
Smart Network-based Intrusion Detection System (SNIDS)

for Advanced Metering Infrastructure

A dissertation submitted to The University of Manchester for the degree of

Master of Science in the Faculty of Engineering and Physical Sciences

2017

By

Philokypros Ioulianou

School of Computer Science

2

Table of Contents

List of Figures ... 5

List of Tables .. 6

List of Abbreviations .. 7

Abstract .. 9

Declaration ... 10

Intellectual Property Statement .. 11

Acknowledgments.. 12

Chapter 1 – Introduction ... 13

1.1. Motivation ... 13

1.2. Aim and Objectives ... 14

1.3. Thesis Structure ... 15

Chapter 2 – Background and Literature Review .. 16

2.1. Chapter Overview .. 16

2.2. Smart Grids .. 16

 The Smart Grid vision ... 16

 Advance Metering Infrastructure (AMI) ... 17

 Security issues in Smart Grid .. 20

2.3. Intrusion Detection System (IDS) and its Classifications 23

 Introduction to IDS ... 23

 Signature-based detection ... 24

 Anomaly-based detection .. 24

 Specification-based detection .. 25

2.4. Algorithms for the Intrusion Detection System (IDS) 25

 Overview of Current Algorithms... 25

 C4.5 ... 27

 Support Vector Machine (SVM) .. 29

 Random Forest ... 30

 Hybrid approach - Ensembles ... 31

2.5. IDS in AMI .. 32

2.6. Chapter Summary.. 33

Chapter 3 – Smart Network-based Intrusion Detection System (SNIDS) Design 34

3.1. Chapter Overview .. 34

3

3.2. Smart Network-based Intrusion Detection System (SNIDS) Design 34

 Assumptions ... 34

 System Architecture ... 36

3.2.2.1. Design Requirements for SNIDS... 36

3.2.2.2. SNIDS Network Topology ... 37

 System Components ... 38

3.2.3.1. HAN-let ... 38

3.2.3.2. NAN-let... 38

3.3. Dataset and Pre-processing Methodology .. 39

 KDD99 and NSL-KDD Datasets .. 39

 Feature Selection .. 40

3.4. Chapter Summary.. 43

Chapter 4 – SNIDS Implementation ... 44

4.1. Chapter Overview .. 44

4.2. Development Environments and Programming Languages 44

 Programming Languages .. 44

 Development Environments ... 45

4.3. SNIDS Implementation .. 45

 Basic Functionalities and Configuration ... 45

 HAN-lets and NAN-lets ... 46

 Combining classifiers .. 48

 User Interface ... 48

 Additional Functionalities ... 50

4.4. Chapter Summary.. 52

Chapter 5 – Testing and Evaluation ... 53

5.1. Chapter Overview .. 53

5.2. SNIDS Testing Methodology .. 53

5.3. Performance Metrics ... 53

5.4. SNIDS Evaluation Results ... 55

 Evaluation Procedure ... 55

 HAN-let Evaluation ... 56

 NAN-let Evaluation ... 57

 Classifiers Comparison .. 59

4

 Memory performance .. 62

5.5. Comparison with Existing Systems .. 63

5.6. Chapter Summary.. 65

Chapter 6 – Conclusions and Future work ... 66

6.1. Conclusions .. 66

6.2. Future work ... 67

References ... 69

Appendix A ... 76

Appendix B ... 82

Word Count: 17587

5

List of Figures

Figure 2.1: HAN, NAN and WAN (Source: Ali and Al-Shaer,2015) 19

Figure 3.1: SNIDS network topology ... 37

Figure 3.2: Filter feature selection procedure .. 41

Figure 4.1: SNIDS main screen and File menu. ... 49

Figure 4.2: SNIDS General Options ... 49

Figure 5.1: HAN-let evaluation results in graph ... 57

Figure 5.2: NAN-let evaluation results in graph ... 59

Figure 5.3: Classifiers comparison using cross-validation 61

Figure 5.4: Classifiers comparison using test dataset 62

Figure 5.5: HAN-let memory consumption .. 63

Figure 5.6: NAN-let memory consumption .. 63

Figure A.1: 1) Main screen of SNIDS (Top row), 2) Running NAN-let (Middle

row) and 3) Results of NAN-let (Bottom row) .. 77

file:///C:/Users/User/Documents/University/master/thesis/docs/MscthesisPhil.docx%23_Toc492402796
file:///C:/Users/User/Documents/University/master/thesis/docs/MscthesisPhil.docx%23_Toc492402799
file:///C:/Users/User/Documents/University/master/thesis/docs/MscthesisPhil.docx%23_Toc492402800
file:///C:/Users/User/Documents/University/master/thesis/docs/MscthesisPhil.docx%23_Toc492402801
file:///C:/Users/User/Documents/University/master/thesis/docs/MscthesisPhil.docx%23_Toc492402804
file:///C:/Users/User/Documents/University/master/thesis/docs/MscthesisPhil.docx%23_Toc492402805
file:///C:/Users/User/Documents/University/master/thesis/docs/MscthesisPhil.docx%23_Toc492402805

6

List of Tables

Table 2.1: Differences of AMI devices .. 20

Table 3.1: Types of attacks in KDD99 and NSL-KDD. See Appendix B for more

details. ... 40

Table 5.1: Confusion matrix .. 54

Table 5.2: HAN-let evaluation results ... 56

Table 5.3: NAN-let evaluation results ... 57

Table 5.4: Classifiers results using cross-validation.. 60

Table 5.5: Classifiers results using test dataset .. 60

Table 5.6: Comparison of IDSes from various studies 64

7

List of Abbreviations

SG Smart Grid

SNIDS Smart Network-based Intrusion Detection System

AMI Advanced Metering Infrastructure

IDS Intrusion Detection System

SM Smart Meter

CPU Central Processing Unit

RAM Random Access Memory

HAN Home Area Network

NAN Neighbourhood Area Network

WAN Wide Area Network

KB Kilobytes

MB Megabytes

MIM Man-In-The-Middle

DoS Denial of Service

U2R User to Root

R2L Remote to Local

KDD99 KDD CUP 1999 dataset

SVM Support Vector Machine

DT Decision Tree

RBF Radial Basis Functions

RF Random Forest

OOB Out-of-Bag

MAC Medium Access Control layer

PHY Physical layer

DR Detection Rate

PCA Principal Component Analysis

LFS Linear Forward Selection

GUI Graphical User Interface

IDE Integrated Development Environment

API Application Programming Interface

8

TP True Positive

TN True Negative

FP False Positive

FN False Negative

JVM Java Virtual Machine

9

Abstract

Smart meters have been deployed around the globe at a fast pace. Technologically

improved meters will have many benefits for the consumers. However, these devices

are vulnerable to different types of attacks. Many researchers suggest using Intrusion

Detection Systems (IDSes) for detecting attacks. An Intrusion Detection System (IDS)

employs a classifier to identify known and unknown attacks. Finding the proper

classifier for an IDS is a challenge because no single classifier can detect all types of

attacks accurately.

In this work, the problem of detecting malicious attacks in Advanced Metering

Infrastructure (AMI) is studied. Focus is on the attacks affecting the availability and

the integrity of the system. Smart Network-based Intrusion Detection System (SNIDS),

a hybrid and distributed network-based IDS, is developed to detect attacks. In the

literature, very few studies attempt to use multiple classifiers in IDS. For this reason,

a combination of Support Vector Machine (SVM) and Random Forest (RF) classifiers is

used in NAN-let software component of SNIDS. SNIDS was implemented in Java using

Eclipse Integrated Development Environment (IDE). A Graphical User Interface (GUI)

was also developed for running SNIDS.

The system developed in this project was tested to ensure that it classifies attacks

correctly. Also, its detection performance was evaluated. The results showed that two

combined classifiers achieve higher accuracy than single classifiers. More importantly,

detection rate and speed are improved when feature selection methods are used.

10

Declaration

No portion of the work referred to in the dissertation has been submitted in

support of an application for another degree or qualification of this or any other

university or other institute of learning.

11

Intellectual Property Statement

i. The author of this dissertation (including any appendices and/or schedules to

this dissertation) owns certain copyright or related rights in it (the “Copyright”)

and s/he has given The University of Manchester certain rights to use such

Copyright, including for administrative purposes.

ii. Copies of this dissertation, either in full or in extracts and whether in hard or

electronic copy, may be made only in accordance with the Copyright, Designs

and Patents Act 1988 (as amended) and regulations issued under it or, where

appropriate, in accordance with licensing agreements which the University has

entered into. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the dissertation, for example graphs and tables

(“Reproductions”), which may be described in this dissertation, may not be

owned by the author and may be owned by third parties. Such intellectual

Property and Reproductions cannot and must not be made available for use

without the prior written permission of the owner(s) of the relevant

Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialization of this dissertation, the Copyright and any Intellectual

Property and/or Reproductions described in it may take place is available in

the University IP Policy (see

http://documents.manchester.ac.uk/display.aspx?DocID=24420), in any

relevant Dissertation restriction declarations deposited in the University

Library, and The University Library’s regulations (see

http://www.library.manchester.ac.uk/about/regulations/_files/Library-

regulations.pdf).

