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Abstract 

Smart meters have been deployed around the globe at a fast pace. Technologically 

improved meters will have many benefits for the consumers. However, these devices 

are vulnerable to different types of attacks. Many researchers suggest using Intrusion 

Detection Systems (IDSes) for detecting attacks. An Intrusion Detection System (IDS) 

employs a classifier to identify known and unknown attacks. Finding the proper 

classifier for an IDS is a challenge because no single classifier can detect all types of 

attacks accurately.   

In this work, the problem of detecting malicious attacks in Advanced Metering 

Infrastructure (AMI) is studied. Focus is on the attacks affecting the availability and 

the integrity of the system. Smart Network-based Intrusion Detection System (SNIDS), 

a hybrid and distributed network-based IDS, is developed to detect attacks. In the 

literature, very few studies attempt to use multiple classifiers in IDS. For this reason, 

a combination of Support Vector Machine (SVM) and Random Forest (RF) classifiers is 

used in NAN-let software component of SNIDS. SNIDS was implemented in Java using 

Eclipse Integrated Development Environment (IDE). A Graphical User Interface (GUI) 

was also developed for running SNIDS.  

The system developed in this project was tested to ensure that it classifies attacks 

correctly. Also, its detection performance was evaluated. The results showed that two 

combined classifiers achieve higher accuracy than single classifiers. More importantly, 

detection rate and speed are improved when feature selection methods are used.  
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Chapter 1 – Introduction 

1.1. Motivation 

Nowadays, governments around the world are replacing the electricity and gas 

meters with new smart meters. These smart meters will help consumers to 

understand better their energy usage, have more accurate bills as well as save money 

on their bills. By 2020, the European Union (EU) will replace 80% of traditional meters 

with smart meters (Energy, 2014). In the UK, the number of smart meters installed in 

homes will be about 85% (Clark, 2016). Smart meters, sensors and special tools for 

supporting the management of power transmission and distribution will be the main 

parts of the AMI. 

However, the AMI network introduces many security risks. These should be 

promptly addressed before attackers exploit the device’s vulnerabilities creating 

chaos among countries. Lately, security experts “have raised concerns about the 

meters’ security” (Clark, 2016). In some cases, smart meters were hacked (Krebs, 

2012). Moreover, attacks can cause damage to smart meters and to the three network 

levels of AMI: Home Area Network (HAN), Neighbourhood Area Network (NAN) and 

Wide Area Network (WAN). For example, a distributed Denial of Service (DoS) attack 

can take place if multiple smart meters are compromised in a NAN. This can be done 

by injecting malware into the smart meter’s software and then, use the compromised 

device to take control of other meters. Consequently, the security of smart meters 

must be examined again so that proper solutions are developed to protect the critical 

infrastructure. 

Many methods such as encryption algorithms, firewalls, authorization and 

authentication mechanisms and even security protocols are used to protect AMI 

network. However, Cleveland (2008) states that encryption and authentication 

mechanisms alone will not be enough for AMI security protection. Therefore, 

monitoring solutions are vital for AMI and must be used. Regarding firewalls, even 

though they offer a kind of defence, they do not fully protect the network. Thus, they 

are recommended to be used with Intrusion Detection System (IDS). An IDS is “a 
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computer system (possibly a combination of software and hardware) that attempts to 

perform intrusion detection” (Kerschbaum, Spafford and Zamboni, 2000). 

1.2. Aim and Objectives 

The aim of this project is to develop a solution that will protect AMI from cyber-

attacks by detecting threats. The solution is a hybrid and distributed network-based 

IDS. The proposed IDS will classify network traffic into “normal” and “malicious” using 

different machine learning algorithms. In the literature, very few studies attempt to 

use multiple classifiers in IDS. For this reason, in this work a combination of Support 

Vector Machine (SVM) and Random Forest (RF) classifiers is used. It is expected that 

using a combination of classifiers will produce better results than single classifiers.  

Achieving the above goal required the definition of multiple objectives. The 

objectives of the project are as follows: 

 Study the literature for existing work on IDSes protecting AMI. This includes 

identifying the requirements and constraints of IDSes. 

 Study the literature for classifiers used in IDSes. Several classifiers will be 

compared and the best ones will be chosen. Accuracy and speed are the 

criteria for choosing the classifiers. One will be selected to protect HAN, and 

two classifiers will be combined to protect NAN.  

 Design a new IDS with the proper software components. Software components 

are designed based on smart meter’s constraints, such as low memory.  

 Implement an IDS as a software tool. IDS will have two software components. 

These software components will use classifiers to detect normal and anomaly 

network packets in different networks. The classifiers to be used will be 

selected from literature based on their performance. 

 Test and evaluate the IDS to make sure it works as expected.  
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1.3. Thesis Structure 

The chapters of the thesis are the following: 

Chapter 2 - The scope of this chapter is to define and explain the most important 

concepts of the thesis. Specifically, definitions of Smart Grid (SG), AMI and IDS are 

given. The security issues in SG are also explained. Moreover, algorithms that IDS uses 

for attack classification are discussed. 

Chapter 3 - The aim of this chapter is to describe in detail the design of Smart 

Network-based Intrusion Detection System (SNIDS). In the first section, the system 

architecture is explained along with the functionalities of the HAN-let and NAN-let. 

These software components make use of datasets which are available to researchers 

for training and testing an IDS. In section 3.3, KDD99 and NSL-KDD datasets are 

described in detail. Feature selection techniques are also introduced for improving the 

performance of SNIDS. 

Chapter 4 - This chapter describes the implementation of SNIDS. It starts with a 

discussion about the development environments and programming languages. After 

that, the actual implementation is described in detail. An analysis of the functionalities 

of SNIDS is also provided. Then, the implementation of Graphical User Interface (GUI) 

of SNIDS is explained. 

Chapter 5 - This chapter presents the evaluation results of SNIDS. Testing 

methodology and performance metrics are explained in the first place. SNIDS’ 

performance is tested by running the software components and exporting the results 

of metrics. Then, the evaluation of SNIDS’ components is shown. In the last section, 

SNIDS is compared with similar IDSes from literature in terms of Accuracy, Detection 

Rate (DR) and False Positive (FP) rate.  

Chapter 6 - This chapter summarizes the results of the research carried out in this 

project. Furthermore, further improvements are suggested.   
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Chapter 2 – Background and Literature Review 

2.1. Chapter Overview 

The topics to be discussed in this work requires some background knowledge. The 

scope of this chapter is to define and explain the most important concepts of the 

thesis. Firstly, the SG concept and the AMI will be described to understand the 

difference between the two. Then, the security issues in SG will be explained so that 

the reader can understand the dangers that exists in these networks. Then, the IDS 

along with the different classifications will be presented. Various algorithms that 

researchers are implementing in IDSes are also discussed. 

 

2.2. Smart Grids 

 The Smart Grid vision 

The current electric power grid throughout the world is mainly an old-fashioned 

system which cannot satisfy the today’s needs for big amount of electricity. The world 

is changing. As a result, new challenges appear for electricity transmission and 

distribution. Low reliability of the current electric grid due to many power outages, 

high maintenance costs due to old machines, and lack of security measures such as 

firewalls are some of the most important problems of the current grid. Thus, the 

current system will be transformed into an intelligent system, called “Smart Grid”, 

which will help manage electricity supply and demand efficiently. The new SG will be 

composed of Smart Meters (SMs), sensors, and special tools that will support the 

management of power transmission and distribution.  

Consumers will be benefited from this new SG. Firstly, the costs of energy bills will 

be reduced. Consumers will make a more efficient use of energy because SMs will 

show their energy usage. In addition, the security level of the whole grid will be 

improved. IDSes will provide a real-time picture of the network status. Finally, network 

providers will have better grid management and will act fast to solve any customer’s 

issues. The two-way communication between utility provider and consumer will make 

this possible. 
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Regarding the definitions of the term “Smart Grid”, there aren’t any globally 

accepted definitions yet. However, in the UK the most common definition is from the 

Energy Network Association (2014) which defines the Smart Grid as “everything from 

generation through to home automation with a SM being an important element, with 

every piece of networks equipment, communications technology and processes in 

between contributing to an efficient and smart grid.” 

The SG network is predicted to interconnect various home appliances with the SM. 

This will help to establish a flexible, reliable, cost-effective and environmentally 

friendly power system. It will be able to manage network components in a way so that 

alternative energy sources are used in the electricity network (Jenkins, 2010). 

 

 Advance Metering Infrastructure (AMI) 

The SG of the future will be based on a sensor network called Advanced Metering 

Infrastructure (AMI). The AMI is a system mainly composed of SMs, in-home displays, 

AMI communication network and the utility’s backhaul system. The most important 

feature is that it enables two-way communication between customers and utility 

provider. This makes it possible for automated data collection from meters, real-time 

system monitoring and other demand-response functionalities (Bennett and Highfill, 

2008).  

Moreover, the AMI consists of two main components; SMs and communication 

networks. SM is a low-cost network embedded device deployed in houses and in 

industrial environments responsible to metering the power usage. SMs have the 

following functionalities: 

 Observing and tracking the demand and supply 

 Recording power cut events in the internal flash memory 

 Sending the usage data to the AMI provider 

 Sending and collecting control messages such as remote disconnect 

 Providing real-time billing services to the user thanks to their internal clock 
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Apart from the obvious advantages of SMs, there are some drawbacks too. Firstly, 

due to their limited functionalities, they have very low Central Processing Unit (CPU) 

power and Random Access Memory (RAM). These devices must be cost-effective and 

that’s why they have small processing power. Secondly, SMs are in public and private 

places. Therefore, they are more vulnerable to physical attacks such as energy theft 

and device modification. Consequently, measures should be taken to protect the 

devices from these attacks. 

The communication infrastructure of SG has a hierarchical structure in which 

various devices using different technologies exchange critical information. 

Particularly, AMI consists of three main communication networks i.e., Home Area 

Network (HAN), Neighbourhood Area Network (NAN), and Wide Area Network (WAN). 

HAN is basically the customer’s smart devices that form the home network which is 

connected to the SM. All the house appliances are connected to the SM which records 

in real-time the devices’ power usage. It works as an interface for HAN as it allows the 

communication between AMI (NAN) and HAN. Usually, all the devices in HAN, similarly 

in NAN, are using wireless technology for communication. 

Regarding NAN, it provides bi-directional communication between the SM in HAN 

and the data concentrators. Data concentrators are recording the energy usage and 

the pricing for each household. Moreover, NAN is the most important part of the 

network as it collects the data from many HANs and forwards them to AMI headend 

(WAN) for further processing. The need for communication and the fact that many 

devices are distributed in a large geographical area lead to the use of wireless 

technologies for data transmission in NAN (Meng et al., 2014).  

About WAN, it has the central systems of utility provider. It is the largest one 

because it connects the utility control centres with NAN’s data concentrators that are 

in large geographical areas. Although the role of WAN is important for self-healing and 

situation awareness control of the network, this dissertation focuses on improving the 

security of NAN and HAN. Figure 2.1 below shows the communication networks of 

AMI. It can be distinguished that the scale of each network differs. For example, HAN 

is limited to some square meters while NAN and WAN cover some square kilometres. 
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Figure 2.1: HAN, NAN and WAN (Source: Ali and Al-Shaer,2015) 

 

Every network has some intelligent devices that are vital for the proper 

functionality of AMI. For example, SMs are in HAN, data concentrator/collector is in 

NAN and AMI headend is in WAN. All these three types of devices have continuous 

data flow but they have some differences. As can be seen from Table 2.1, the SM which 

is in HAN receives very small amount of data because house appliances send a few KB 

of information to SM. Smart devices are required to process small amount of data and 

should be low-cost. Thus, SMs have a few KB in memory and low processing power 

just enough for recording data, sending the information and receiving messages. 

Moreover, due to infrequent requests the transfer speed is very slow.  

Regarding data collector, it is a device responsible for receiving the data from 

different HANs and forwarding them to AMI headend (WAN). It has a memory of some 

MB because it must process a large amount of data received from thousands of SMs. 

Transferring lot of data from SMs requires higher transfer speed. That’s why data 

transfer speed in NAN should be higher than in HAN.  

The most powerful device among the three networks is the AMI headend. This 

device is in WAN. The WAN covers a large geographical area. As it is expected, the 

amount of data received from data collectors is huge. Consequently, the AMI headend 
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must have several servers with large memory for fast processing of the information. 

Speed should also be high enough for handling the data as fast as possible.  

Smart meter (HAN) Data 

concentrator/collector 

(NAN) 

AMI headend (WAN) 

Very small amount of 

data in HAN from house 

appliances. 

