ontology. Pairwise similarity 

was calculated between each drug and all drugs in the data set. Two different data sets were 

formulated; one with ‘common’ drug pairs in both molecular and gene ontologies, another 

one with ‘all’ drugs in molecular and gene ontologies.  

 

Three algorithms were used for graph clustering. Two of them were original algorithms 

Chinese Whispers and Louvain Modularity (Resolution 1), whereas the third algorithm was a 

modified version of Louvain Modularity (Resolution 0.6). A comparison was carried out to 

highlight the relationship between their clusters. Overall, the clusters were quite consistent 

with some super and sub cluster relationships. The consistency in the clusters across multiple 

algorithms added credibility to the accuracy of results.    

 

Strict parameters were set for data processing so that only drugs with considerable high 

similarity were shown in the clusters. Out of 831 input drugs only 43 drugs were clustered for 

inner join iteration and 72 drugs were clustered for outer join iteration. This was done to 

ensure reliability of the results and reproducibility. Although, both algorithms were not 

deterministic but strict matching ensured that the results were stable to a certain confidence. 

Clustering algorithms were repeatedly applied and similar results were observed. Base cluster 

remained same but slight variation were found in cluster boundaries. As a result of the 

experiments 4 vital relationships were highlighted inside the data set.  

1. Firstly, drugs which belong to a cluster share the same dominant MOA and secondly, drugs 

which are in different clusters are dissimilar or have low similarity with respect to their 

MOA. First iteration was composed of 43 drugs; CW identified two large clusters. 

Whereas, LM[R=1] identified four clusters; keeping one of the clusters same as CW and 

breaking down the second cluster of CW into further three parts. LM[R=0.6] divided the 

data set into five clusters keeping one of the clusters from CW the same and breaking 
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down the other cluster into further four parts. Second iteration was composed of 72 

drugs; CW identified 4 clusters. Whereas, LM[R=1] identified the same four clusters as 

identified by CW.  LM[R=0.6] on the other hand divided the data set into five clusters; 

producing three clusters similar to CW and breaking down one cluster of CW into further 

two parts.  

For first iteration, CW gave the best silhouette coefficient result as the clusters are divided 

into just two distinct clusters. The clear distinction in clusters came at a cost of low 

number of clusters. This meant, as the number of cluster were raised the distinctions 

between clusters became less clear, the confidence of separation was reduced and the 

value for silhouette coefficient was decreased. None of the clusters were wrong, each set 

of clusters represented varying levels of distinctions that the algorithm was able to detect 

based on efficiency of algorithm. Though, these results further needed to be analysed by 

domain experts to choose the best clustering of data set. 

2. Third important relationship extracted was that all drugs in first and second iteration were

ranked in order of their importance using five graph centrality parameters; top ten drugs

are attached in this report. Six of the top ten drugs were common across four centrality

measures in both inner join data set and outer join data set.

3. Lastly, drugs were ranked inside individual clusters using network centrality measures; top

three drugs for each cluster are attached in this report. A comparison of top three drugs

was also done between similar clusters produced by different algorithms. Result showed

that top 3 clusters were consistent across similar clusters.

Every effort was undertaken to ensure credibility, viability and reproducibility of the results. 

Relationship between groups of drugs was highlighted and drugs were ranked. Our research 

is a tiny effort in a big domain of cancer research. It is our sincere hope that somebody takes 

the research forward to build an actionable breakthrough in cancer research. We plan to 

publish our results in a journal. 

6.1 Future Work 

There are two directions for future work. Carryout further research using this thesis as a 

building block for extending the research forward or improve this research by further 

experiments with the data sets to recover better clusters. The experiments produced clusters 

that highlight relationship between drugs within the clusters based on some property of MOA. 



83 
 

Although, clusters were identified by unsupervised learning, no effort was undertaken to 

identify exact MOA property shown by the clusters. Keeping this in mind, following are the 

areas of future work: 

1. Clusters can be further analysed to experimentally find and validate MOA represented by 

each cluster. In the first phase, experiments can be performed focusing on identifying 

strongest MOA represented by each cluster. Second phase can focus on experimentally 

proving that the identified MOA for each cluster is correct to a certain confidence level. 

This would require help of a domain experts, preferably biochemists or pharmacologists. 

2. This research is restricted to a tree depth of 3 levels owing to time and computational 

resource constraints. Improvement that can be added to the experiment is to expand the 

depth of ontology matching. This will result in dissemination of weights over higher range 

and might result in better clusters. To enable increase of tree depth, code needs to be 

modified to facilitate use of multi thread functionality in python.  

3. Another enhancement is to apply different clustering algorithms such as MCL [75] to 

cluster the data sets and compare results with this research, by calculating mutual 

information. Clusters from different algorithms can then be overlapped to highlight 

inconsistencies. These inconsistencies can be further analysed with the help of domain 

expert to identify and drop unreliable nodes to achieve better results. 

4. Other options include to explore soft partitioning clustering algorithms which has the 

capacity to assign more than one class to the same node. In theory, it makes sense that a 

drug could belong to more than one cluster, as a drug can show more than one strong 

MOA. The result would represent more realistic relationships.  

 

Further research on identifying exact MOA of cluster holds enormous potential. Even 

observation of clusters indicates some sort of similarity between drugs, the clear distinction 

between groupings of drugs is a strong indicator that drugs within these groups share some 

property. If this property is identified and experimentally proven, it would open door to 

multiple frontiers. The identified relationships could be used by researchers to better 

understand MOA of each drug and better administer cocktails of drugs used during chemo-

therapy. Furthermore, it will also bring to light new relationships that would help researchers 

identify potential MOA to synthesise new drugs. The possibilities are endless.   
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