12

Acknowledgments

I would like to express my deepest appreciation to my supervisor, Dr Ning Zhang,

for giving me endless support and valuable advice for solving any issues. Thank you

for trusting me and encouraging my research as well as for helping me throughout this

year.

Also, I would like to express my special thanks to my parents, brothers and friends

for providing me with courage and support throughout this year and for helping me

to study the MSc at the University of Manchester. Without them, this accomplishment

would be impossible.

13

Chapter 1 – Introduction

1.1. Motivation

Nowadays, governments around the world are replacing the electricity and gas

meters with new smart meters. These smart meters will help consumers to

understand better their energy usage, have more accurate bills as well as save money

on their bills. By 2020, the European Union (EU) will replace 80% of traditional meters

with smart meters (Energy, 2014). In the UK, the number of smart meters installed in

homes will be about 85% (Clark, 2016). Smart meters, sensors and special tools for

supporting the management of power transmission and distribution will be the main

parts of the AMI.

However, the AMI network introduces many security risks. These should be

promptly addressed before attackers exploit the device’s vulnerabilities creating

chaos among countries. Lately, security experts “have raised concerns about the

meters’ security” (Clark, 2016). In some cases, smart meters were hacked (Krebs,

2012). Moreover, attacks can cause damage to smart meters and to the three network

levels of AMI: Home Area Network (HAN), Neighbourhood Area Network (NAN) and

Wide Area Network (WAN). For example, a distributed Denial of Service (DoS) attack

can take place if multiple smart meters are compromised in a NAN. This can be done

by injecting malware into the smart meter’s software and then, use the compromised

device to take control of other meters. Consequently, the security of smart meters

must be examined again so that proper solutions are developed to protect the critical

infrastructure.

Many methods such as encryption algorithms, firewalls, authorization and

authentication mechanisms and even security protocols are used to protect AMI

network. However, Cleveland (2008) states that encryption and authentication

mechanisms alone will not be enough for AMI security protection. Therefore,

monitoring solutions are vital for AMI and must be used. Regarding firewalls, even

though they offer a kind of defence, they do not fully protect the network. Thus, they

are recommended to be used with Intrusion Detection System (IDS). An IDS is “a

14

computer system (possibly a combination of software and hardware) that attempts to

perform intrusion detection” (Kerschbaum, Spafford and Zamboni, 2000).

1.2. Aim and Objectives

The aim of this project is to develop a solution that will protect AMI from cyber-

attacks by detecting threats. The solution is a hybrid and distributed network-based

IDS. The proposed IDS will classify network traffic into “normal” and “malicious” using

different machine learning algorithms. In the literature, very few studies attempt to

use multiple classifiers in IDS. For this reason, in this work a combination of Support

Vector Machine (SVM) and Random Forest (RF) classifiers is used. It is expected that

using a combination of classifiers will produce better results than single classifiers.

Achieving the above goal required the definition of multiple objectives. The

objectives of the project are as follows:

 Study the literature for existing work on IDSes protecting AMI. This includes

identifying the requirements and constraints of IDSes.

 Study the literature for classifiers used in IDSes. Several classifiers will be

compared and the best ones will be chosen. Accuracy and speed are the

criteria for choosing the classifiers. One will be selected to protect HAN, and

two classifiers will be combined to protect NAN.

 Design a new IDS with the proper software components. Software components

are designed based on smart meter’s constraints, such as low memory.

 Implement an IDS as a software tool. IDS will have two software components.

These software components will use classifiers to detect normal and anomaly

network packets in different networks. The classifiers to be used will be

selected from literature based on their performance.

 Test and evaluate the IDS to make sure it works as expected.

15

1.3. Thesis Structure

The chapters of the thesis are the following:

Chapter 2 - The scope of this chapter is to define and explain the most important

concepts of the thesis. Specifically, definitions of Smart Grid (SG), AMI and IDS are

given. The security issues in SG are also explained. Moreover, algorithms that IDS uses

for attack classification are discussed.

Chapter 3 - The aim of this chapter is to describe in detail the design of Smart

Network-based Intrusion Detection System (SNIDS). In the first section, the system

architecture is explained along with the functionalities of the HAN-let and NAN-let.

These software components make use of datasets which are available to researchers

for training and testing an IDS. In section 3.3, KDD99 and NSL-KDD datasets are

described in detail. Feature selection techniques are also introduced for improving the

performance of SNIDS.

Chapter 4 - This chapter describes the implementation of SNIDS. It starts with a

discussion about the development environments and programming languages. After

that, the actual implementation is described in detail. An analysis of the functionalities

of SNIDS is also provided. Then, the implementation of Graphical User Interface (GUI)

of SNIDS is explained.

Chapter 5 - This chapter presents the evaluation results of SNIDS. Testing

methodology and performance metrics are explained in the first place. SNIDS’

performance is tested by running the software components and exporting the results

of metrics. Then, the evaluation of SNIDS’ components is shown. In the last section,

SNIDS is compared with similar IDSes from literature in terms of Accuracy, Detection

Rate (DR) and False Positive (FP) rate.

Chapter 6 - This chapter summarizes the results of the research carried out in this

project. Furthermore, further improvements are suggested.

16

Chapter 2 – Background and Literature Review

2.1. Chapter Overview

The topics to be discussed in this work requires some background knowledge. The

scope of this chapter is to define and explain the most important concepts of the

thesis. Firstly, the SG concept and the AMI will be described to understand the

difference between the two. Then, the security issues in SG will be explained so that

the reader can understand the dangers that exists in these networks. Then, the IDS

along with the different classifications will be presented. Various algorithms that

researchers are implementing in IDSes are also discussed.

2.2. Smart Grids

 The Smart Grid vision

The current electric power grid throughout the world is mainly an old-fashioned

system which cannot satisfy the today’s needs for big amount of electricity. The world

is changing. As a result, new challenges appear for electricity transmission and

distribution. Low reliability of the current electric grid due to many power outages,

high maintenance costs due to old machines, and lack of security measures such as

firewalls are some of the most important problems of the current grid. Thus, the

current system will be transformed into an intelligent system, called “Smart Grid”,

which will help manage electricity supply and demand efficiently. The new SG will be

composed of Smart Meters (SMs), sensors, and special tools that will support the

management of power transmission and distribution.

Consumers will be benefited from this new SG. Firstly, the costs of energy bills will

be reduced. Consumers will make a more efficient use of energy because SMs will

show their energy usage. In addition, the security level of the whole grid will be

improved. IDSes will provide a real-time picture of the network status. Finally, network

providers will have better grid management and will act fast to solve any customer’s

issues. The two-way communication between utility provider and consumer will make

this possible.

17

Regarding the definitions of the term “Smart Grid”, there aren’t any globally

accepted definitions yet. However, in the UK the most common definition is from the

Energy Network Association (2014) which defines the Smart Grid as “everything from

generation through to home automation with a SM being an important element, with

every piece of networks equipment, communications technology and processes in

between contributing to an efficient and smart grid.”

The SG network is predicted to interconnect various home appliances with the SM.

This will help to establish a flexible, reliable, cost-effective and environmentally

friendly power system. It will be able to manage network components in a way so that

alternative energy sources are used in the electricity network (Jenkins, 2010).

 Advance Metering Infrastructure (AMI)

The SG of the future will be based on a sensor network called Advanced Metering

Infrastructure (AMI). The AMI is a system mainly composed of SMs, in-home displays,

AMI communication network and the utility’s backhaul system. The most important

feature is that it enables two-way communication between customers and utility

provider. This makes it possible for automated data collection from meters, real-time

system monitoring and other demand-response functionalities (Bennett and Highfill,

2008).

Moreover, the AMI consists of two main components; SMs and communication

networks. SM is a low-cost network embedded device deployed in houses and in

industrial environments responsible to metering the power usage. SMs have the

following functionalities:

 Observing and tracking the demand and supply

 Recording power cut events in the internal flash memory

 Sending the usage data to the AMI provider

 Sending and collecting control messages such as remote disconnect

 Providing real-time billing services to the user thanks to their internal clock

18

Apart from the obvious advantages of SMs, there are some drawbacks too. Firstly,

due to their limited functionalities, they have very low Central Processing Unit (CPU)

power and Random Access Memory (RAM). These devices must be cost-effective and

that’s why they have small processing power. Secondly, SMs are in public and private

places. Therefore, they are more vulnerable to physical attacks such as energy theft

and device modification. Consequently, measures should be taken to protect the

devices from these attacks.