Big amount of data 

collected from ten to 

thousands of SMs. 

Huge amount of data 

received from millions of 

SMs. 

Very limited resources 

(CPU, memory in KB). 

Bigger need in resource 

(memory in MB). 

Resources must be very 

high like in a server. 

Very slow data transfer 

from SM due to 

infrequent requests. 

Data transfer speed is 

high because aggregates 

data from SMs.  

Data transfer speed 

must be high to handle 

huge amount of data. 

Table 2.1: Differences of AMI devices 

 Security issues in Smart Grid 

SG is based on AMI networks which use technologies that can be targets for 

malicious activities. Currently, vulnerabilities such as malicious software injection in a 

SM (Goodspeed et al., 2009) or the intentional disconnection of the devices for 

creating a blackout (Bennett and Highfill, 2008) have already been discovered. 

Another class of threats in the SG is the wireless technology that is used by the devices 

for communication forming a mesh topology. Although this technology is cheap and 

convenient to use, attackers can damage the nodes or the whole network. Some 

attacks that may happen include DoS attacks such as signal jamming and resource 

exhaustion, harming the routing protocols, performing unauthorised network 

functionalities, replay attacks, and spoofing of SMs. Apart from attacking the nodes or 

the network, hackers can exploit the communication link that nodes use to share 

information. For instance, data packets can be captured by sniffers allowing attackers 

to perform Man-In-The-Middle (MIM) attacks or get unauthorised access to important 

information. Last but not least, the integrity of the information stored in SMs is 

another target of attackers. As Bennett and Highfill (2008) support, the smart devices 

must report the correct readings to the utility when needed. Still, this is may not 

always be possible as consumers have physical access to the devices and may attempt 

to change the measurements. 
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The attacks above can be distributed among the three network levels of an AMI 

network. For example, attacks in a HAN target SMs and they are usually hardware or 

software modifications. These include replacing the device with a cloned one to 

manipulate billing information. Another attack is to reprogram the device’s firmware 

to control the information exchanged with the control centre. In addition to these 

attacks, DoS attack is possible by connecting too many smart devices of the house in 

one SM. Signal jamming can also be used to prevent the meter’s communication.  

Malicious attacks can happen in NAN as well. An attacker can sniff NAN’s traffic 

aiming at sending tampered messages to the headend or capturing a neighbourhood’s 

SM data for future attacks. The ultimate attack is to compromise the data 

concentrator for wide-range attacks. An example of this type of attack is the spread 

of a malicious software to SMs in a mesh topology causing wide-scale problems.  

About WAN, similar attacks may be executed. Yet, because of the utility provider’s 

systems, the attacks usually target at stealing metering data so that they can create 

user’s profiles which can be sold later. As can be seen, the attacks are distributed in 

each network level and should be prevented using the proper measures. 

Cleveland (2008) discusses the security requirements of an AMI network. The main 

concerns are the confidentiality, integrity, availability, and non-repudiation. Although 

all the requirements are important for AMI, this project will focus on ensuring the 

availability of the network. Keeping the systems and AMI network online for every 

single day is a challenge. The reason for that is the intentional or unintentional failures 

that devices may suffer. Some examples of failures are problems with the software or 

the hardware of the device, communication problems such as network traffic, and 

even bandwidth issues can make the devices unavailable. From customer’s 

perspective, availability means that electricity will always be available and nobody can 

shut down the power intentionally or accidentally. However, from the provider’s view 

availability means having access to critical information at any time. For example, 

devices that handle important data report values to utility centre in small time periods 

and should be online every single minute. Energy provider need access to the device’s 

data to block any attempt of attack and to keep the network online. 
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Solutions exist for preventing many of the above-mentioned attacks but more 

research is needed in this topic. Taking into consideration the four security 

requirements, researchers have divided security solutions into three aspects: 

encryption and authentication algorithms, privacy protection, and intrusion detection 

(Meng et al., 2014). For securing SG, encryption and authentication algorithms are 

needed for preventing data theft while data is transmitted from node to node. Even 

though cryptographic algorithms exist for protecting data in computer networks, the 

requirements in smart grids are different. Therefore, new algorithms should be 

designed. Encryption algorithms will be used for encrypting data so that someone will 

need a key to decrypt them. Similarly, authentication algorithm will be used to 

authenticate and authorize SMs to the utility centre. The limited capabilities of the 

smart devices such as low memory and low CPU speed, should be considered for 

designing these algorithms with low complexity.  

Another aspect of securing SG is the protection of customer’s data. Smart meters 

in AMI network will collect detailed information about the electricity usage in specific 

time periods. The data collected are sensitive information and must be protected by 

anonymizing them. If an attacker has access to raw data, anything could happen. For 

that reason, privacy protection should be considered for securing smart grid. 

Finally, in AMI networks it is important to have an IDS. This system will enable the 

detection of malicious traffic in the network and it will warn the administrator. In the 

current work, an IDS system will be implemented for detecting malicious attacks on 

SMs and the AMI network. The IDS can be centralized or decentralized but the second 

type is usually preferred like in da Silva et al. (2005). Beigi-Mohammadi et al. (2014) 

claim that the centralized approach does not work due to scalability issues as well as 

computational problems that central server may face. In a decentralized IDS, the 

already deployed devices help in processing the big amount of data. No single point 

of failure exists. Additionally, IDS will detect attacks at each network level which 

makes the detection procedure faster and more effective. 
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2.3. Intrusion Detection System (IDS) and its Classifications 

 Introduction to IDS 

The main challenge in securing AMI from malicious activities is to develop a 

monitoring system that will fulfil the needs and the limitations of the AMI network. 

The most common monitoring system that is used in networks is called “Intrusion 

Detection System (IDS)”. An IDS is “A computer system (possibly a combination of 

software and hardware) that attempts to perform intrusion detection” (Kerschbaum, 

Spafford and Zamboni, 2000). In other words, it is a system that detects if there is an 

ongoing attack or not and triggers an alert to the user when an intruder attempts to 

launch an attack.  

The first line of defence are methods such as encryption algorithms, firewalls, 

authorization and authentication mechanisms as well as security protocols. However, 

Cleveland (2008) states that encryption and authentication mechanisms alone will not 

be enough for AMI security protections. Using monitoring solutions are vital for 

protecting AMI. Regarding firewalls, even though they offer a kind of defence, they do 

not fully protect the network. That’s why IDS is recommended to be used with 

firewalls. IDS is vital in a network in case security mechanisms such as encryption and 

authentication are breached (Koshal and Bag, 2012). 

An IDS is commonly composed of: 1) sensors to track network activities, 2) a 

centralized management server to process the data received from sensors, 3) a 

database to save the information generated from IDS, 4) an interface for 

administrators to check the status of the system, receive warnings and make the 

proper configurations to the system.  

Regarding the types of an IDS, Cleveland (2008) states that two types exist: host-

based IDS and network-based IDS. The former is used for analysing and checking the 

file integrity of a system, the audit logs and the system calls, while the latter is used 

for analysing network traffic and data packets. The advantage of host-based IDS is that 

it provides a better view of the behaviour of each program that runs on the host. 

Regarding network-based IDS, only one IDS is needed for all the hosts on a network. 

Still, the latter needs to process lots of network traffic. The drawbacks of the host-
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based IDS are that for every host an IDS is needed, and if an attacker gains access to a 

machine, the IDS can be tampered with (Kosamkar and Chaudhari, 2013). Apart from 

these types, according to the detection mechanisms IDSes can be classified into three 

types: signature-based, anomaly-based and specification-based (Berthier et al., 2010). 

 

 Signature-based detection 

Signature-based or misuse detection is based on the existence of specific patterns 

for intrusions, enabling the system to report any activity that matches with any pre-

existing pattern. Patterns are basically known attacks and are also called signatures, 

the root of the term signature-based detection. These systems can detect well-known 

attacks very accurately and this is the reason for being installed widely in industry. 

However, attackers invent new complex attacks and this detection method will fail to 

report unknown attacks as well as variations of them. According to Wu and Banzhaf 

(2010), detecting unknown attacks requires creating a local database and updating it 

regularly. This database can be updated manually, which takes a lot of time, or 

automatically by using intelligent algorithms. An example of signature-based IDS is the 

rule-based approach where set of rules are created to identify attacks and if an activity 

matches with the rules, the action specified for this rule is executed. 

 

 Anomaly-based detection 

Anomaly-based detection tries to recognise malicious behaviour. It needs the 

previous creation of profiles for defining the normal behaviour of users, hosts or 

networks. Therefore, the data is collected and stored in the database during a normal 

operation. The anomaly IDS uses various statistical measurements to separate 

abnormal behaviour from normal. During the detection phase, false alarms are more 

likely to happen as user’s behaviour might not be consistent and the system will find 

it difficult to detect the attack. Thus, keeping the profiles updated is important. 

However, these systems can detect unknown attacks in contrast with signature-based 

systems. For this reason, they are mostly preferred by researchers (Arumugam et al., 

2010; Haddadi et al., 2010). 
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 Specification-based detection 

This model is similar to anomaly-based detection approach in detecting intrusions. 

In specification-based IDS, the normal behaviour is defined by taking into account the 

functionalities and the security policies of the system. A profile with normal behaviour 

is created. Any kind of operation that happens outside the specifications is considered 

suspicious and is a possible intrusion. The benefits of the system are the detection of 

unknown attacks accurately as well as it is cost-efficient to create it. However, a new 

specification IDS had to be designed for each protocol. This is because it is difficult to 

generalize for too many protocols. Also, it is hard to ensure that all the specifications 

of the system are correct and they protect the system from the specified threat. 

 

2.4. Algorithms for the Intrusion Detection System (IDS) 

An IDS is a combination of software and hardware which means that an intelligent 

algorithm is needed for detecting intrusions. In the follow subsection, the recent 

studies about the various approaches are presented. 

 Overview of Current Algorithms 

Several algorithms have been used recently by researchers for the intrusion 

detection task. Nguyen and Choi (2008) survey the latest studies regarding the best 

algorithms for classification. They focus on four main attacking classes: DoS, PROBE 

(information gathering), U2R (User to Root), and R2L (Remote to Local) using the 

KDD99 dataset. The authors select ten classifier algorithms that belong to Bayesian, 

decision trees, rule-based models, function and lazy functions categories. They 

conclude that JRIP detects best DoS and Probe, decision table is good for U2R 

detection and OneR should be used for R2L. Because the first model is not fast enough 

for using it in real-time detection, they propose a second model that employs C4.5 

(J48 in WEKA) to detect DoS attacks in a real-time environment. 

Using the same dataset, Wu and Yen (2009) use machine learning and data mining 

methods to improve the efficiency of IDSes. Specifically, they compare C4.5 and SVM 

algorithms by classifying the 4 attacks types that are contained in the dataset. The 



26 
 

results indicate that C4.5 has better accuracy and detection rate in DoS attacks than 

SVM algorithm. Similarly, So-In et al. (2014) study several classification schemes such 

as decision tree, Neural Networks, Ripper Rule, Naives Bayes, k-Nearest-Neighbour 

and SVM using both KDD99 dataset and HTTP BOTNET attacks. They evaluate the 

algorithms using k-fold cross-validation and other metrics. As Vanschoren et al. (2014) 

explain, K-fold cross-validation is used for evaluating models that make predictions. It 

takes the original dataset and divides it into k random subsets of the same size. Then, 

one subset is randomly selected as testing set to evaluate the model and the rest k-1 

subsets are used for training the model. This process is repeated k times (folds). Each 

k subset is used only once as test data. At the end, the results from the k folds are 

combined to generate the average error. Results using this method showed that for 

the case of classifying normal and attack class, the C4.5 (or J48) has the highest 

accuracy.  

Mehmood and Rais (2016) in a recent study of machine learning algorithms SVM, 

Naives Bayes, J48 and decision table, they indicate that J48 has the highest accuracy 

among the other algorithms. This is due to the redundant features that exist in the 

KDD99 dataset. Thus, they recommend using a combination of algorithms for 

detecting attacks to improve the overall performance. Kalyani and Lakshmi (2012) 

studying the latest dataset NSL-KDD with the Naïve Bayes, C4.5, OneR, PART and RBF 

network algorithms, conclude that C4.5 and PART are those with the best 

performance. In another study, Chauhan et al. (2013) use 10-fold cross-validation for 

evaluation with the NSL-KDD dataset and they show that using RF is an algorithm with 

very high accuracy.  