The communication infrastructure of SG has a hierarchical structure in which

various devices using different technologies exchange critical information.

Particularly, AMI consists of three main communication networks i.e., Home Area

Network (HAN), Neighbourhood Area Network (NAN), and Wide Area Network (WAN).

HAN is basically the customer’s smart devices that form the home network which is

connected to the SM. All the house appliances are connected to the SM which records

in real-time the devices’ power usage. It works as an interface for HAN as it allows the

communication between AMI (NAN) and HAN. Usually, all the devices in HAN, similarly

in NAN, are using wireless technology for communication.

Regarding NAN, it provides bi-directional communication between the SM in HAN

and the data concentrators. Data concentrators are recording the energy usage and

the pricing for each household. Moreover, NAN is the most important part of the

network as it collects the data from many HANs and forwards them to AMI headend

(WAN) for further processing. The need for communication and the fact that many

devices are distributed in a large geographical area lead to the use of wireless

technologies for data transmission in NAN (Meng et al., 2014).

About WAN, it has the central systems of utility provider. It is the largest one

because it connects the utility control centres with NAN’s data concentrators that are

in large geographical areas. Although the role of WAN is important for self-healing and

situation awareness control of the network, this dissertation focuses on improving the

security of NAN and HAN. Figure 2.1 below shows the communication networks of

AMI. It can be distinguished that the scale of each network differs. For example, HAN

is limited to some square meters while NAN and WAN cover some square kilometres.

19

Figure 2.1: HAN, NAN and WAN (Source: Ali and Al-Shaer,2015)

Every network has some intelligent devices that are vital for the proper

functionality of AMI. For example, SMs are in HAN, data concentrator/collector is in

NAN and AMI headend is in WAN. All these three types of devices have continuous

data flow but they have some differences. As can be seen from Table 2.1, the SM which

is in HAN receives very small amount of data because house appliances send a few KB

of information to SM. Smart devices are required to process small amount of data and

should be low-cost. Thus, SMs have a few KB in memory and low processing power

just enough for recording data, sending the information and receiving messages.

Moreover, due to infrequent requests the transfer speed is very slow.

Regarding data collector, it is a device responsible for receiving the data from

different HANs and forwarding them to AMI headend (WAN). It has a memory of some

MB because it must process a large amount of data received from thousands of SMs.

Transferring lot of data from SMs requires higher transfer speed. That’s why data

transfer speed in NAN should be higher than in HAN.

The most powerful device among the three networks is the AMI headend. This

device is in WAN. The WAN covers a large geographical area. As it is expected, the

amount of data received from data collectors is huge. Consequently, the AMI headend

20

must have several servers with large memory for fast processing of the information.

Speed should also be high enough for handling the data as fast as possible.

Smart meter (HAN) Data

concentrator/collector

(NAN)

AMI headend (WAN)

Very small amount of

data in HAN from house

appliances.

Big amount of data

collected from ten to

thousands of SMs.

Huge amount of data

received from millions of

SMs.

Very limited resources

(CPU, memory in KB).

Bigger need in resource

(memory in MB).

Resources must be very

high like in a server.

Very slow data transfer

from SM due to

infrequent requests.

Data transfer speed is

high because aggregates

data from SMs.

Data transfer speed

must be high to handle

huge amount of data.

Table 2.1: Differences of AMI devices

 Security issues in Smart Grid

SG is based on AMI networks which use technologies that can be targets for

malicious activities. Currently, vulnerabilities such as malicious software injection in a

SM (Goodspeed et al., 2009) or the intentional disconnection of the devices for

creating a blackout (Bennett and Highfill, 2008) have already been discovered.

Another class of threats in the SG is the wireless technology that is used by the devices

for communication forming a mesh topology. Although this technology is cheap and

convenient to use, attackers can damage the nodes or the whole network. Some

attacks that may happen include DoS attacks such as signal jamming and resource

exhaustion, harming the routing protocols, performing unauthorised network

functionalities, replay attacks, and spoofing of SMs. Apart from attacking the nodes or

the network, hackers can exploit the communication link that nodes use to share

information. For instance, data packets can be captured by sniffers allowing attackers

to perform Man-In-The-Middle (MIM) attacks or get unauthorised access to important

information. Last but not least, the integrity of the information stored in SMs is

another target of attackers. As Bennett and Highfill (2008) support, the smart devices

must report the correct readings to the utility when needed. Still, this is may not

always be possible as consumers have physical access to the devices and may attempt

to change the measurements.

21

The attacks above can be distributed among the three network levels of an AMI

network. For example, attacks in a HAN target SMs and they are usually hardware or

software modifications. These include replacing the device with a cloned one to

manipulate billing information. Another attack is to reprogram the device’s firmware

to control the information exchanged with the control centre. In addition to these

attacks, DoS attack is possible by connecting too many smart devices of the house in

one SM. Signal jamming can also be used to prevent the meter’s communication.

Malicious attacks can happen in NAN as well. An attacker can sniff NAN’s traffic

aiming at sending tampered messages to the headend or capturing a neighbourhood’s

SM data for future attacks. The ultimate attack is to compromise the data

concentrator for wide-range attacks. An example of this type of attack is the spread

of a malicious software to SMs in a mesh topology causing wide-scale problems.

About WAN, similar attacks may be executed. Yet, because of the utility provider’s

systems, the attacks usually target at stealing metering data so that they can create

user’s profiles which can be sold later. As can be seen, the attacks are distributed in

each network level and should be prevented using the proper measures.

Cleveland (2008) discusses the security requirements of an AMI network. The main

concerns are the confidentiality, integrity, availability, and non-repudiation. Although

all the requirements are important for AMI, this project will focus on ensuring the

availability of the network. Keeping the systems and AMI network online for every

single day is a challenge. The reason for that is the intentional or unintentional failures

that devices may suffer. Some examples of failures are problems with the software or

the hardware of the device, communication problems such as network traffic, and

even bandwidth issues can make the devices unavailable. From customer’s

perspective, availability means that electricity will always be available and nobody can

shut down the power intentionally or accidentally. However, from the provider’s view

availability means having access to critical information at any time. For example,

devices that handle important data report values to utility centre in small time periods

and should be online every single minute. Energy provider need access to the device’s

data to block any attempt of attack and to keep the network online.

22

Solutions exist for preventing many of the above-mentioned attacks but more

research is needed in this topic. Taking into consideration the four security

requirements, researchers have divided security solutions into three aspects:

encryption and authentication algorithms, privacy protection, and intrusion detection

(Meng et al., 2014). For securing SG, encryption and authentication algorithms are

needed for preventing data theft while data is transmitted from node to node. Even

though cryptographic algorithms exist for protecting data in computer networks, the

requirements in smart grids are different. Therefore, new algorithms should be

designed. Encryption algorithms will be used for encrypting data so that someone will

need a key to decrypt them. Similarly, authentication algorithm will be used to

authenticate and authorize SMs to the utility centre. The limited capabilities of the

smart devices such as low memory and low CPU speed, should be considered for

designing these algorithms with low complexity.

Another aspect of securing SG is the protection of customer’s data. Smart meters

in AMI network will collect detailed information about the electricity usage in specific

time periods. The data collected are sensitive information and must be protected by

anonymizing them. If an attacker has access to raw data, anything could happen. For

that reason, privacy protection should be considered for securing smart grid.

Finally, in AMI networks it is important to have an IDS. This system will enable the

detection of malicious traffic in the network and it will warn the administrator. In the

current work, an IDS system will be implemented for detecting malicious attacks on

SMs and the AMI network. The IDS can be centralized or decentralized but the second

type is usually preferred like in da Silva et al. (2005). Beigi-Mohammadi et al. (2014)

claim that the centralized approach does not work due to scalability issues as well as

computational problems that central server may face. In a decentralized IDS, the

already deployed devices help in processing the big amount of data. No single point

of failure exists. Additionally, IDS will detect attacks at each network level which

makes the detection procedure faster and more effective.

23

2.3. Intrusion Detection System (IDS) and its Classifications

 Introduction to IDS

The main challenge in securing AMI from malicious activities is to develop a

monitoring system that will fulfil the needs and the limitations of the AMI network.