In a very interesting study, Choudhury and Bhowal (2015) compared the 

performance of nine classifiers in WEKA using both NSL-KDD dataset and 10-fold cross-

validation. The results show that Random Forest and BayesNet are the best algorithms 

for the IDS. They also compare ensembles which improve the efficiency of the single 

classifiers and they conclude that the best ensemble is Boosting. In a similar study of 

classifications algorithms, Giray and A.G. Polat (2013) used several datasets to 

conclude that the best classifier is decision trees. 
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As can be seen, several studies attempt to solve the problem of selecting the most 

suitable algorithm for using in IDS for AMI. Still, most papers conclude that not a single 

algorithm can detect all the attacks with high accuracy. They recommend that a 

combination of different algorithms should be employed so that the overall system 

performance is enhanced. In this work, C4.5 (J48), SVM and Random Forest classifiers 

will be studied. These algorithms are chosen from the literature above. They have the 

best performance in several studies regarding intrusion detection. 

 

 C4.5 

A Decision Tree (DT) is one of the most used classification algorithms in data 

mining. Its operation is based on the divide and conquer idea where the training 

dataset is recursively partitioned according to its attributes and it terminates when 

the stopping conditions are fulfilled. A DT has nodes, edges, and leaves. Each node has 

its own dataset and this defines the best attribute to divide the dataset into its 

categories. Moreover, a node has multiple edges that state the values or a range of 

values of the chosen attributes on the node. Based on the values of the edges, the 

dataset of each node is partitioned into several subsets. Then, a child node is made 

for each data subset and the dividing procedure is repeated. This continues in the 

node until the stopping conditions are met which means all the datasets are the same 

or the attributes cannot be further divided. At this point, the DT algorithm stops the 

process and the node gets the name of the class label of the dataset. The labelled node 

is now called a leaf. Following this recursive procedure, the result of the DT is the 

creation of a tree structure. 

The first DT model was created by Kohavi and Quinlan (1999) and the most recent 

implementation of his model is C4.5. The most important key issue of the algorithm is 

to select the most appropriate attribute that best partitions the dataset into 

corresponding classes. The C4.5 model uses the information entropy theory to create 

decision trees from training datasets. That means, the attribute with the highest gain 

is selected for the partition procedure. The formula used to calculate the gain is the 

following: 
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Gain (D, T) = Entropy (D) –∑ 𝑓𝐷(𝑇�̇�) 𝑥 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑇𝑗
)

𝑚

𝑗=1
, 

where Gain (D,T) is the gain of dataset D after splitting attribute T; 

Entropy (D) is the information entropy of dataset D; m is the number of 

different values of attribute T in D; T is the proportion of items possessing Tj as the 

value for T in D; Tj is the jth possible value of T; and DTj is a subset of D containing all 

items where the value of T is Tj. 

Here, the entropy is obtained as follows: 

Entropy (S) =∑ 𝑓𝐷(ⅈ)𝑥 log2 𝑓𝐷(ⅈ)𝑛
𝑖=1 , 

where n is the number of different values of the attribute in D and fD(i) is the 

proportion of the value “i” in the set D. After creating the tree, the algorithm calculates 

classification error for each node and prunes the tree accordingly. 

The detailed steps of the algorithms are as follow (Kohavi and Quinlan, 1999): 

Input: Training dataset D. 

Output: A decision tree. 

1) Create the root node R. 

2) If D belongs to the same category K, then return R as a leaf node, and label it 

as a class K. 

3) If no attributes exist or the rest data of D is below a threshold, then return R 

as a leaf node, and label it as the most frequent category. 

4) For each candidate attribute, calculate its information gain. 

5) If test attribute is the testing attribute of R, then test attribute is the attribute 

with the highest information gain. 

6) If the test attribute is continuous, then calculate its threshold for division. 

7) For each new leaf node created by node R: Calculate the classification error 

rate of each node, and then prune the tree. 
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 Support Vector Machine (SVM) 

SVM is one of the best classification algorithms according to Yang and Li (2006). It 

is a reliable algorithm which can achieve high accuracy on predicting the class of 

unseen data. It was first introduced by Vapnik (2000) who developed the principle of 

structural risk minimization which SVM is based on. This principle aims in finding a 

hypothesis h for which one can be sure that the lowest error is observed while other 

methods are using the empirical risk principle which tries to improve the performance 

of the training set. The learning process of SVM starts with mapping the values of the 

training data into high dimensional feature space with the use of kernels. After this 

step, it computes a hyper plane that separates the data points with a maximum 

margin. The kernel transforms a problem that is linearly non-separable to a separable 

one. SVM can be used with many kernel functions such as polynomial, RBF, linear and 

sigmoid. The user can select a kernel function to use in the training phase and SVM 

chooses support vectors along with this function.  

Suppose an input of M data points {(x1,y1), (x2,y2), (x3,y3), … ,(xM, yM)}, where 

xi∈Rd and y∈{+1,-1}. A hyperplane can be defined by (w, b) where “w” is a weight 

factor and “b” is bias. The decision function that is used when a new object “z” is 

classified is the following: 

f(z) = 𝑠𝑔𝑛 (w ∗ z + b) = ∑ 𝑎𝑗𝑦𝑗(𝑥𝑗 ∗ 𝑧) + 𝑏
𝑀

𝑗
 

 

When the f(z) has a positive result, the object “z” is accepted as normal else the 

object “z” is treated as outlier when f(z) is negative.  

In this project, SVM is used in the IDS because it has many benefits. First of all, 

SVM is a fast algorithm for detecting intrusions and that is significant for building a 

real-time IDS which can take decisions quickly. Scalability is another advantage of 

SVM. That means that the complexity of the algorithm is not dependent on the size of 

the feature space. Consequently, it can learn a large dataset and scale better than 

neural networks. Moreover, it is less prone to overfitting because the number of 
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parameters used depend on the margin that separates the data points and not on the 

number of features (Sung, 1998).  

 

 Random Forest 

Random Forest (RF) is an ensemble method of un-pruned classification or 

regression trees (Breiman, 2001). Ensemble is a divide-and-conquer methodology 

applied to enhance the performance. The idea behind the ensemble is that several 

“weak learners” can gather together and form a “strong learner”. Therefore, the 

algorithm achieves the highest accuracy among the other data mining algorithms, 

mainly with large datasets. RF algorithm creates several classification trees using a 

tree classification algorithm which constructs each tree by using a separate bootstrap 

sample from the training dataset. Classifying a new object is done when the forest is 

formed. The new object is put below of each tree. Then, each tree votes for the class 

of the object so that the forest will select later the class with the most votes. The 

algorithm below is for both regression and classification (Liaw and Wiener, 2002; 

Svetnik et al., 2003): 

1) Select mtree samples with replacement (bootstrap) from the training of m 

samples. 

2) For each selected sample, grow a regression or classification tree with the 

following alterations: At each node, randomly select np predictor variables 

from all the predictors and choose the predictor with the best split from those 

variables. The tree will grow to the maximum size and will not prune back. 

3) Classification of new data is based on the majority vote of the mtree trees. The 

average from these trees is used for regression. 

In order to evaluate the test error rate, RF algorithm calculates the Out-of-Bag 

(OOB) error during the training phase. Thus, there is no need for cross-validation or a 

test set to get an unbiased test error. In other words, the fact that each tree is created 

based on bootstrap sample means that the one-third of cases, called OOB cases, are 

out of the bootstrap samples and are not used in training. (Zhang and Zulkernine, 

2006) 



31 
 

The main parameters used for configuring the RF are: the number of trees (mtree), 

the number of predictors randomly selected as candidates for splitting at each node 

(np) and the minimum node size. During the development of the forest, attributes are 

chosen arbitrary from all the attributes of the training dataset. The most important 

variable to configure is the number of variables/predictors to be used in dividing the 

nodes in each tree (np). Setting this variable to a proper large number it will boost the 

performance of the algorithm. Apart from this parameter, the minimum node size is 

another criterion which the algorithm uses to decide if it will split the node or not. If 

the remaining nodes are below this minimum number, there will be no splitting. As a 

result, this parameter affects the size of the grown trees. Thus, for classification the 

default value of minimum node size is 1, making sure trees have reached the 

maximum size (Svetnik et al., 2003). 

 

 Hybrid approach - Ensembles 

A hybrid approach or ensembles is the combination of various learning or decision-

making models to boost the performance of the IDS. This approach exploits the 

different characteristics of each model. Consequently, accuracy and the whole 

generalization of the IDS are increased (Peddabachigari et al., 2007). 

One simple and famous hybrid method that Govindarajan and Chandrasekaran 

(2011) describe is Voting, which combines the results of various models. In this model, 

the results from the various models are combined by calculating the prediction 

possibilities of each method so that final predictions are decided from these 

probabilities. Another method is Bagging (bootstrap aggregation) and boosting (Pan 

and Tang, 2014) which creates several samples from the training data by 

bootstrapping (randomly selecting samples with replacement) and a classifier is built 

for each sample. After this step, the classifiers generate results which are combined 

by calculating the average or by using majority voting. This method uses C4.5 (J48) 

algorithm as a base classifier which helps avoiding over fitting and enhancing accuracy. 

A third ensemble algorithm which is described by Choudhury and Bhowal (2015, 

May) is AdaBoost which means adaptive boosting. This model has a base classifier 
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which is created from the training data. It has also a second classifier which runs 

behind the first one so that it focuses on the instances that were wrongly observed 

from the first classifier. This procedure of adding extra classifiers continues until a 

specific limit in number of models or accuracy is reached. AdaBoost uses C4.5 (J48) 

algorithm as a base classifier, and it helps in improving the accuracy of any single 

algorithm. 

 

2.5. IDS in AMI 

Given the structure of the AMI, the main characteristics that an IDS should have 

are the following: 1) be a powerful system which means to have high accuracy in 

identifying known and unknown attacks, 2) run without causing any problems to the 

current system activities, 3) have the minimum overhead on the SG infrastructure, 4) 

prevent attacks at each network level so that the availability of the network remains 

unaffected. Bearing these in mind, many researchers have proposed several 

approaches in designing an IDS for AMI. The first approach is to use the existing IDS 

that have been employed in other kinds of networks which are usually centralized. 

Still, that traditional approach does not take into account the constraints mentioned 

before. Attacks within the AMI network, such as malicious attacks against the routing 

protocol of the mesh network, Medium Access Control (MAC) or Physical (PHY) layer 

attacks, and application layer attacks between peer to peer AMI nodes will remain 

undetected if a centralized IDS is used. A new decentralized IDS approach is the most 

suitable solution for AMI because the data processing and reporting is distributed 

among the nodes and no single point of failure exists. 

Many researchers have attempted to address the issue of intrusion detection in 

the SG. Jokar, Nicanfar and Leung (2011) designed a specification-based IDS for HAN. 

Specifically, their IDS aims to protect the PHY and MAC layers of Zigbee devices which 

are in the HAN. Zhang et al. (2011) proposed the Smart Grid Distributed Intrusion 

Detection System (SGDIDS) which protects the SG from DoS attacks. Their system 

makes use of machine learning algorithms that are executed in SMs, data collectors 

and control centre so that any suspicious behaviour is detected. Similarly, Beigi-
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Mohammadi et al. (2014) presented a distributed IDS that protects NAN from 

Wormhole attack. They employed an analytical approach to develop the IDS which is 

embedded in SMs and they evaluate IDS with OPNET software. The latest work from 

Sedjelmaci and Senouci (2016) is the development of a lightweight IDS for SG which 

follows both centralized and decentralized approach. Their IDs is a hybrid one as it 

combines rule-based and anomaly-based detection by using a machine learning 

algorithm. The results from the simulations show that their system is secured enough 

and more efficient than other works. 

 

2.6. Chapter Summary 

The current chapter explained the basics of SG and introduced some important 

terms that are going to be used in this project. Understanding the concept of AMI and 

its security problems is the main goal of this chapter. Gaining the vital information 

about IDSes will help the reader understand the next chapters. 
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Chapter 3 – Smart Network-based Intrusion Detection System 

(SNIDS) Design 

3.1. Chapter Overview 

The aim of this chapter is to describe in detail the design of Smart Network-based 

Intrusion Detection System (SNIDS). In the first section, the system architecture is 

explained along with the functionalities of the HAN-let and NAN-let. These software 

components make use of datasets which are available to researchers for training and 

testing an IDS. In section 3.3, KDD99 and NSL-KDD datasets are described in detail. 

Feature selection techniques are also introduced for improving the performance of 

SNIDS. 

 

3.2. Smart Network-based Intrusion Detection System (SNIDS) Design 

 Assumptions 

SNIDS is an IDS aiming at protecting AMI network by detecting and stopping 

malicious packets from entering the network. This will be achieved by running J48 

classifier on HAN-let, and a combination of SVM and RF classifiers on NAN-let. Both 

HAN-let and NAN-let are software components. They can be embedded in smart 

meters or routers. Specifically, HAN-let will run J48 classifier on a smart meter in a 

HAN. J48 is a fast and light DT classifier, suitable for being integrated into smart 

sensors such as Zigbee. Regarding NAN-let, it will run Vote classifier which combines 

SVM and RF classifiers. Combining the results from all the classifiers improves the 

overall Detection Rate (DR). However, SVM and RF classifiers need more CPU and 

memory than J48. Therefore, NAN-let will be integrated into routers which have more 

processing power.  

Many factors play important role in the decision of how the system should be 

designed. Some of them are: 

 Limited computational resources in smart meters. A computational intensive 

classifier cannot be embedded into a smart meter because it needs large 
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processing power and memory. Smart meters have low CPU power and only a 

few KBs of RAM. 

 Different types of networks in AMI. Networks such as HAN, NAN and WAN 

provide a hierarchical structure in AMI and each one connects different parts 

of the whole AMI network. As a result, an IDS should protect all three different 

network levels. 

 Many attack types exist in AMI. Attack types vary from data breach of a smart 

meter to physical modification of a device. In this work, IDS should focus on 

DoS, Probing, U2R, and R2L attacks so that the DR for these attacks will be 

higher than other types of attacks.  

 Ability to classify network packets correctly and in real-time. Large amount of 

network packets are exchanged in the AMI because smart meters in each 

network layer communicate between them and report to the control centre 

(AMI headend). Thus, a solution should consider the generated traffic from the 

devices so that malicious messages are stopped.  

Bearing in mind the above factors, assumptions were made to simplify the design and 

functionality of the IDS: 

 HAN-let and NAN-let should be able to run in existing devices. HAN-let could 

be integrated into normal smart sensors. Thus, HAN-let should have low 

memory requirements. Similarly, NAN-let runs heavier algorithms. Therefore, 

it should be executed in NAN routers which have more computational power 

than sensors. Both HAN-let and NAN-let software components will be 

developed in this work. 

 HAN-let will be employed at HAN while NAN-let at NAN. For this reason, the 

communication between them is assumed to be encrypted and each 

component will have to authenticate itself using public key cryptography. In 

this way, security events and network health will be monitored. 

 Use of widely used dataset such as NSL-KDD for training and testing. This 

dataset contains the four main attack types which SNIDS is assumed to detect. 
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 Supervised learning algorithms will be used to train SNIDS to classify packets. 

HAN-let is assumed to run different algorithm from NAN-let. This will protect 

every node in the network and increase the DR. 

 Devices such as data collectors in NAN, and servers in WAN are assumed to be 

always available. Availability in all three network levels is important. In case of 

attack, the message must arrive at the control centre to notify administrator. 

With the above assumptions, the architecture of the IDS will be simpler and the whole 

system will be easily deployed in AMI network. 

 

 System Architecture 

3.2.2.1. Design Requirements for SNIDS 

Having the proper system architecture is necessary for fulfilling the requirements 

of an AMI. Additionally, it will improve the overall efficiency of the IDS. In this project, 

HAN and NAN are the two networks to be protected by the IDS. This is because the 

former has the smart meter which can be targeted for stealing the energy usage data. 

According to Meng, Ma and Chen (2014) NAN can be attractive due to the large 

amount of data held by data concentrators. Regarding WAN, the designed IDS can be 

extended to cover this network but this is not in the scope of this work.  

SNIDS should have several features that will improve the attack detection speed 

and will enable better decision making. First of all, a decentralized IDS should be used 

to distribute the processing of data in HAN-let and NAN-let. This means that decisions 

will be taken at each network level by the software components. The devices running 

these algorithms will classify the traffic and alert the network administrator in case of 

an attack.  

In addition, a distributed approach is the most appropriate option for the 

proposed IDS. Millions of smart meters are already deployed in each house. Smart 

meters will be embedded with the HAN-let software without extra overhead. 

Additionally, routers in NANs will run the NAN-let component. In this way, the whole 

network will be monitored by existing devices. 
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3.2.2.2. SNIDS Network Topology  

Network topology is presented in Figure 3.1. Beginning from the left side, each 

household forms a HAN which contains a smart meter running the HAN-let software 

for detecting known attacks. In the middle, NANs are shown with data concentrators 

located inside them. NAN-let software will be executed by central NAN routers which 

have the capability of running machine learning classifiers. Routers or NAN devices 

will be connected to WAN where the AMI headend and the backhaul network are 

located. The AMI headend contains the management server that stores packets 

information in the database for training the algorithms. There is a WAN-let in WAN 

which has the same capabilities as the NAN-let but it is not implemented in this work.  

 

Figure 3.1: SNIDS network topology 

As can be seen, HAN-lets (embedded in smart meters) and NAN-lets (embedded 

in routers) are distributed among the different networks of AMI. Monitoring all 

devices (smart meters, AMI headend) is strongly recommended when an IDS is 

designed as it makes the system less vulnerable to attacks (Tong et al., 2016). 

Regarding data transfer, messages between HAN-lets and NAN-lets will be delivered 

with the use of wireless technologies like WiFi or LTE. The components will also have 

an encrypted communication channel where only authenticated devices will be 

allowed to exchange critical network data. In this way, when an attack is launched, an 

encrypted notification will be sent to WAN so that network administrator is notified.  
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 System Components 

3.2.3.1. HAN-let 

One of the most important software components of the system is HAN-let. This 

software component can be installed in a normal sensor node. For this reason, it is 

developed to work with low computational power devices. HAN-let is deployed in 

SNIDS to protect smart meters and the whole HAN from external attacks. The 

algorithm to be used in HAN-let is the decision tree algorithm C4.5 which generates a 

tree that helps to classify a packet to normal or malicious. In this way, every packet 

will be classified according to its characteristics and in case a malicious one is found, 

the sensor will block the packet and notify NAN-let for further action. A decision tree 

is the most suitable classifier to be used in a HAN because it is fast and computationally 

inexpensive.  

 

3.2.3.2. NAN-let 

Another software component that plays an important role in SNIDS is NAN-let. This 

component is like HAN-let but it uses different classifiers. NAN-lets will be deployed 

in NANs to protect them from attacks targeting the data collector which holds vital 

information. Additionally, it will help HAN-lets by providing new updated data on 

attacks which will be generated from the prediction capabilities of NAN-let. This will 

be achieved by running the SVM and RF algorithms. New predicted attacks will be 

added in the central database in WAN. Both HAN-lets and NAN-lets will have access 

to the database in WAN. The former can create rules to stop attacks while the latter 

will predict new attacks based on these data. Due to heavy processing, NAN-let can 

be embedded only in devices with large CPU and memory. In case of an attack in NAN, 

the nodes will stop the attack and notify the AMI headend which will notify the system 

administrator. The same pattern is followed when an attack happens in HAN which 

means HAN-lets will stop the attack and they will notify both NAN-lets and the control 

centre. In case of a communication failure, alternative paths will be used to send the 

data to the specified device.  
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3.3. Dataset and Pre-processing Methodology 

 KDD99 and NSL-KDD Datasets 

Selecting the proper dataset to evaluate an IDS is an important task. Among 

several available datasets, KDD99 is the one that has been used widely by researchers 

for benchmarking IDS. The dataset was prepared by Stolfo et al. (2000) and in the 

training set there are almost 4.900.000 records with 41 attributes (excluding ‘class’ 

attribute). Each record is categorized as normal or attack. The attack records can 

belong to one of the four following attack types: 

1) DoS attack in which an attacker attempts to reserve the computational and 

memory resources of the system so that it becomes busy and doesn’t respond 

to users’ requests. 

2) U2R attack in which the attacker gains access to a normal user account and 

then, tries to exploit the system so that it becomes super user. 

3) R2L attack in which the hacker sends packets to a machine without having an 

account on that machine. The goal is to exploit the machine and become a user 

of the machine. 

4) Probing Attack is when the attacker scans the machine or the network to find 

vulnerabilities. The goal is to compromise the machine by exploiting these 

vulnerabilities. 

The testing data is generated differently from the training data, and it contains 

attack types that do not exist in the training data. Thus, the attack detection procedure 

is close to reality. Table 3.1 shows the number of records contained in each of the four 

attack categories. For more details see Appendix B. 

Normal 
(number of 
records) 

Probing 
(number of 
records) 

DoS (number 
of records) 

R2L (number 
of records) 

U2R (number of 
records) 

Normal 
(97.277) 

Nmap  
(231) 

Land 
(21) 

Spy 
(2) 

Buffer_overflow 
(30) 

 Portsweep 
(1.040) 

Pod  
(264) 

Phf 
(4) 

Rootkit 
(10) 

 Ipsweep 
(1.247) 

Teardrop (979) Multihop 
(7) 

Loadmodule 
(9) 

 Satan 
(1.589) 

Back  
(2.203) 

ftp_write 
(8) 

Perl 
(3) 
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  Neptune 
(107.201) 

Imap 
(12) 

 

  Smurf 
(280.790) 

Warezmaster 
(20) 

 

   Guess_passwd 
(53) 

 

   Warezclient 
(1.020) 

 

Table 3.1: Types of attacks in KDD99 and NSL-KDD. See Appendix B for more 

details. 

Although KDD99 dataset has been used widely, a new dataset NSL-KDD (NSL-KDD 

Dataset, 2015) has appeared to replace it. The KDD99 dataset has some problems 

which have led to the creation of the new improved version. The two most serious 

problems are: 1) it contains many redundant records in both training and testing sets. 

This makes the classifier biased to the records that appear frequently, and 2) the 

number of existing records is very large and thus, researchers usually use only the 10% 

of the set (Meng, 2011). 

The above issues are solved by NSL-KDD which contains a reasonable number of 

records and it doesn’t have duplicate records. As a result, researchers can run 

experiments on the complete dataset, and the classifier will not be biased to specific 

records. The original NSL-KDD dataset is divided into training and testing sets with 

125.973 and 25.544 records, respectively. There is also a training set that contains 20% 

of the original training set called KDDTrain+_20Percent (Tavallaee et al., 2009). The 

types of attacks included in NSL-KDD are the same as the original KDD99 dataset. 

In this work, the NSL-KDD is used to evaluate SNIDS using the 20% of the original 

set (KDDTrain+_20Percent.arff) for training. For testing, the KDDTest+.arff file is 

chosen which contains some attack types that are not included in the training set. 

 

 Feature Selection 

Achieving the ideal IDS solution is a major challenge that has not been 

accomplished yet. An ideal IDS would have 100% DR, low FP and zero training time. 

However, due to large datasets with a big number of records and features, the training 

time remains high. As a result, measures have been taken to reduce required 
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computational time. One of the most common methods for improving the training 

time and DR of SNIDS is the feature selection method. This technique is based on 

selecting the best subset of attributes, called features, which are relevant and play an 

important role in the decision-making process. Although the features are reduced, the 

goal is to keep accuracy in acceptable levels.  

There are three categories of feature selection algorithms: filter, wrapper and 

embedded methods. Starting with filter methods (Hall, 1999), they try to assess and 

select the features from the original dataset without using any learning algorithm. 

Evaluation criteria such as information gain, inconsistency, Principal Component 

Analysis (PCA) and others, are used for ranking and selecting the best features (Hall 

and Smith, 1999). The fact that this method is fast, has low complexity, it avoids 

overfitting and can scale to high dimensional datasets are some of the reasons of using 

it to reduce the number of features of a dataset (Lan and Vucetic, 2009).  

 

 

Another category is the wrapper methods (John, Kohavi and Pfleger, 1994) which 

use a learning algorithm in order to search all feature subsets and find the best one. 

These methods select the feature subset that is most useful according to the algorithm 

used. Thus, the performance of the specified algorithm is considered when choosing 

the attributes. Any algorithm from DTs to SVM can be used for wrapper methods (Hall 

and Smith, 1999). Comparing wrapper with filter methods, the former perform better 

Performance 

Feature space 

search 

mechanism 
Learning 

algorithm 

Evaluation criteria 

based on training 

data 

Training 

data 

Features 
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evaluation 

results 

Selected 

feature 

subset 

Training 
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Test 
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Figure 3.2: Filter feature selection procedure 
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in selecting attributes than the latter. This is because of taking into account 

dependencies between features. However, the high risk of overfitting and the long 

processing time are some of the drawbacks of wrappers.  

Regarding embedded methods, the attribute selection process is done during the 

training phase. In other words, these methods try to find the best subset of attributes 

while they build the model. DTs algorithms such as C4.5 or ID3 belong to this category. 