The most common monitoring system that is used in networks is called “Intrusion

Detection System (IDS)”. An IDS is “A computer system (possibly a combination of

software and hardware) that attempts to perform intrusion detection” (Kerschbaum,

Spafford and Zamboni, 2000). In other words, it is a system that detects if there is an

ongoing attack or not and triggers an alert to the user when an intruder attempts to

launch an attack.

The first line of defence are methods such as encryption algorithms, firewalls,

authorization and authentication mechanisms as well as security protocols. However,

Cleveland (2008) states that encryption and authentication mechanisms alone will not

be enough for AMI security protections. Using monitoring solutions are vital for

protecting AMI. Regarding firewalls, even though they offer a kind of defence, they do

not fully protect the network. That’s why IDS is recommended to be used with

firewalls. IDS is vital in a network in case security mechanisms such as encryption and

authentication are breached (Koshal and Bag, 2012).

An IDS is commonly composed of: 1) sensors to track network activities, 2) a

centralized management server to process the data received from sensors, 3) a

database to save the information generated from IDS, 4) an interface for

administrators to check the status of the system, receive warnings and make the

proper configurations to the system.

Regarding the types of an IDS, Cleveland (2008) states that two types exist: host-

based IDS and network-based IDS. The former is used for analysing and checking the

file integrity of a system, the audit logs and the system calls, while the latter is used

for analysing network traffic and data packets. The advantage of host-based IDS is that

it provides a better view of the behaviour of each program that runs on the host.

Regarding network-based IDS, only one IDS is needed for all the hosts on a network.

Still, the latter needs to process lots of network traffic. The drawbacks of the host-

24

based IDS are that for every host an IDS is needed, and if an attacker gains access to a

machine, the IDS can be tampered with (Kosamkar and Chaudhari, 2013). Apart from

these types, according to the detection mechanisms IDSes can be classified into three

types: signature-based, anomaly-based and specification-based (Berthier et al., 2010).

 Signature-based detection

Signature-based or misuse detection is based on the existence of specific patterns

for intrusions, enabling the system to report any activity that matches with any pre-

existing pattern. Patterns are basically known attacks and are also called signatures,

the root of the term signature-based detection. These systems can detect well-known

attacks very accurately and this is the reason for being installed widely in industry.

However, attackers invent new complex attacks and this detection method will fail to

report unknown attacks as well as variations of them. According to Wu and Banzhaf

(2010), detecting unknown attacks requires creating a local database and updating it

regularly. This database can be updated manually, which takes a lot of time, or

automatically by using intelligent algorithms. An example of signature-based IDS is the

rule-based approach where set of rules are created to identify attacks and if an activity

matches with the rules, the action specified for this rule is executed.

 Anomaly-based detection

Anomaly-based detection tries to recognise malicious behaviour. It needs the

previous creation of profiles for defining the normal behaviour of users, hosts or

networks. Therefore, the data is collected and stored in the database during a normal

operation. The anomaly IDS uses various statistical measurements to separate

abnormal behaviour from normal. During the detection phase, false alarms are more

likely to happen as user’s behaviour might not be consistent and the system will find

it difficult to detect the attack. Thus, keeping the profiles updated is important.

However, these systems can detect unknown attacks in contrast with signature-based

systems. For this reason, they are mostly preferred by researchers (Arumugam et al.,

2010; Haddadi et al., 2010).

25

 Specification-based detection

This model is similar to anomaly-based detection approach in detecting intrusions.

In specification-based IDS, the normal behaviour is defined by taking into account the

functionalities and the security policies of the system. A profile with normal behaviour

is created. Any kind of operation that happens outside the specifications is considered

suspicious and is a possible intrusion. The benefits of the system are the detection of

unknown attacks accurately as well as it is cost-efficient to create it. However, a new

specification IDS had to be designed for each protocol. This is because it is difficult to

generalize for too many protocols. Also, it is hard to ensure that all the specifications

of the system are correct and they protect the system from the specified threat.

2.4. Algorithms for the Intrusion Detection System (IDS)

An IDS is a combination of software and hardware which means that an intelligent

algorithm is needed for detecting intrusions. In the follow subsection, the recent

studies about the various approaches are presented.

 Overview of Current Algorithms

Several algorithms have been used recently by researchers for the intrusion

detection task. Nguyen and Choi (2008) survey the latest studies regarding the best

algorithms for classification. They focus on four main attacking classes: DoS, PROBE

(information gathering), U2R (User to Root), and R2L (Remote to Local) using the

KDD99 dataset. The authors select ten classifier algorithms that belong to Bayesian,

decision trees, rule-based models, function and lazy functions categories. They

conclude that JRIP detects best DoS and Probe, decision table is good for U2R

detection and OneR should be used for R2L. Because the first model is not fast enough

for using it in real-time detection, they propose a second model that employs C4.5

(J48 in WEKA) to detect DoS attacks in a real-time environment.

Using the same dataset, Wu and Yen (2009) use machine learning and data mining

methods to improve the efficiency of IDSes. Specifically, they compare C4.5 and SVM

algorithms by classifying the 4 attacks types that are contained in the dataset. The

26

results indicate that C4.5 has better accuracy and detection rate in DoS attacks than

SVM algorithm. Similarly, So-In et al. (2014) study several classification schemes such

as decision tree, Neural Networks, Ripper Rule, Naives Bayes, k-Nearest-Neighbour

and SVM using both KDD99 dataset and HTTP BOTNET attacks. They evaluate the

algorithms using k-fold cross-validation and other metrics. As Vanschoren et al. (2014)

explain, K-fold cross-validation is used for evaluating models that make predictions. It

takes the original dataset and divides it into k random subsets of the same size. Then,

one subset is randomly selected as testing set to evaluate the model and the rest k-1

subsets are used for training the model. This process is repeated k times (folds). Each

k subset is used only once as test data. At the end, the results from the k folds are

combined to generate the average error. Results using this method showed that for

the case of classifying normal and attack class, the C4.5 (or J48) has the highest

accuracy.

Mehmood and Rais (2016) in a recent study of machine learning algorithms SVM,

Naives Bayes, J48 and decision table, they indicate that J48 has the highest accuracy

among the other algorithms. This is due to the redundant features that exist in the

KDD99 dataset. Thus, they recommend using a combination of algorithms for

detecting attacks to improve the overall performance. Kalyani and Lakshmi (2012)

studying the latest dataset NSL-KDD with the Naïve Bayes, C4.5, OneR, PART and RBF

network algorithms, conclude that C4.5 and PART are those with the best

performance. In another study, Chauhan et al. (2013) use 10-fold cross-validation for

evaluation with the NSL-KDD dataset and they show that using RF is an algorithm with

very high accuracy.

In a very interesting study, Choudhury and Bhowal (2015) compared the

performance of nine classifiers in WEKA using both NSL-KDD dataset and 10-fold cross-

validation. The results show that Random Forest and BayesNet are the best algorithms

for the IDS. They also compare ensembles which improve the efficiency of the single

classifiers and they conclude that the best ensemble is Boosting. In a similar study of

classifications algorithms, Giray and A.G. Polat (2013) used several datasets to

conclude that the best classifier is decision trees.

27

As can be seen, several studies attempt to solve the problem of selecting the most

suitable algorithm for using in IDS for AMI. Still, most papers conclude that not a single

algorithm can detect all the attacks with high accuracy. They recommend that a

combination of different algorithms should be employed so that the overall system

performance is enhanced. In this work, C4.5 (J48), SVM and Random Forest classifiers

will be studied. These algorithms are chosen from the literature above. They have the

best performance in several studies regarding intrusion detection.

 C4.5

A Decision Tree (DT) is one of the most used classification algorithms in data

mining. Its operation is based on the divide and conquer idea where the training

dataset is recursively partitioned according to its attributes and it terminates when

the stopping conditions are fulfilled. A DT has nodes, edges, and leaves. Each node has

its own dataset and this defines the best attribute to divide the dataset into its

categories. Moreover, a node has multiple edges that state the values or a range of

values of the chosen attributes on the node. Based on the values of the edges, the

dataset of each node is partitioned into several subsets. Then, a child node is made

for each data subset and the dividing procedure is repeated. This continues in the

node until the stopping conditions are met which means all the datasets are the same

or the attributes cannot be further divided. At this point, the DT algorithm stops the

process and the node gets the name of the class label of the dataset. The labelled node

is now called a leaf. Following this recursive procedure, the result of the DT is the

creation of a tree structure.

The first DT model was created by Kohavi and Quinlan (1999) and the most recent

implementation of his model is C4.5. The most important key issue of the algorithm is

to select the most appropriate attribute that best partitions the dataset into

corresponding classes. The C4.5 model uses the information entropy theory to create

decision trees from training datasets. That means, the attribute with the highest gain

is selected for the partition procedure. The formula used to calculate the gain is the

following:

28

Gain (D, T) = Entropy (D) –∑ 𝑓𝐷(𝑇�̇�) 𝑥 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷𝑇𝑗
)

𝑚

𝑗=1
,

where Gain (D,T) is the gain of dataset D after splitting attribute T;

Entropy (D) is the information entropy of dataset D; m is the number of

different values of attribute T in D; T is the proportion of items possessing Tj as the

value for T in D; Tj is the jth possible value of T; and DTj is a subset of D containing all

items where the value of T is Tj.

Here, the entropy is obtained as follows:

Entropy (S) =∑ 𝑓𝐷(ⅈ)𝑥 log2 𝑓𝐷(ⅈ)𝑛
𝑖=1 ,

where n is the number of different values of the attribute in D and fD(i) is the

proportion of the value “i” in the set D. After creating the tree, the algorithm calculates

classification error for each node and prunes the tree accordingly.

The detailed steps of the algorithms are as follow (Kohavi and Quinlan, 1999):

Input: Training dataset D.

Output: A decision tree.

1) Create the root node R.

2) If D belongs to the same category K, then return R as a leaf node, and label it

as a class K.

3) If no attributes exist or the rest data of D is below a threshold, then return R

as a leaf node, and label it as the most frequent category.

4) For each candidate attribute, calculate its information gain.

5) If test attribute is the testing attribute of R, then test attribute is the attribute

with the highest information gain.

6) If the test attribute is continuous, then calculate its threshold for division.

7) For each new leaf node created by node R: Calculate the classification error

rate of each node, and then prune the tree.

29

 Support Vector Machine (SVM)

SVM is one of the best classification algorithms according to Yang and Li (2006). It

is a reliable algorithm which can achieve high accuracy on predicting the class of

unseen data. It was first introduced by Vapnik (2000) who developed the principle of

structural risk minimization which SVM is based on. This principle aims in finding a

hypothesis h for which one can be sure that the lowest error is observed while other

methods are using the empirical risk principle which tries to improve the performance

of the training set. The learning process of SVM starts with mapping the values of the

training data into high dimensional feature space with the use of kernels. After this

step, it computes a hyper plane that separates the data points with a maximum

margin. The kernel transforms a problem that is linearly non-separable to a separable

one. SVM can be used with many kernel functions such as polynomial, RBF, linear and

sigmoid. The user can select a kernel function to use in the training phase and SVM

chooses support vectors along with this function.

Suppose an input of M data points {(x1,y1), (x2,y2), (x3,y3), … ,(xM, yM)}, where

xi∈Rd and y∈{+1,-1}. A hyperplane can be defined by (w, b) where “w” is a weight

factor and “b” is bias. The decision function that is used when a new object “z” is

classified is the following:

f(z) = 𝑠𝑔𝑛 (w ∗ z + b) = ∑ 𝑎𝑗𝑦𝑗(𝑥𝑗 ∗ 𝑧) + 𝑏
𝑀

𝑗

When the f(z) has a positive result, the object “z” is accepted as normal else the

object “z” is treated as outlier when f(z) is negative.

In this project, SVM is used in the IDS because it has many benefits. First of all,

SVM is a fast algorithm for detecting intrusions and that is significant for building a

real-time IDS which can take decisions quickly. Scalability is another advantage of

SVM. That means that the complexity of the algorithm is not dependent on the size of

the feature space. Consequently, it can learn a large dataset and scale better than

neural networks. Moreover, it is less prone to overfitting because the number of

30

parameters used depend on the margin that separates the data points and not on the

number of features (Sung, 1998).

 Random Forest

Random Forest (RF) is an ensemble method of un-pruned classification or

regression trees (Breiman, 2001). Ensemble is a divide-and-conquer methodology

applied to enhance the performance. The idea behind the ensemble is that several

“weak learners” can gather together and form a “strong learner”. Therefore, the

algorithm achieves the highest accuracy among the other data mining algorithms,

mainly with large datasets. RF algorithm creates several classification trees using a

tree classification algorithm which constructs each tree by using a separate bootstrap

sample from the training dataset. Classifying a new object is done when the forest is

formed. The new object is put below of each tree. Then, each tree votes for the class

of the object so that the forest will select later the class with the most votes. The

algorithm below is for both regression and classification (Liaw and Wiener, 2002;

Svetnik et al., 2003):

1) Select mtree samples with replacement (bootstrap) from the training of m

samples.

2) For each selected sample, grow a regression or classification tree with the

following alterations: At each node, randomly select np predictor variables

from all the predictors and choose the predictor with the best split from those

variables. The tree will grow to the maximum size and will not prune back.

3) Classification of new data is based on the majority vote of the mtree trees. The

average from these trees is used for regression.

In order to evaluate the test error rate, RF algorithm calculates the Out-of-Bag

(OOB) error during the training phase. Thus, there is no need for cross-validation or a

test set to get an unbiased test error. In other words, the fact that each tree is created

based on bootstrap sample means that the one-third of cases, called OOB cases, are

out of the bootstrap samples and are not used in training. (Zhang and Zulkernine,

2006)

31

The main parameters used for configuring the RF are: the number of trees (mtree),

the number of predictors randomly selected as candidates for splitting at each node

(np) and the minimum node size. During the development of the forest, attributes are

chosen arbitrary from all the attributes of the training dataset. The most important

variable to configure is the number of variables/predictors to be used in dividing the

nodes in each tree (np). Setting this variable to a proper large number it will boost the

performance of the algorithm. Apart from this parameter, the minimum node size is

another criterion which the algorithm uses to decide if it will split the node or not. If

the remaining nodes are below this minimum number, there will be no splitting. As a

result, this parameter affects the size of the grown trees. Thus, for classification the

default value of minimum node size is 1, making sure trees have reached the

maximum size (Svetnik et al., 2003).

 Hybrid approach - Ensembles

A hybrid approach or ensembles is the combination of various learning or decision-

making models to boost the performance of the IDS. This approach exploits the

different characteristics of each model. Consequently, accuracy and the whole

generalization of the IDS are increased (Peddabachigari et al., 2007).

One simple and famous hybrid method that Govindarajan and Chandrasekaran

(2011) describe is Voting, which combines the results of various models. In this model,

the results from the various models are combined by calculating the prediction

possibilities of each method so that final predictions are decided from these

probabilities. Another method is Bagging (bootstrap aggregation) and boosting (Pan

and Tang, 2014) which creates several samples from the training data by

bootstrapping (randomly selecting samples with replacement) and a classifier is built

for each sample. After this step, the classifiers generate results which are combined

by calculating the average or by using majority voting. This method uses C4.5 (J48)

algorithm as a base classifier which helps avoiding over fitting and enhancing accuracy.

A third ensemble algorithm which is described by Choudhury and Bhowal (2015,

May) is AdaBoost which means adaptive boosting. This model has a base classifier

32

which is created from the training data. It has also a second classifier which runs

behind the first one so that it focuses on the instances that were wrongly observed

from the first classifier. This procedure of adding extra classifiers continues until a

specific limit in number of models or accuracy is reached. AdaBoost uses C4.5 (J48)

algorithm as a base classifier, and it helps in improving the accuracy of any single

algorithm.

2.5. IDS in AMI

Given the structure of the AMI, the main characteristics that an IDS should have

are the following: 1) be a powerful system which means to have high accuracy in

identifying known and unknown attacks, 2) run without causing any problems to the

current system activities, 3) have the minimum overhead on the SG infrastructure, 4)

prevent attacks at each network level so that the availability of the network remains

unaffected. Bearing these in mind, many researchers have proposed several

approaches in designing an IDS for AMI. The first approach is to use the existing IDS

that have been employed in other kinds of networks which are usually centralized.

Still, that traditional approach does not take into account the constraints mentioned

before. Attacks within the AMI network, such as malicious attacks against the routing

protocol of the mesh network, Medium Access Control (MAC) or Physical (PHY) layer

attacks, and application layer attacks between peer to peer AMI nodes will remain

undetected if a centralized IDS is used. A new decentralized IDS approach is the most

suitable solution for AMI because the data processing and reporting is distributed

among the nodes and no single point of failure exists.

Many researchers have attempted to address the issue of intrusion detection in

the SG. Jokar, Nicanfar and Leung (2011) designed a specification-based IDS for HAN.