They select the best attributes in each node so that the classification is made based 

on them. After that, they continue dividing the dataset until the stopping condition is 

reached (Boutemedjet, Bouguila and Ziou, 2009). Embedded methods are less 

computational intensive from wrapper methods, and they build trees quickly. 

However, they are specific to the learning algorithm that is used to train the model. 

Having these in mind, the feature selection methods to be used in SNIDS are filter 

and wrapper methods. These methods will be used to extract a feature subset so that 

training time is reduced and DR is maintained at acceptable levels. In order to select 

the most appropriate features, the WEKA library will be used. It provides several 

options for searching the attributes and evaluating them.  

“Attribute evaluators” will be used to evaluate the attributes. These methods 

include: 1) CfsSubsetEval, introduced by Hall and Smith (1998), which assesses each 

feature subset by taking into account the predictive power of each attribute together 

with the degree of redundancy between them. The selected attributes have strong 

relationship with the class and have low interrelationship (Hall and Smith, 1998), 2) 

Filteredsubseteval which runs a random subset evaluator on data that have been 

filtered with a random filter, 3) WrapperSubsetEval which uses a learning algorithm to 

evaluate feature sets. It uses cross-validation (Vanschoren et al., 2014) to calculate 

the accuracy of the learning algorithm for a set of features (Kohavi and John, 1997). 

Search methods are used to search the feature space so that the best subset is 

selected. After selecting the subset, the attribute subset evaluator will measure the 

quality of the subset. The most common search methods are BestFirst, 

GreedyStepwise and Linear Forward Selection (LFS). Starting with BestFirst, it explores 

for feature subsets by “greedy hill-climbing augmented with a backtracking facility” 
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(Witten et al., 2016). It can start with an empty set of features and search forward, or 

start with a full set and search backward or can start at any point going in both 

directions. The second method is GreedyStepwise which performs a greedy forward 

or backward search through the space of attribute subsets (Witten et al., 2016). The 

last technique is LFS which is an extension of BestFirst. There are the fixed-set and the 

fixed-width types of algorithm. The former selects a fixed number of k features while 

in the latter the k number increases in each step. The algorithm uses the initial order 

of attributes to select the top k of them or it ranks them using the same attribute 

evaluator used in the search step. Also, the direction of selecting the features can be 

forward, or floating forward. The latter means that backward search steps are 

optional. 

 

3.4. Chapter Summary 

This chapter described the SNIDS architecture and its architectural components. 

The dataset to be used is also explained along with the attacks that are going to be 

detected. Lastly, the feature selection techniques are introduced to the reader. These 

methods will be used after the initial results so that DR of SNIDS is further improved.  
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Chapter 4 – SNIDS Implementation 

4.1. Chapter Overview 

This chapter describes the implementation of SNIDS. It starts with a discussion 

about the development environments and programming languages. After that, the 

actual implementation is described in detail. An analysis of the functionalities of SNIDS 

is also provided. Then, the implementation of Graphical User Interface (GUI) of SNIDS 

is explained. 

 

4.2. Development Environments and Programming Languages 

 Programming Languages 

An important aspect of the project is the implementation of SNIDS. The software 

will be used by researchers or any user that is interested in testing SNIDS. Creating an 

easy-to-use software is one of the main requirements. In order to build the software, 

a programming language should be used. The criteria for choosing the programming 

languages are: 1) being Object-oriented and, 2) having the ability of building a GUI 

easily. Python, C# and JAVA fulfil the two criteria but JAVA will be used. 

JAVA has many advantages. First of all, it is an Object-oriented language which is 

significant for this work. This means that objects can be created to manage easily the 

classifiers and classes. Another advantage is that a software developed in JAVA can be 

executed in any system independent of the system’s architecture. Code reusability is 

another benefit. SNIDS could have future modifications for adding extra functionalities 

or improving its performance. Many libraries are developed in JAVA. In the case of 

SNIDS, the WEKA library (Witten et al., 2016) is implemented in JAVA. This was the 

most important advantage of JAVA over the other candidates.  
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 Development Environments 

Nowadays, the use of an Integrated Development Environment (IDE) makes 

software development an easy task. IDE provides all the tools to write code, test and 

package the developed software. The most popular IDEs are Microsoft Visual Studio, 

NetBeans, Eclipse and IntelliJ IDEA. Most of them can be used in any operating system 

except for Microsoft Visual Studio. Visual Studio can be installed only on Windows. 

Apart from that, it supports the development of Windows applications only. As a 

result, Microsoft Visual Studio is not considered as a choice for building SNIDS.  

The selection of IDE for developing SNIDS is a task of selecting one of the rest IDEs 

(NetBeans, Eclipse, IntelliJ IDEA). All three IDEs support JAVA and they provide an 

interface for building a GUI. Therefore, any of them can be used for this task. Eclipse 

(Foundation, 2017) is chosen as it has more advantages than the others. The most 

important benefit is that it allows you to easily install any plugin required for the 

software. In other words, it provides you with a set of tools for building any 

component of the software such as a GUI. In addition, it assists the programming by 

having an internal editor for writing the source code. The editor can help the 

programmer by pointing out coding errors and providing coding hints while typing. 

The programmer can customize the editor or the environment with a few clicks. 

Eclipse has also an integrated revision control system which helps in keeping all the 

changes of source code (Tony De Vita, 2014). 

 

4.3. SNIDS Implementation 

 Basic Functionalities and Configuration 

The goal of developing SNIDS is to provide an easy-to-use interface demonstrating 

HAN-let and NAN-let functionalities. The basic features of SNIDS are the following: 

 Classify data into “normal” and “anomaly” accordingly. This is done by using 

C4.5 (called J48) algorithm in HAN-let. The reason for choosing C4.5 for HAN-

let is due to its fast processing and its high DR. This is suitable in a real-time 

environment where attack detection must be fast. Regarding NAN-let, the 

Vote meta-classifier will be used to combine SVM and RF classifiers. Combining 
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means that the result of both classifiers will be considered to produce the class 

label. The selection of SVM and RF classifiers is based on their performance 

from the literature (Chauhan et al., 2013; Choudhury and Bhowal, 2015; Yang 

and Li, 2006). These classifiers have high DR on NSL-KDD dataset (NSL-KDD 

Dataset, 2015). 

 Evaluate HAN-let and NAN-let using a testing dataset or k-fold cross-validation. 

For the former, a dataset should be selected by the user before running the 

program. NSL-KDD is the recommended dataset for IDS. In case of k-fold cross-

validation (Vanschoren et al., 2014), the default value of folds is 10. However, 

the number of folds can be changed by the user. 

 Import datasets with extension .arff, .xarff, .csv, C4.5 .data and .name files. The 

files with .arff extension are recognised by the WEKA library (Witten et al., 

2016). These files contain header information which is followed by data 

information. SNIDS can accept all the file extensions supported by WEKA 

(weka, 2015). In case of file loading problem, an exception is raised.  

The configuration used for developing SNIDS was a laptop computer carrying 8 GB 

RAM and an Intel i7 3rd generation CPU. The operating system was Microsoft 

Windows and the programming environment was Eclipse IDE for Java EE Developers 

(Eclipse, 2017). 

 

 HAN-lets and NAN-lets 

Implementing the software components requires coding in JAVA the 

functionalities mentioned before. The first step in implementing HAN-let and NAN-let 

was to import the WEKA library (Witten et al., 2016) into the Eclipse project. According 

to Özgür and Erdem (2016), WEKA is one of the most widely used tools for comparing 

classifiers. This is because it contains the implementation for many classification 

algorithms used in IDS research. For the current project, the WEKA library is used to 

implement the J48, SVM, RF and Vote classifiers. Using this common library allows 

SNIDS to be extended and improved in the future by other researchers of the field.  
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During implementation, the WEKA API documentation was followed 

(Grepcode.com, 2014). The WEKA API contains all the information about the functions 

supported by the “weka.jar” library. Regarding HAN-let, the goal was to configure the 

J48 algorithm and run it by calling the proper function. This was achieved by creating 

a new J48 object, setting any optional parameters, and then calling the function for 

training the classifier. The next step was the testing phase. This can be done by using 

a testing dataset or cross-validation. For using the former, a testing set from NSL-KDD 

dataset must be imported. For using cross-validation, the number of folds must be set. 

The default value is 10. The HAN-let’s source code is in the trainHANEval(String file) 

function inside “MethodsIDS.java” class. The “file” parameter is a file created by the 

classifier containing the predictions. This option can be enabled by the user.  

Similarly, NAN-let logic is implemented in trainNANEval(String file) function inside 

“MethodsIDS.java” class. The development of NAN-let differs from HAN-let. The 

former uses Vote meta-classifier while the latter uses the J48 classifier. Vote combines 

SVM and RF classifiers. Deploying the SVM algorithm required importing the LibSVM 

library (Chang and Lin, 2011) into the project. The library contains various 

formulations of SVM that can be used in a software. Parameters for SVM and RF can 

be found in “NAN-let options” of SNIDS menu.  

Regarding the coding of NAN-let, Java objects for SVM, RF and Vote classifiers were 

firstly created. Then, each classifier was configured using its default options. The Vote 

classifier was configured to combine the two classifiers. After coding classifiers’ 

configurations, the function for training them was called. Regarding evaluation, this 

can be done using a testing dataset or cross-validation. Again, testing dataset is the 

default option and 10-fold cross-validation is the alternative method. NAN-let can also 

generate a file with predictions when requested by the user. 
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 Combining classifiers 

As discussed earlier, NAN-let implements the Vote meta-classifier (Kuncheva, 

2004; Kittler et al., 1998). This classifier is included in WEKA library (Witten et al., 2016) 

which is used in this work. Vote can combine any classifier using different combination 

rules. The available combination rules are “Average of Probabilities”, “Product of 

Probabilities”, “Majority Voting”, “Minimum Probability”, “Maximum Probability” and 

“Median”. Any of these rules can be selected in SNIDS options. However, the default 

rule used in SNIDS is “Average of Probabilities”. This rule calculates the average of the 

probability distributions for every classifier used. According to the source code 

(Grepcode.com, 2014), this is done by creating an array with probabilities of classifiers 

trained both within and outside Vote classifier. Then, it divides each probability by the 

number of models used. In NAN-let, Vote uses three models: one SVM and two RF 

classifiers. The reason for using two RF classifiers is because of better results obtained 

with this configuration. Consequently, RF has two votes instead of one. That means 

the classification result will be more affected by the result of RF than by SVM. 

 

 User Interface 

One of the requirements for building SNIDS was to have a user-friendly interface. 

A GUI was developed for this purpose. It required to install the WindowBuilder plugin 

for Eclipse (Anon., n.d.). According to Anon. (n.d.), WindowBuilder “is composed of 

SWT Designer and Swing Designer and makes it very easy to create Java GUI 

applications without spending a lot of time writing code”. Using this plugin someone 

can design an interface with different components. Components such as JLabel, JRadio 

button, JButton, JPanel, JMenu and JCheckbox were used in GUI design.  

The main screen of SNIDS is shown in Figure 4.1. This is the welcome screen with 

a message introducing the tool to the user. Moreover, it provides some instructions 

on how to use the software. The focus here is the left side where someone can run 

the HAN-let or the NAN-let. This can be done as follows: firstly, the user must choose 

the HAN-let or NAN-let radio button. Then, user must import training dataset from 

“File->Import train data” (Figure 4.1). In case of using test dataset, user can “Import 

test data”. Otherwise, user should select cross-validation from “Options->General 
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Options” (Figure 4.2). After importing datasets, the last step is to click the “Start” 

button. Pressing the button will run the HAN-let (J48 classifier) or NAN-let (SVM and 

RF classifiers combined with Vote). For terminating the program, user must click the 

“Exit” button. 

As can be seen, GUI makes SNIDS’ execution procedure a simple task. Users can 

classify data easily using HAN-let or NAN-let software component. In this way, the 

difference in performance and DR of these components can be seen easily. 

 

Figure 4.1: SNIDS main screen and File menu. 

 

Figure 4.2: SNIDS General Options 
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 Additional Functionalities 

Apart from the main features, some extra functionalities are implemented for 

better user experience. Below these features are described: 

 Export classifier’s predictions into a .csv file 

Both HAN-let and NAN-let support exporting the predictions of their 

classifiers into a .csv file. This feature helps the user to see the instances and 

the prediction made by the classifier for each instance. The generated file has 

5 columns: #inst (instance number), actual (actual class value), predicted 

(predicted class value), error (shows “+” when prediction failed to match the 

actual class), prediction (probability that instance belongs to the predicted 

class). Using the developed GUI, user can select the path and the name of the 

file to be created. The file is created after the evaluation phase is finished. In 

case of low disk memory, an exception will appear. 