Specifically, their IDS aims to protect the PHY and MAC layers of Zigbee devices which

are in the HAN. Zhang et al. (2011) proposed the Smart Grid Distributed Intrusion

Detection System (SGDIDS) which protects the SG from DoS attacks. Their system

makes use of machine learning algorithms that are executed in SMs, data collectors

and control centre so that any suspicious behaviour is detected. Similarly, Beigi-

33

Mohammadi et al. (2014) presented a distributed IDS that protects NAN from

Wormhole attack. They employed an analytical approach to develop the IDS which is

embedded in SMs and they evaluate IDS with OPNET software. The latest work from

Sedjelmaci and Senouci (2016) is the development of a lightweight IDS for SG which

follows both centralized and decentralized approach. Their IDs is a hybrid one as it

combines rule-based and anomaly-based detection by using a machine learning

algorithm. The results from the simulations show that their system is secured enough

and more efficient than other works.

2.6. Chapter Summary

The current chapter explained the basics of SG and introduced some important

terms that are going to be used in this project. Understanding the concept of AMI and

its security problems is the main goal of this chapter. Gaining the vital information

about IDSes will help the reader understand the next chapters.

34

Chapter 3 – Smart Network-based Intrusion Detection System

(SNIDS) Design

3.1. Chapter Overview

The aim of this chapter is to describe in detail the design of Smart Network-based

Intrusion Detection System (SNIDS). In the first section, the system architecture is

explained along with the functionalities of the HAN-let and NAN-let. These software

components make use of datasets which are available to researchers for training and

testing an IDS. In section 3.3, KDD99 and NSL-KDD datasets are described in detail.

Feature selection techniques are also introduced for improving the performance of

SNIDS.

3.2. Smart Network-based Intrusion Detection System (SNIDS) Design

 Assumptions

SNIDS is an IDS aiming at protecting AMI network by detecting and stopping

malicious packets from entering the network. This will be achieved by running J48

classifier on HAN-let, and a combination of SVM and RF classifiers on NAN-let. Both

HAN-let and NAN-let are software components. They can be embedded in smart

meters or routers. Specifically, HAN-let will run J48 classifier on a smart meter in a

HAN. J48 is a fast and light DT classifier, suitable for being integrated into smart

sensors such as Zigbee. Regarding NAN-let, it will run Vote classifier which combines

SVM and RF classifiers. Combining the results from all the classifiers improves the

overall Detection Rate (DR). However, SVM and RF classifiers need more CPU and

memory than J48. Therefore, NAN-let will be integrated into routers which have more

processing power.

Many factors play important role in the decision of how the system should be

designed. Some of them are:

 Limited computational resources in smart meters. A computational intensive

classifier cannot be embedded into a smart meter because it needs large

35

processing power and memory. Smart meters have low CPU power and only a

few KBs of RAM.

 Different types of networks in AMI. Networks such as HAN, NAN and WAN

provide a hierarchical structure in AMI and each one connects different parts

of the whole AMI network. As a result, an IDS should protect all three different

network levels.

 Many attack types exist in AMI. Attack types vary from data breach of a smart

meter to physical modification of a device. In this work, IDS should focus on

DoS, Probing, U2R, and R2L attacks so that the DR for these attacks will be

higher than other types of attacks.

 Ability to classify network packets correctly and in real-time. Large amount of

network packets are exchanged in the AMI because smart meters in each

network layer communicate between them and report to the control centre

(AMI headend). Thus, a solution should consider the generated traffic from the

devices so that malicious messages are stopped.

Bearing in mind the above factors, assumptions were made to simplify the design and

functionality of the IDS:

 HAN-let and NAN-let should be able to run in existing devices. HAN-let could

be integrated into normal smart sensors. Thus, HAN-let should have low

memory requirements. Similarly, NAN-let runs heavier algorithms. Therefore,

it should be executed in NAN routers which have more computational power

than sensors. Both HAN-let and NAN-let software components will be

developed in this work.

 HAN-let will be employed at HAN while NAN-let at NAN. For this reason, the

communication between them is assumed to be encrypted and each

component will have to authenticate itself using public key cryptography. In

this way, security events and network health will be monitored.

 Use of widely used dataset such as NSL-KDD for training and testing. This

dataset contains the four main attack types which SNIDS is assumed to detect.

36

 Supervised learning algorithms will be used to train SNIDS to classify packets.

HAN-let is assumed to run different algorithm from NAN-let. This will protect

every node in the network and increase the DR.

 Devices such as data collectors in NAN, and servers in WAN are assumed to be

always available. Availability in all three network levels is important. In case of

attack, the message must arrive at the control centre to notify administrator.

With the above assumptions, the architecture of the IDS will be simpler and the whole

system will be easily deployed in AMI network.

 System Architecture

3.2.2.1. Design Requirements for SNIDS

Having the proper system architecture is necessary for fulfilling the requirements

of an AMI. Additionally, it will improve the overall efficiency of the IDS. In this project,

HAN and NAN are the two networks to be protected by the IDS. This is because the

former has the smart meter which can be targeted for stealing the energy usage data.

According to Meng, Ma and Chen (2014) NAN can be attractive due to the large

amount of data held by data concentrators. Regarding WAN, the designed IDS can be

extended to cover this network but this is not in the scope of this work.

SNIDS should have several features that will improve the attack detection speed

and will enable better decision making. First of all, a decentralized IDS should be used

to distribute the processing of data in HAN-let and NAN-let. This means that decisions

will be taken at each network level by the software components. The devices running

these algorithms will classify the traffic and alert the network administrator in case of

an attack.

In addition, a distributed approach is the most appropriate option for the

proposed IDS. Millions of smart meters are already deployed in each house. Smart

meters will be embedded with the HAN-let software without extra overhead.

Additionally, routers in NANs will run the NAN-let component. In this way, the whole

network will be monitored by existing devices.

37

3.2.2.2. SNIDS Network Topology

Network topology is presented in Figure 3.1. Beginning from the left side, each

household forms a HAN which contains a smart meter running the HAN-let software

for detecting known attacks. In the middle, NANs are shown with data concentrators

located inside them. NAN-let software will be executed by central NAN routers which

have the capability of running machine learning classifiers. Routers or NAN devices

will be connected to WAN where the AMI headend and the backhaul network are

located. The AMI headend contains the management server that stores packets

information in the database for training the algorithms. There is a WAN-let in WAN

which has the same capabilities as the NAN-let but it is not implemented in this work.

Figure 3.1: SNIDS network topology

As can be seen, HAN-lets (embedded in smart meters) and NAN-lets (embedded

in routers) are distributed among the different networks of AMI. Monitoring all

devices (smart meters, AMI headend) is strongly recommended when an IDS is

designed as it makes the system less vulnerable to attacks (Tong et al., 2016).

Regarding data transfer, messages between HAN-lets and NAN-lets will be delivered

with the use of wireless technologies like WiFi or LTE. The components will also have

an encrypted communication channel where only authenticated devices will be

allowed to exchange critical network data. In this way, when an attack is launched, an

encrypted notification will be sent to WAN so that network administrator is notified.

38

 System Components

3.2.3.1. HAN-let

One of the most important software components of the system is HAN-let. This

software component can be installed in a normal sensor node. For this reason, it is

developed to work with low computational power devices. HAN-let is deployed in

SNIDS to protect smart meters and the whole HAN from external attacks. The

algorithm to be used in HAN-let is the decision tree algorithm C4.5 which generates a

tree that helps to classify a packet to normal or malicious. In this way, every packet

will be classified according to its characteristics and in case a malicious one is found,

the sensor will block the packet and notify NAN-let for further action. A decision tree

is the most suitable classifier to be used in a HAN because it is fast and computationally

inexpensive.

3.2.3.2. NAN-let

Another software component that plays an important role in SNIDS is NAN-let. This

component is like HAN-let but it uses different classifiers. NAN-lets will be deployed

in NANs to protect them from attacks targeting the data collector which holds vital

information. Additionally, it will help HAN-lets by providing new updated data on

attacks which will be generated from the prediction capabilities of NAN-let. This will

be achieved by running the SVM and RF algorithms. New predicted attacks will be

added in the central database in WAN. Both HAN-lets and NAN-lets will have access

to the database in WAN. The former can create rules to stop attacks while the latter

will predict new attacks based on these data. Due to heavy processing, NAN-let can

be embedded only in devices with large CPU and memory. In case of an attack in NAN,

the nodes will stop the attack and notify the AMI headend which will notify the system

administrator. The same pattern is followed when an attack happens in HAN which

means HAN-lets will stop the attack and they will notify both NAN-lets and the control

centre. In case of a communication failure, alternative paths will be used to send the

data to the specified device.

39

3.3. Dataset and Pre-processing Methodology

 KDD99 and NSL-KDD Datasets

Selecting the proper dataset to evaluate an IDS is an important task. Among

several available datasets, KDD99 is the one that has been used widely by researchers

for benchmarking IDS. The dataset was prepared by Stolfo et al. (2000) and in the

training set there are almost 4.900.000 records with 41 attributes (excluding ‘class’

attribute). Each record is categorized as normal or attack. The attack records can

belong to one of the four following attack types:

1) DoS attack in which an attacker attempts to reserve the computational and

memory resources of the system so that it becomes busy and doesn’t respond

to users’ requests.

2) U2R attack in which the attacker gains access to a normal user account and

then, tries to exploit the system so that it becomes super user.

3) R2L attack in which the hacker sends packets to a machine without having an

account on that machine. The goal is to exploit the machine and become a user

of the machine.

4) Probing Attack is when the attacker scans the machine or the network to find

vulnerabilities. The goal is to compromise the machine by exploiting these

vulnerabilities.

The testing data is generated differently from the training data, and it contains

attack types that do not exist in the training data. Thus, the attack detection procedure

is close to reality. Table 3.1 shows the number of records contained in each of the four

attack categories. For more details see Appendix B.

Normal
(number of
records)

Probing
(number of
records)

DoS (number
of records)

R2L (number
of records)

U2R (number of
records)

Normal
(97.277)

Nmap
(231)

Land
(21)

Spy
(2)

Buffer_overflow
(30)

 Portsweep
(1.040)

Pod
(264)

Phf
(4)

Rootkit
(10)

 Ipsweep
(1.247)

Teardrop (979) Multihop
(7)

Loadmodule
(9)

 Satan
(1.589)

Back
(2.203)

ftp_write
(8)

Perl
(3)

40

 Neptune
(107.201)

Imap
(12)

 Smurf
(280.790)

Warezmaster
(20)

 Guess_passwd
(53)

 Warezclient
(1.020)

Table 3.1: Types of attacks in KDD99 and NSL-KDD. See Appendix B for more

details.

Although KDD99 dataset has been used widely, a new dataset NSL-KDD (NSL-KDD

Dataset, 2015) has appeared to replace it. The KDD99 dataset has some problems

which have led to the creation of the new improved version. The two most serious

problems are: 1) it contains many redundant records in both training and testing sets.

This makes the classifier biased to the records that appear frequently, and 2) the

number of existing records is very large and thus, researchers usually use only the 10%

of the set (Meng, 2011).

The above issues are solved by NSL-KDD which contains a reasonable number of

records and it doesn’t have duplicate records. As a result, researchers can run

experiments on the complete dataset, and the classifier will not be biased to specific

records. The original NSL-KDD dataset is divided into training and testing sets with

125.973 and 25.544 records, respectively. There is also a training set that contains 20%

of the original training set called KDDTrain+_20Percent (Tavallaee et al., 2009). The

types of attacks included in NSL-KDD are the same as the original KDD99 dataset.

In this work, the NSL-KDD is used to evaluate SNIDS using the 20% of the original

set (KDDTrain+_20Percent.arff) for training. For testing, the KDDTest+.arff file is

chosen which contains some attack types that are not included in the training set.

 Feature Selection

Achieving the ideal IDS solution is a major challenge that has not been

accomplished yet. An ideal IDS would have 100% DR, low FP and zero training time.

However, due to large datasets with a big number of records and features, the training

time remains high. As a result, measures have been taken to reduce required

41

computational time. One of the most common methods for improving the training

time and DR of SNIDS is the feature selection method. This technique is based on

selecting the best subset of attributes, called features, which are relevant and play an

important role in the decision-making process. Although the features are reduced, the

goal is to keep accuracy in acceptable levels.

There are three categories of feature selection algorithms: filter, wrapper and

embedded methods. Starting with filter methods (Hall, 1999), they try to assess and

select the features from the original dataset without using any learning algorithm.

Evaluation criteria such as information gain, inconsistency, Principal Component

Analysis (PCA) and others, are used for ranking and selecting the best features (Hall

and Smith, 1999). The fact that this method is fast, has low complexity, it avoids

overfitting and can scale to high dimensional datasets are some of the reasons of using

it to reduce the number of features of a dataset (Lan and Vucetic, 2009).

Another category is the wrapper methods (John, Kohavi and Pfleger, 1994) which

use a learning algorithm in order to search all feature subsets and find the best one.

These methods select the feature subset that is most useful according to the algorithm

used. Thus, the performance of the specified algorithm is considered when choosing

the attributes. Any algorithm from DTs to SVM can be used for wrapper methods (Hall

and Smith, 1999). Comparing wrapper with filter methods, the former perform better

Performance

Feature space

search

mechanism
Learning

algorithm

Evaluation criteria

based on training

data

Training

data

Features

Features Feature

evaluation

results

Selected

feature

subset

Training

data

Test

data

Figure 3.2: Filter feature selection procedure

42

in selecting attributes than the latter. This is because of taking into account

dependencies between features. However, the high risk of overfitting and the long

processing time are some of the drawbacks of wrappers.

Regarding embedded methods, the attribute selection process is done during the

training phase. In other words, these methods try to find the best subset of attributes

while they build the model. DTs algorithms such as C4.5 or ID3 belong to this category.

They select the best attributes in each node so that the classification is made based

on them. After that, they continue dividing the dataset until the stopping condition is

reached (Boutemedjet, Bouguila and Ziou, 2009). Embedded methods are less

computational intensive from wrapper methods, and they build trees quickly.

However, they are specific to the learning algorithm that is used to train the model.

Having these in mind, the feature selection methods to be used in SNIDS are filter

and wrapper methods. These methods will be used to extract a feature subset so that

training time is reduced and DR is maintained at acceptable levels. In order to select

the most appropriate features, the WEKA library will be used. It provides several

options for searching the attributes and evaluating them.

“Attribute evaluators” will be used to evaluate the attributes. These methods

include: 1) CfsSubsetEval, introduced by Hall and Smith (1998), which assesses each

feature subset by taking into account the predictive power of each attribute together

with the degree of redundancy between them. The selected attributes have strong

relationship with the class and have low interrelationship (Hall and Smith, 1998), 2)

Filteredsubseteval which runs a random subset evaluator on data that have been

filtered with a random filter, 3) WrapperSubsetEval which uses a learning algorithm to

evaluate feature sets. It uses cross-validation (Vanschoren et al., 2014) to calculate

the accuracy of the learning algorithm for a set of features (Kohavi and John, 1997).

Search methods are used to search the feature space so that the best subset is

selected. After selecting the subset, the attribute subset evaluator will measure the

quality of the subset. The most common search methods are BestFirst,

GreedyStepwise and Linear Forward Selection (LFS). Starting with BestFirst, it explores

for feature subsets by “greedy hill-climbing augmented with a backtracking facility”

43

(Witten et al., 2016). It can start with an empty set of features and search forward, or

start with a full set and search backward or can start at any point going in both

directions. The second method is GreedyStepwise which performs a greedy forward

or backward search through the space of attribute subsets (Witten et al., 2016). The

last technique is LFS which is an extension of BestFirst. There are the fixed-set and the

fixed-width types of algorithm. The former selects a fixed number of k features while

in the latter the k number increases in each step. The algorithm uses the initial order

of attributes to select the top k of them or it ranks them using the same attribute

evaluator used in the search step. Also, the direction of selecting the features can be

forward, or floating forward. The latter means that backward search steps are

optional.

3.4. Chapter Summary

This chapter described the SNIDS architecture and its architectural components.

The dataset to be used is also explained along with the attacks that are going to be

detected. Lastly, the feature selection techniques are introduced to the reader. These

methods will be used after the initial results so that DR of SNIDS is further improved.

44

Chapter 4 – SNIDS Implementation

4.1. Chapter Overview

This chapter describes the implementation of SNIDS. It starts with a discussion

about the development environments and programming languages. After that, the

actual implementation is described in detail. An analysis of the functionalities of SNIDS

is also provided. Then, the implementation of Graphical User Interface (GUI) of SNIDS

is explained.

4.2. Development Environments and Programming Languages

 Programming Languages

An important aspect of the project is the implementation of SNIDS. The software

will be used by researchers or any user that is interested in testing SNIDS. Creating an

easy-to-use software is one of the main requirements. In order to build the software,

a programming language should be used. The criteria for choosing the programming

languages are: 1) being Object-oriented and, 2) having the ability of building a GUI

easily. Python, C# and JAVA fulfil the two criteria but JAVA will be used.

JAVA has many advantages. First of all, it is an Object-oriented language which is

significant for this work. This means that objects can be created to manage easily the

classifiers and classes. Another advantage is that a software developed in JAVA can be

executed in any system independent of the system’s architecture. Code reusability is

another benefit. SNIDS could have future modifications for adding extra functionalities

or improving its performance. Many libraries are developed in JAVA. In the case of

SNIDS, the WEKA library (Witten et al., 2016) is implemented in JAVA. This was the

most important advantage of JAVA over the other candidates.