 

 Save/Load a model from file 

SNIDS supports saving a trained model into a file. This means that users can 

save a trained HAN-let or NAN-let software component into a file. Moreover, 

the saved model can be loaded into SNIDS. Importing the model saves time as 

it skips the training phase. After importing the model, user can test the model 

by using a test dataset or cross-validation. SNIDS only accepts the models 

exported for HAN-let and NAN-let. The extension for exported/imported files 

is “.model”. 

 

 Customize classifiers by selecting various parameters 

Users can customize classifiers by choosing different options. This is 

possible thanks to the GUI which provides a simple interface to select 

algorithm’s parameters. All the classifiers (J48, SVM, RF, and Vote) have 

different parameters which can be adjusted by the user. For example, users 

can select the option to visualize the decision tree of J48 in HAN-let. Options 
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should be chosen before running the algorithms. If no changes happen, the 

algorithms use the default options which are described in WEKA 

documentation (WEKA, n.d.). 

 

 Feature selection 

This option allows both HAN-let and NAN-let to select the most appropriate 

features before classification. Filter and wrapper methods (Hall, 1999; John, 

Kohavi and Pfleger, 1994) are available for selecting the features. Filter method 

can be selected if user wants fast attribute selection by just passing the training 

data through a filter. Wrapper method takes more time to select the 

attributes. The search method used in filter method is BestFirst and the 

attribute evaluator is CfsSubsetEval. For the wrapper evaluator, the base 

classifier is J48 algorithm and the search method is again BestFirst. Regarding 

search methods, all the methods available in WEKA produce the same results. 

So, BestFirst is selected randomly from the available methods. Feature 

selection is implemented in SNIDS so that the dimensionality of the datasets is 

reduced. The result is a reduction in classifier’s running time, and improved 

DR. In other words, SNIDS can detect intrusions faster by using only the most 

significant attributes. Moreover, it keeps the detection percentage at the same 

levels as with using all the attributes.  

All in all, most of the above functionalities are implemented in SNIDS to improve 

the efficiency. SNIDS gives the option to users to customize the classifiers and see the 

actual predictions. Although GUI is designed for better user interaction, feature 

selection is the most important functionality. This is because it improves classifier’s 

detection ability and reduces training time. This makes it suitable for working in real-

time environments. The source code of SNIDS can be found in philok93 (2017). 
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4.4. Chapter Summary 

As already mentioned, developing SNIDS is a vital part of this project. Therefore, 

the details about implementation are described in this chapter. Information about the 

development of HAN-let and NAN-let software components is provided. Basic and 

extra functionalities of SNIDS are also explained in detail. Furthermore, the designed 

GUI is demonstrated. Users can use the GUI for executing software components easily.  



53 
 

Chapter 5 – Testing and Evaluation 

5.1. Chapter Overview 

This chapter presents the evaluation results of SNIDS. Testing methodology and 

performance metrics are explained in the first place. SNIDS’ performance is tested by 

running the software components and exporting the results of metrics. Then, the 

evaluation of SNIDS’ components is shown. In the last section, SNIDS is compared with 

similar IDSes from literature in terms of Accuracy, Detection Rate (DR) and False 

Positive (FP) rate. 

 

5.2. SNIDS Testing Methodology 

In this project, SNIDS is tested to verify that it works properly. During testing phase, 

any unseen bugs can be found. It can be also verified that the software classifies data 

into normal and anomaly. Another purpose of testing, is to identify any possible 

bottlenecks.  

There are two testing methodologies to follow: functional and non-functional. Unit 

testing is a functional testing method in which each module of the software is tested 

to ensure that it operates correctly.  In SNIDS, test cases were created for HAN-let and 

NAN-let to test their functionality.  JUnit (Junit-About, 2017) was used to test SNIDS’ 

performance and workflow. It is an external plugin for Eclipse.  

Apart from unit testing, evaluation of IDS performance is important. Performance 

evaluation is a non-functional method of testing. SNIDS’ detection performance is 

checked in terms of DR. In the field of IDS, high DR and low FP are desired. This means 

that most of the actual attacks are detected. Additional performance metrics such as 

memory consumption and time needed to test the classifiers will be used. Having a 

fast tool for classifying network packets is one of the expectations of SNIDS. 

 

5.3. Performance Metrics 

Performance evaluation is based on four parameters; True Positive (TP), True 

Negative (TN), False Negative (FN) and False Positive (FP). The definitions of them are 
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as follows: 1) TP shows the number of instances that are predicted as an attack 

correctly, 2) TN represents the number of instances that are correctly predicted as 

normal, 3) FN shows the number of attacking packets which have been incorrectly 

classified as normal packets. In other words, it shows the wrong prediction, 4) FP 

indicates the number of normal packets which have been incorrectly treated as 

attacking packets. These four parameters can be presented in a confusion matrix. 

Confusion matrix is a table showing the actual and predicted classifications applied by 

a classifier (Provost and Kohavi, 1998). Table 5.1 presents an example of confusion 

matrix showing the connection between the 4 parameters (TP, TN, FP, and FN). 

Actual 

 

Predicted 

Normal Attack 

Normal TN FP 

Attack FN TP 

Table 5.1: Confusion matrix 

Four metrics are used for SNIDS’ evaluation. These metrics are based on the above 

parameters. The four metrics which were selected from the list of Özgür and Erdem 

(2016) and Wu and Banzhaf (2010) are the following: 

 True Positive (TP) rate or Detection rate (DR) (%):  
TP

TP+FN
 , indicates the rate 

of correctly detected attacking packets. High DR means better detection 

performance. 

 False Positive (FP) rate or False alarm (%): 
FP

TN+FP
 , shows the rate of normal 

packets which have been incorrectly classified as attacking packets. Low FP 

rate is desired for SNIDS.  

 Accuracy (%):  
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
  , shows the percentage of correct predictions 

from the total number of predictions. High accuracy is desired for SNIDS. 

 Testing time (sec): the time taken by the classifier to evaluate the dataset. Fast 

data classification is required by an IDS.  
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5.4. SNIDS Evaluation Results 

 Evaluation Procedure 

The evaluation of SNIDS is significant because it will show the effectiveness of the 

software components. In order to evaluate the system, a dataset must be used. As 

discussed in previous chapters, the NSL-KDD dataset (NSL-KDD Dataset, 2015) will be 

used for training and testing SNIDS. This dataset is structured as an ARFF file so that 

SNIDS can read it. Except for using NSL-KDD test set, 10-fold cross-validation 

(Vanschoren et al., 2014) will be used for testing. This means that the NSL-KDD training 

dataset will be divided into 10 random subsets. Then, one subset will be used for 

evaluation while the rest 9 will be used for training. This process is repeated 10 times. 

The evaluation procedure is as follows: firstly, the components are trained using 

KDDTrain+_20Percent dataset. Then, components are tested using both test dataset 

and 10-fold cross-validation. Moreover, feature selection techniques are used in 

testing phase. As mentioned in chapter 3, filter and wrapper methods (Hall, 1999; 

John, Kohavi and Pfleger, 1994) are the two techniques to be checked. After each 

experiment, the results are extracted. This procedure is applied for both HAN-let and 

NAN-let.  

Regarding feature selection, the attribute evaluator CfsSubsetEval and the 

wrapper evaluator WrapperSubsetEval from WEKA API (Witten et al., 2016) are used.   

As discussed in the previous chapter, filter method uses CfsSubsetEval as evaluator 

and BestFirst as search method. The result from running the filter on 

KDDTrain+_20Percent dataset is to select the features 4,5,6,12,26,29,30,37. So, 8 

features out of the 41 are chosen. The WrapperSubsetEval method is configured to 

run with J48 classifier and BestFirst as search method. After running it, the features 

1,3,5,7,15,23,26,34,38 (9 in total) are selected from the dataset. Both results exclude 

the ‘class’ column. With regard to the performance of these methods, wrapper 

method needed more processing time than filter method. This is due to the use of J48 

from wrapper method to evaluate features. 
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 HAN-let Evaluation 

This section presents the evaluation of HAN-let. There are 6 test cases. In three 

test cases, a testing dataset is used while the rest test cases use 10-fold cross-

validation. Also, in four test cases a feature selection method is applied. The filter 

method in feature selection uses 8 features while the wrapper uses 9 features. The 

results are shown below:   

Test 
# 

Using 
Test set 

Using 10-
fold Cross-
validation 

Feature selection Accuracy (% of 
correct/ % of 
incorrect) 

Filter 
method (8 
attr.) 

Wrapper 
method (9 
attr.) 

1 YES    81.05/18.95 

2 YES  YES  75.59/24.41 

3 YES   YES 84.12/15.88 

4  YES   99.56/0.44 

5  YES YES  98.61/1.39 

6  YES  YES 99.56/0.44 
 

Test # - 
Method 

DR (%) FP rate (%) Testing time 
(sec) 

1- Testset 68.9 2.8 0.01 

2- Testset 59.7 3.3 0.02 

3- Testset 74.6 3.3 0.05 

4- Cross Val. 99.6 0.4 11.90 

5- Cross Val. 97.6 0.5 7.02 

6- Cross Val. 99.6 0.4 12.85 

Table 5.2: HAN-let evaluation results 
 

According to the tables above, when using a test set the highest accuracy achieved 

is 84.12% in test #3. In that test case, the DR is the highest but the FP rate is by 0.5% 

higher than test #1. Regarding testing time, in all testset cases the time is under 1 

second so it’s negligible. In cases where 10-fold cross-validation is used, tests #4 and 

#6 have the highest accuracy with a percentage of 99.56%. They also have the same 

DR and FP rate, 99.6% and 0.4% respectively. This is also presented in the graph below 

with all the test cases. Consequently, HAN-let can be used with 9 attributes instead of 

41 as it will improve the performance and save memory. 
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 NAN-let Evaluation 

This section presents the results obtained from NAN-let evaluation. It follows the 

same manner with HAN-let evaluation. There are again six test cases; three using test 

dataset and three using 10-fold cross-validation. Moreover, feature selection is 

applied in some cases as can be seen below:   

 

 

 

 

 

 

 

 

 

 

Table 5.3: NAN-let evaluation results 
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Test 
# 

Using 
Test set 

Using 10-
fold 
Cross-
validation 

Feature selection Accuracy (% of 
correct/ % of 
incorrect) 

Filter 
method 

Wrapper 
method 

1 YES    76.53/23.47 

2 YES  YES  75.20/24.80 

3 YES   YES 82.54/17.46 

4  YES   99.65/ 0.35 

5  YES YES  98.30/1.70 

6  YES  YES 99.71/ 0.29 

Test # -
Method 

DR (%) FP (%) Testing time (sec) 

1 - Testset 60.8 2.7 95.36 

2 - Testset 58.9 3.2 53.62 

3 - Testset 71.5 2.9 22.39 

4 - Cross Val. 99.4 0.1 4095.38 

5 - Cross Val. 98.9 2.3 1978.90 

6 - Cross Val. 99.6 0.2 889.33 

Figure 5.1: HAN-let evaluation results in graph 
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As can be clearly seen, the tests #3 and #6 have the best results. Specifically, test 

#3 which uses test dataset with 9 attributes has 82.54% accuracy and 71.5% DR. The 

FP rate is at similar levels with the other test cases. About test #6, the accuracy is 

99.71%, the DR is 99.6% and FP rate is 0.2%. These values are slightly higher than test 

#4. The most important metric here is the testing time. The testing time of test #6, the 

model with 9 features, was 4.6 times faster than the time needed in test #4. This 

means that test #6 is by far faster and has slightly better DR than test #4. The reason 

for that is the use of 9 attributes instead of 41 in test #6. Using less attributes reduces 

testing time. Also, selecting the most relevant attributes with feature selection seems 

to produce slightly better DR.  

Generally, testing time in tests #4, #5 and #6 is bigger than the first three cases 

because cross-validation is used. This method is repeated 10 times (10 folds). The 

classifiers employed in NAN-let play an important role. SVM and RF classifiers need 

more time to classify data than J48 (HAN-let). That’s why the two software 

components are used in different networks. HAN-let will be employed in HAN for 

detecting malicious packets quickly while NAN-let will be employed in NAN for 

classifying large number of packets more accurately.  

Looking at the first three tests (#1, #2 and #3), test #2 has the worst DR from all 

while tests #1 and #3 have a big difference in accuracy and testing time. Test #3 is 

faster and more accurate than test #1. Again, the use of 9 features instead of 41 helps 

in reducing processing time and improving DR. The graph below shows the results of 

NAN-let. Clearly, tests #3 and #6 have the best performance. As a result, NAN-let 

should be used with 9 attributes to have higher accuracy and reduce processing time. 
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 Classifiers Comparison 

In this section, classifiers used in software components will be compared. The 

classifiers to be considered are the following: J48 classifier used in HAN-let, SVM single 

classifier, RF single classifier, “Vote classifier combining RF with SVM”, and “Vote 

classifier combining two RF classifiers with one SVM classifier”. Starting from J48 

algorithm, it is the decision tree classifier used in HAN-let to stop attacks in a HAN. 

SVM single classifier is used only for comparison purposes. Similarly, the RF single 

classifier. The “Vote classifier combining RF and SVM” was the first attempt in 

combining classifiers to improve DR. However, the “Vote classifier combining two RF 

classifiers and one SVM classifier” was finally used in NAN-let. NAN-let’s Vote classifier 

is expected to have better accuracy than single classifiers. Classifiers were tested using 

both test set and 10-fold cross-validation. Tables 5.4 and 5.5 below show the results: 
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Figure 5.2: NAN-let evaluation results in graph 
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Table 5.4: Classifiers results using cross-validation 
 

 

Table 5.5: Classifiers results using test dataset 

Looking at the results, it is clear that J48 classifier used in HAN-let has one of the 

best performances. It has 99.6% and 74.6% DR when using cross-validation and test 

dataset respectively. However, the FP rate remains at high levels in comparison with 

the other classifiers. This means that in a HAN it will detect many attacks with a small 

chance of wrong prediction. 

According to the tables, combining two classifiers using the Vote classifier (case 

#5) seems to improve DR. When cross-validation is used, “Vote classifier combining 

2xRF classifiers and one SVM classifier” has better accuracy than SVM. On the other 

hand, RF (case #3) is slightly better than the classifier of case #5. The difference in DR 

and FP rate is only 0.1% which is negligible. The outcomes from using the test set 

Case # Classifier Cross Val.- Best 
Accuracy (% 
correct/ % 
incorrect) 

DR (%) FP (%) 

1 J48 (Used in HAN-
let) 

99.56/ 0.44 99.6 0.4 

2 SVM 97.40/ 2.60 94.9 0.4 

3 RF 99.77/ 0.23 99.7 0.1 

4 Vote with RF and 
SVM 

98.09/ 1.91 96.5 0.5 

5 Vote with 2xRF 
and one SVM 
(Used in NAN-let) 

99.71/ 0.29 99.6 0.2 

Case # Classifier Test set- Best Accuracy 
(% correct/ % incorrect) 

DR (%) FP 
(%) 

1 J48 (Used in HAN-
let) 

84.12/15.88 ( using 
wrapper method) 

74.6 3.3 

2 SVM 78.56/21.44 ( using 
wrapper method) 

64.4 2.8 

3 RF 80.54/19.46 ( using 
wrapper method) 

67.9 2.8 

4 Vote with RF and 
SVM 

78.60/21.40 ( using 
wrapper method) 

64.4 2.7 

5 Vote with 2xRF 
and one SVM 
(Used in NAN-let) 

82.54/17.46 ( using 
wrapper method) 

71.5 2.9 
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indicate that NAN-let’s Vote classifier outperforms RF (case #3), SVM (case #2) and 

“Vote with RF and SVM” (case #4). The values of two out of three metrics show that 

NAN-let’s Vote classifier has the best performance. Only FP rate is by 0.2% higher than 

the lowest percentage.  Having this in mind, it can be argued that combining classifiers 

can help in improving the accuracy of the IDS. That’s why NAN-let component uses 

Vote classifier to combine RF and SVM classifiers. Yet, when cross-validation is used 

RF has slightly better performance than NAN-let’s Vote classifier. The graphs below 

illustrate the results of classifiers for the cases of using cross-validation and test 

dataset. It can be distinguished that the performance of the classifiers used by both 

HAN-let and NAN-let components is the best.  
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Figure 5.3: Classifiers comparison using cross-validation 
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Figure 5.4: Classifiers comparison using test dataset 

 

 Memory performance 

Evaluating the memory performance of SNIDS is part of the evaluation procedure.  

Both HAN-let and NAN-let components should have low memory requirements. This 

is because they will be employed in devices with low processing and memory 

capabilities. For measuring memory consumption, Java VisualVM tool (Java 

Documentation, 2016) is used. This software provides detailed information about Java 

processes running on a Java Virtual Machine (JVM). Using this tool, SNIDS’ memory 

consumption was recorded during running time. The screenshot below shows the 

memory consumption of HAN-let. The column “Live Bytes” indicates the memory used 

by the component. According to the results, HAN-let needs approximately 7 MB of 

memory. That memory usage is measured during the execution of the classifier. It also 

calculates the memory used by the objects created by Java libraries and the software 

component. 

0 10 20 30 40 50 60 70 80 90

Vote with 2xRF and SVM

Vote with RF and SVM

Random Forest

SVM

J48

Percentage (%)

Classifiers comparison using test dataset

FP rate DR Accuracy



63 
 

 

Figure 5.5: HAN-let memory consumption 

Regarding NAN-let, its memory consumption is calculated to be 22 MB 

approximately. As can be seen, there is a big difference in memory requirements for 

the two components. This is due to the classifiers used. NAN-let uses RF and SVM 

classifiers which need more memory for calculations than J48 classifier of HAN-let.  

 

 

5.5. Comparison with Existing Systems 

In this section, SNIDS will be compared to other IDSes obtained from the literature. 

The reason for this comparison is to get an idea of how SNIDS’ performance compares 

with similar system. The metrics to be used for comparison are Accuracy, DR and FP 

Figure 5.6: NAN-let memory consumption 
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rate. However, not all studies provide all the metrics. IDSes along with the results can 

be seen below: 

# Source Classifier Accuracy DR FP 

1 Panda et al. 
(2012) 

END+ 
Nested 
Dichotomies 
+Random 
Forest 

- 99.5% 0.1% 

2 Chae et al. 
(2013) 

J48 with feature 
selection 

99.794% / 
99.763% - 
using 22 
features / 
using 42 
features 

-  

3 Shrivas and 
Mishra (2016) 

Ensemble C4.5 and 
CART 

99.67%   

4 Kosamkar and 
Chaudhari 
(2013) 

SVM with CFS 
(Correlation 
Feature Selection) 

98.30% 98.62% 1.01% 

5 HAN-let 
(SNIDS) 

J48 with wrapper 
method (feature 
selection) 

99.56% 99.6% 0.4% 

6 NAN-let 
(SNIDS) 

Vote with two RF 
and one SVM 

99.71% 99.6% 0.2% 

Table 5.6: Comparison of IDSes from various studies 

According to Table 5.6, there are four studies that propose four different IDSes 

using different classifiers. Starting from the first study, it uses a combination of RF with 

Nested Dichotomies. The values for DR and FP rate are 99.5% and 0.1% respectively. 

This means that NAN-let’s classifiers are by 0.1% better in DR but FP rate is by 0.1% 

higher. Chae et al. (2013) use J48 with feature selection. They achieve an accuracy of 

99.79% using 2 features. If it is compared to SNIDS, HAN-let with J48 classifier achieves 

99.56% accuracy using only 8 features. The difference is 0.23%. A study from Shrivas 

and Mishra (2012) shows that an ensemble of C4.5 and CART has an accuracy of 

99.67% (no other metrics available). This percentage is by 0.4% lower compared to 

NAN-let’s Vote accuracy. The last study to compare is using SVM classifier with CFS. 

Kosamkar and Chaudhari (2013) achieved 98.30% accuracy, 98.62% DR and 1.01% FP 

rate. Compared to NAN-let’s results, the value of accuracy is by 1.4% lower while DR 

is almost 1% less than NAN-let’s Vote DR. Regarding FP rate, NAN-let’s classifiers 
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achieve far better false alarm rate with 0.2% instead of 1.01% of SVM using CFS. As 

can be seen, classifiers used in SNIDS’ components (both HAN-let and NAN-let) have 

great performance in comparison with many recent studies. Although a small number 

of already proposed methods may achieve slightly better results, SNIDS seems to be 

better in many cases. 

 

5.6. Chapter Summary 

In this chapter, the results of SNIDS’ evaluation are presented. Firstly, the 

evaluation procedure is explained. Then, the results of different metrics are extracted 

for both HAN-let and NAN-let.  A comparison among the classifiers used in SNIDS’ 

software components is also presented. Conclusively, combining multiple classifiers 

produces better results than single classifiers. Apart from detection performance, 

SNIDS memory performance is evaluated and discussed. In the last section, SNIDS’ 

performance is compared to other IDSes from the literature. Results show that 

detection performance of SNIDS’ components is sometimes better in comparison with 

existing IDSes. 
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Chapter 6 – Conclusions and Future work 

This chapter summarizes the results of the research carried out in this project. 

Furthermore, further improvements are suggested.   

 

6.1. Conclusions 

The project’s aim was to create a new IDS, called SNIDS, for protecting the AMI. 

SNIDS consists of HAN-let and NAN-let software components. HAN-let is for HAN 

protection and NAN-let for NAN protection. High DR and low FP rate is desired from 

an IDS. Achieving these in SNIDS required studying the literature for existing IDSes and 

selecting the most appropriate classifiers. According to many studies, J48, SVM and RF 

classifiers had better performance than others. These classifiers were used in HAN-let 

and NAN-let. Regarding implementation, it was coded in Java using the WEKA library. 

Moreover, a GUI was developed for better user interaction. After finishing the 

implementation, SNIDS was evaluated using the NSL-KDD dataset.  

According to the results, NAN-let’s Vote classifier has better accuracy, DR and FP 

rate than existing IDSes. This means that combining classifiers is more efficient than 

using single classifiers. Additionally, results indicate that using a feature selection 

method is recommended. Specifically, having only 9 attributes has better 

performance than 8 attributes. This is due to the difference in the evaluation 

procedure of wrapper and filter methods. As regards NAN-let’s speed, it’s not as fast 

as HAN-let. HAN-let uses J48 classifier and it has fast processing time with high DR. 

NAN-let uses two classifiers. Thus, it needs more time to classify data.  

There were many challenges during the development of SNIDS. Firstly, the 

combination of classifiers in NAN-let was a difficult decision. There are many ways to 

combine classifiers. Still, Vote method was preferred for its simplicity. Using a 

different method could produce different results. Secondly, building a system for 

smart devices is a challenge. Smart devices have limited capabilities and that requires 

developing HAN-let and NAN-let as efficient as possible. Thirdly, evaluation of the 

system is based only on the one available dataset. NSL-KDD is the latest version of the 
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old KDD99 dataset. Having more than one datasets available would show the 

performance of SNIDS in different conditions. Also, creating a dataset with the latest 

attacks would give a better idea of the real system’s performance. Another challenge 

is the evaluation with other IDSes. Many studies from the literature do not provide 

the same metrics. This makes it difficult to compare with other systems. 

 

6.2. Future work 

In this project, an IDS system consisting of HAN-let and NAN-let software 

components was developed. However, further improvements on the tool can be done. 

For future work, the author suggests the following: 

 Test the software components using real sensor devices. Researchers could 

experiment with real smart devices in a HAN or NAN environment. The 

software from SNIDS could be uploaded into a sensor. Then, its real detection 

performance can be tested. 

 

 Use different datasets for evaluation. As it is known, in the field of IDS there 

are not many datasets available. As a result, systems are tested using only the 

KDD99 and NSL-KDD datasets. Creating a new dataset containing real network 

attacks will help in better evaluation of future IDSes. 

 

 Improve the DR and FP percentages of SNIDS’ classifiers. This could be 

achieved by combining classifiers using a different method than the Vote 

classifier. Moreover, using different classifiers could have better results. For 

example, HAN-let could use a different lightweight classifier for improving 

detection. 

 

 Find the optimal parameters for each classifier. Both HAN-let and NAN-let 

software components should be configured using the optimal values for their 

classifiers. Changing the default values for each classifier could improve their 

performance. 
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 Minimize memory consumption of software components. Using a different 

programming language and better programming techniques, the memory 

consumption could be minimized. This would enable more smart devices with 

very low memory to run SNIDS’ software components.   

 

 Improve the implementation of GUI. Implementing all the parameters of each 

classifier is not efficient. GUI should have the most important parameters for 

each of the classifiers. Also, a better interface design could make the GUI more 

user-friendly.   
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Appendix A 

SNIDS Use Case 

The execution procedure of SNIDS is described. Also, some screenshots from 

SNIDS software are shown. 

Execution procedure: 

User is assumed that wants to run the NAN-let component of SNIDS, using the 

default options and evaluate it with a testing dataset. Firstly, user chooses the NAN-

let radio button. Then, user must import the training dataset from “File->Import train 

data” (Figure A.1.1). The next step is to choose the test method. However, test dataset 

is the default evaluation method so user just needs to import the test dataset. This 

can be done by going to “File->Import test data”. After importing datasets, the last 

step is to click the “Start” button. Pressing the button will execute NAN-let (SVM and 

RF combined with Vote). The screen in Figure A.1.2 will be shown which means the 

program is running using default options. After a couple of minutes, the results will be 

displayed (Figure A.1.3). If user wants to execute the same experiment for HAN-let, it 

needs to select the “HAN-let” radio button and press the “Start” button. For 

terminating the program, user must click the “Exit” button. 
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Figure A.1: 1) Main screen of SNIDS (Top row), 2) Running NAN-let 
(Middle row) and 3) Results of NAN-let (Bottom row) 
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Below are the screenshots of HAN-let options (left side), General options (right 

side) and NAN-let options (second row). 

 

 

 

Source code of SNIDS can be found in philok93 (2017).  
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SNIDS Options 

The parameters to be selected by the user are explained below. The options for 

each classifier are obtained from WEKA library (Witten et al., 2016).  

HAN-let Options: 

Option Description 

Unpruned tree Whether pruning is performed. 

Do not collapse tree Whether parts are removed that do not 
reduce training error. 

Confidence threshold for pruning The confidence factor used for pruning 
(smaller values incur more pruning).  

Use reduced error pruning Whether reduced-error pruning is used 
instead of C.4.5 pruning. 

Number of folds (for error pruning) Determines the amount of data used 
for reduced-error pruning.  One-fold is 
used for pruning, the rest for growing 
the tree. 

Binary splits only Whether to use binary splits on nominal 
attributes when building the trees. 

No subtree raising Whether to consider the subtree raising 
operation when pruning. 

Laplace smoothing for predicted 
probabilities 

Whether counts at leaves are smoothed 
based on Laplace. 

Do not use MDL correction for info gain 
on numeric attributes 

Whether MDL correction is used when 
finding splits on numeric attributes. 

Do not make split point actual value If true, the split point is not relocated to 
an actual data value. This can yield 
substantial speed-ups for large datasets 
with numeric attributes. 

Set minimum number of instances per 
leaf 

The minimum number of instances per 
leaf. 

Seed for random data shuffling The seed used for randomizing the data 
when reduced-error pruning is used. 

Visualize tree Visualizes the decision tree created by 
the classifier. A new popup window will 
appear showing the tree. 

 

 

NAN-let (SVM) options: 

Option Description 

Kernel function degree (d) The degree of the kernel. 

Gamma (g) The gamma to use, if 0 then 
1/max_index is used. 
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Coef0 in kernel function The coefficient to use. 

Cost (C) for C-SVC, epsilon-SVR, and nu-
SVR 

The cost parameter C for C-SVC, 
epsilon-SVR and nu-SVR. 

Set cache memory size in MB The cache size in MB. 

Random seed The random number seed to be used. 

Tolerance of termination criterion The tolerance of the termination 
criterion. 

Kernel type The type of kernel to use. 

Missing value replacement Whether to turn off automatic 
replacement of missing values. 
WARNING: set to true only if the data 
does not contain missing values. 

Use the shrinking heuristics Whether to use the shrinking heuristic. 

Generate probability estimates for 
classification 

Whether to generate probability 
estimates instead of -1/+1 for 
classification problems. 

 

 

NAN-let (Random Forest) options: 

Option Description 

Number of iterations The number of iterations to be 
performed. 

Number of attributes to randomly 
investigate 

Sets the number of randomly chosen 
attributes. If 0, int(log_2(#predictors) + 
1) is used. 

Minimum number of instances per leaf Sets the minimum number of instances 
per leaf. 

Seed for random number generator The random number seed to be used. 

Max tree depth (0 for unlimited) The maximum depth of the tree, 0 for 
unlimited. 

Print the individual classifiers in the 
output 

Print the individual classifiers in the 
output. 

Break ties randomly when several 
attributes look equally good 

Break ties randomly when several 
attributes look equally good. 

Debug mode If set to true, classifier may output 
additional info to the console. 

Execute in parallel Whether to use multiple slots (threads) 
for constructing the ensemble. 

Calculate the out of bag error Whether the out-of-bag error is 
calculated. 

Compute and output attribute 
importance (mean impurity decrease 
method) 

Compute attribute importance via 
mean impurity decrease 
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Output complexity-based statistics 
when out-of-bag evaluation is 
performed 

Whether to output complexity-based 
statistics when out-of-bag evaluation is 
performed. 
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Appendix B 

KDD99 Dataset 

Below, the attack types of KDD99 Dataset are explained. The information was 

taken from Olusola et al. (2010) and Stolfo et al. (1999). 

# Feature name Description  Type 

1 duration  length (number of seconds) of 
the connection  

continuous 

2 protocol_type  type of the protocol, e.g. TCP, 
UDP, etc.  

discrete 

3 service  network service on the 
destination, e.g., http, telnet, 
etc.  

discrete 

4 src_bytes  number of data bytes from 
source to destination  

continuous 

5 dst_bytes  number of data bytes from 
destination to source  

continuous 

6 flag  normal or error status of the 
connection  

discrete  

7 land  1 if connection is from/to the 
same host/port; 0 otherwise  

discrete 

8 wrong_fragment  number of “wrong” fragments  continuous 

9 urgent  number of urgent packets  continuous 

10 hot  number of “hot” indicators continuous 

11 num_failed_logins  number of failed login 
attempts  

continuous 

12 logged_in  1 if successfully logged in; 0 
otherwise  

discrete 

13 num_compromised  number of “compromised” 
conditions  

continuous 

14 root_shell  1 if root shell is obtained; 0 
otherwise  

discrete 

15 su_attempted  1 if “su root” command 
attempted; 0 otherwise  

discrete 

16 num_root  number of “root” accesses  continuous 

17 num_file_creations  number of file creation 
operations  

continuous 

18 num_shells  number of shell prompts  continuous 

19 num_access_files  number of operations on 
access control files  

continuous 

20 num_outbound_cmds number of outbound 
commands in an ftp session  

continuous 

21 is_hot_login  1 if the login belongs to the 
“hot” list; 0 otherwise  

discrete 
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22 is_guest_login  1 if the login is a “guest” login; 
0 otherwise  

discrete 

23 count  number of connections to the 
same host as the current 
connection in the past two 
seconds  

continuous 

24 serror_rate  % of connections that have 
“SYN” errors  

continuous 

25 rerror_rate  % of connections that have 
“REJ” errors  

continuous 

26 same_srv_rate  % of connections to the same 
service  

continuous 

27 diff_srv_rate  % of connections to different 
services  

continuous 

28 srv_count  number of connections to the 
same service as the current 
connection in the past two 
seconds  

continuous 

29 srv_serror_rate  % of connections that have 
“SYN” errors  

continuous 

30 srv_rerror_rate  % of connections that have 
“REJ” errors  

continuous 

31 srv_diff_host_rate  % of connections to different 
hosts  

continuous  

32 dst_host_count 
 

count of connections having 
the same destination host 

continuous 

33 dst_host_srv_count 
 

count of connections having 
the same destination host and 
using the same service 

continuous 

34 dst_host_same_srv_rate 
 

% of connections having the  
same destination host and 
using  
the same service 

continuous 

35 dst_host_diff_srv_rate % of different services on the 
current host 

continuous 

36 dst_host_same_src_port_rate 
 

% of connections to the current 
host having the same src port 

continuous 

37 dst_host_srv_diff_host_rate 
 

% of connections to the same 
service coming from different 
hosts 

continuous 

38 dst_host_serror_rate 
 

% of connections to the current 
host that have an S0 error 

continuous 

39 dst_host_srv_serror_rate 
 

% of connections to the current 
host 
and specified service that have 
an 

continuous 
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S0 error 

40 dst_host_rerror_rate 
 

% of connections to the current  
host that have an RST error 

continuous 

41 dst_host_srv_rerror_rate 
 

% of connections to the current 
host and specified service that 
have an RST error 

continuous 
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Description of attacks 

The table below summarizes the attacks into 4 categories: DOS, R2L, U2R and 

Probing attacks. The description for each attack type is derived from Kendall (1999), 

MIT Lincoln Laboratory (1999), and Detections List File (1999). 

DOS attacks Description 

Land The Land attack occurs when an attacker sends a spoofed SYN 
packet in which the source address is the same as the 
destination address 

Neptune A Neptune is a DoS attack to which every TCP/IP 
implementation is vulnerable (to some degree). Each half-
open TCP connection made to a machine causes the 'tcpd' 
server to add a record to the data structure that stores 
information describing all pending connections. This data 
structure is of finite size, and it can be made to overflow by 
intentionally creating too many partially-open connections. 
The half-open connections data structure on the victim server 
system will eventually fill and the system will be unable to 
accept any new incoming connections until the table is 
emptied out. 

Back In this denial of service attack against the Apache web server, 
an attacker submits requests with URL's containing many 
frontslashes. As the server tries to process these requests it 
will slow down and becomes unable to process other 
requests. 

Pod (Ping of 
Death) 

The Ping of Death is a DoS attack that affects many older 
operating systems. It has been widely reported that some 
systems will react in an unpredictable fashion when receiving 
oversized IP packets. 

Smurf In the "smurf" attack, attackers use ICMP echo request 
packets directed to IP broadcast addresses from remote 
locations to create a denial-of-service attack.  

Teardrop The teardrop exploit is a denial of service attack that exploits 
a flaw in the implementation of older TCP/IP stacks. Some 
implementations of the IP fragmentation re-assembly code 
on these platforms does not properly handle overlapping IP 
fragments. 

 

 

U2R attacks Description 

buffer_overflow Buffer overflows occur when a program copies too much data 
into a static buffer without checking to make sure that the data 
will fit. 
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Loadmodule The Loadmodule attack is a User to Root attack against SunOS 
4.1 systems that use the xnews window system. The 
loadmodule program within SunOS 4.1.x is used by the xnews 
window system server to load two dynamically loadable kernel 
drivers into the currently running system and to create special 
devices in the /dev directory to use those modules. Because of a 
bug in the way the loadmodule program sanitizes its 
environment, unauthorized users can gain root access on the 
local machine 

Perl The Perl attack is a User to Root attack that exploits a bug in 
some Perl implementations. Suidperl is a version of Perl that 
supports saved set-user-ID and set-group-ID scripts. In early 
versions of suidperl the interpreter does not properly relinquish 
its root privileges when changing its effective user and group 
IDs. On a system that has the suidperl, or sperl, program 
installed and supports saved set-user-ID and saved set-group-ID, 
anyone with access to an account on the system can gain root 
access 

Rootkit Multi-day scenario where a user installs one or more 
components of a rootkit.  

 

 

R2L attacks Description 

Imap The Imap attack exploits a buffer overflow in the Imap server of 
Redhat Linux 4.2 that allows remote attackers to execute arbitrary 
instructions with root privileges. 

ftp_write The Ftp-write attack is a Remote to Local User attack that takes 
advantage of a common anonymous ftp misconfiguration. The 
anonymous ftp root directory and its subdirectories should not be 
owned by the ftp account or be in the same group as the ftp 
account. If any of these directories are owned by ftp or are in the 
same group as the ftp account and are not write protected, an 
intruder will be able to add files (such as an rhosts file) and 
eventually gain local access to the system. 

guess_passwd Try to guess password via telnet for an account. 

multihop Multi-day scenario in which a user first breaks into one machine. 

phf The Phf attack abuses a badly written CGI script to execute 
commands with the privilege level of the http server. Any CGI 
program which relies on the CGI function escape_shell_cmd() to 
prevent exploitation of shell-based library calls may be vulnerable 
to attack. 

spy Multi-day scenario in which a user breaks into a machine with the 
purpose of finding important information where the user tries to 
avoid detection. Uses several different exploit methods to gain 
access. 
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warezclient Users downloading illegal software which was previously posted 
via anonymous FTP by the warezmaster. 

warezmaster Anonymous FTP upload of Warez (usually illegal copies of 
copyrighted software) onto FTP server. 

 

 

Probing 
attacks 

Description 

Nmap Network mapping using the nmap tool. Mode of exploring 
network will vary options include SYN. 

Portsweep Surveillance sweep through many ports to determine which 
services are supported on a single host. 

Ipsweep An Ipsweep attack is a surveillance sweep to determine which 
hosts are listening on a network. This information is useful to an 
attacker in staging attacks and searching for vulnerable machines. 
(mit) 

Satan Network probing tool which looks for well-known weaknesses. It 
operates at three different levels.  

 