45

 Development Environments

Nowadays, the use of an Integrated Development Environment (IDE) makes

software development an easy task. IDE provides all the tools to write code, test and

package the developed software. The most popular IDEs are Microsoft Visual Studio,

NetBeans, Eclipse and IntelliJ IDEA. Most of them can be used in any operating system

except for Microsoft Visual Studio. Visual Studio can be installed only on Windows.

Apart from that, it supports the development of Windows applications only. As a

result, Microsoft Visual Studio is not considered as a choice for building SNIDS.

The selection of IDE for developing SNIDS is a task of selecting one of the rest IDEs

(NetBeans, Eclipse, IntelliJ IDEA). All three IDEs support JAVA and they provide an

interface for building a GUI. Therefore, any of them can be used for this task. Eclipse

(Foundation, 2017) is chosen as it has more advantages than the others. The most

important benefit is that it allows you to easily install any plugin required for the

software. In other words, it provides you with a set of tools for building any

component of the software such as a GUI. In addition, it assists the programming by

having an internal editor for writing the source code. The editor can help the

programmer by pointing out coding errors and providing coding hints while typing.

The programmer can customize the editor or the environment with a few clicks.

Eclipse has also an integrated revision control system which helps in keeping all the

changes of source code (Tony De Vita, 2014).

4.3. SNIDS Implementation

 Basic Functionalities and Configuration

The goal of developing SNIDS is to provide an easy-to-use interface demonstrating

HAN-let and NAN-let functionalities. The basic features of SNIDS are the following:

 Classify data into “normal” and “anomaly” accordingly. This is done by using

C4.5 (called J48) algorithm in HAN-let. The reason for choosing C4.5 for HAN-

let is due to its fast processing and its high DR. This is suitable in a real-time

environment where attack detection must be fast. Regarding NAN-let, the

Vote meta-classifier will be used to combine SVM and RF classifiers. Combining

46

means that the result of both classifiers will be considered to produce the class

label. The selection of SVM and RF classifiers is based on their performance

from the literature (Chauhan et al., 2013; Choudhury and Bhowal, 2015; Yang

and Li, 2006). These classifiers have high DR on NSL-KDD dataset (NSL-KDD

Dataset, 2015).

 Evaluate HAN-let and NAN-let using a testing dataset or k-fold cross-validation.

For the former, a dataset should be selected by the user before running the

program. NSL-KDD is the recommended dataset for IDS. In case of k-fold cross-

validation (Vanschoren et al., 2014), the default value of folds is 10. However,

the number of folds can be changed by the user.

 Import datasets with extension .arff, .xarff, .csv, C4.5 .data and .name files. The

files with .arff extension are recognised by the WEKA library (Witten et al.,

2016). These files contain header information which is followed by data

information. SNIDS can accept all the file extensions supported by WEKA

(weka, 2015). In case of file loading problem, an exception is raised.

The configuration used for developing SNIDS was a laptop computer carrying 8 GB

RAM and an Intel i7 3rd generation CPU. The operating system was Microsoft

Windows and the programming environment was Eclipse IDE for Java EE Developers

(Eclipse, 2017).

 HAN-lets and NAN-lets

Implementing the software components requires coding in JAVA the

functionalities mentioned before. The first step in implementing HAN-let and NAN-let

was to import the WEKA library (Witten et al., 2016) into the Eclipse project. According

to Özgür and Erdem (2016), WEKA is one of the most widely used tools for comparing

classifiers. This is because it contains the implementation for many classification

algorithms used in IDS research. For the current project, the WEKA library is used to

implement the J48, SVM, RF and Vote classifiers. Using this common library allows

SNIDS to be extended and improved in the future by other researchers of the field.

47

During implementation, the WEKA API documentation was followed

(Grepcode.com, 2014). The WEKA API contains all the information about the functions

supported by the “weka.jar” library. Regarding HAN-let, the goal was to configure the

J48 algorithm and run it by calling the proper function. This was achieved by creating

a new J48 object, setting any optional parameters, and then calling the function for

training the classifier. The next step was the testing phase. This can be done by using

a testing dataset or cross-validation. For using the former, a testing set from NSL-KDD

dataset must be imported. For using cross-validation, the number of folds must be set.

The default value is 10. The HAN-let’s source code is in the trainHANEval(String file)

function inside “MethodsIDS.java” class. The “file” parameter is a file created by the

classifier containing the predictions. This option can be enabled by the user.

Similarly, NAN-let logic is implemented in trainNANEval(String file) function inside

“MethodsIDS.java” class. The development of NAN-let differs from HAN-let. The

former uses Vote meta-classifier while the latter uses the J48 classifier. Vote combines

SVM and RF classifiers. Deploying the SVM algorithm required importing the LibSVM

library (Chang and Lin, 2011) into the project. The library contains various

formulations of SVM that can be used in a software. Parameters for SVM and RF can

be found in “NAN-let options” of SNIDS menu.

Regarding the coding of NAN-let, Java objects for SVM, RF and Vote classifiers were

firstly created. Then, each classifier was configured using its default options. The Vote

classifier was configured to combine the two classifiers. After coding classifiers’

configurations, the function for training them was called. Regarding evaluation, this

can be done using a testing dataset or cross-validation. Again, testing dataset is the

default option and 10-fold cross-validation is the alternative method. NAN-let can also

generate a file with predictions when requested by the user.

48

 Combining classifiers

As discussed earlier, NAN-let implements the Vote meta-classifier (Kuncheva,

2004; Kittler et al., 1998). This classifier is included in WEKA library (Witten et al., 2016)

which is used in this work. Vote can combine any classifier using different combination

rules. The available combination rules are “Average of Probabilities”, “Product of

Probabilities”, “Majority Voting”, “Minimum Probability”, “Maximum Probability” and

“Median”. Any of these rules can be selected in SNIDS options. However, the default

rule used in SNIDS is “Average of Probabilities”. This rule calculates the average of the

probability distributions for every classifier used. According to the source code

(Grepcode.com, 2014), this is done by creating an array with probabilities of classifiers

trained both within and outside Vote classifier. Then, it divides each probability by the

number of models used. In NAN-let, Vote uses three models: one SVM and two RF

classifiers. The reason for using two RF classifiers is because of better results obtained

with this configuration. Consequently, RF has two votes instead of one. That means

the classification result will be more affected by the result of RF than by SVM.

 User Interface

One of the requirements for building SNIDS was to have a user-friendly interface.

A GUI was developed for this purpose. It required to install the WindowBuilder plugin

for Eclipse (Anon., n.d.). According to Anon. (n.d.), WindowBuilder “is composed of

SWT Designer and Swing Designer and makes it very easy to create Java GUI

applications without spending a lot of time writing code”. Using this plugin someone

can design an interface with different components. Components such as JLabel, JRadio

button, JButton, JPanel, JMenu and JCheckbox were used in GUI design.

The main screen of SNIDS is shown in Figure 4.1. This is the welcome screen with

a message introducing the tool to the user. Moreover, it provides some instructions

on how to use the software. The focus here is the left side where someone can run

the HAN-let or the NAN-let. This can be done as follows: firstly, the user must choose

the HAN-let or NAN-let radio button. Then, user must import training dataset from

“File->Import train data” (Figure 4.1). In case of using test dataset, user can “Import

test data”. Otherwise, user should select cross-validation from “Options->General

49

Options” (Figure 4.2). After importing datasets, the last step is to click the “Start”

button. Pressing the button will run the HAN-let (J48 classifier) or NAN-let (SVM and

RF classifiers combined with Vote). For terminating the program, user must click the

“Exit” button.

As can be seen, GUI makes SNIDS’ execution procedure a simple task. Users can

classify data easily using HAN-let or NAN-let software component. In this way, the

difference in performance and DR of these components can be seen easily.

Figure 4.1: SNIDS main screen and File menu.

Figure 4.2: SNIDS General Options

50

 Additional Functionalities

Apart from the main features, some extra functionalities are implemented for

better user experience. Below these features are described:

 Export classifier’s predictions into a .csv file

Both HAN-let and NAN-let support exporting the predictions of their

classifiers into a .csv file. This feature helps the user to see the instances and

the prediction made by the classifier for each instance. The generated file has

5 columns: #inst (instance number), actual (actual class value), predicted

(predicted class value), error (shows “+” when prediction failed to match the

actual class), prediction (probability that instance belongs to the predicted

class). Using the developed GUI, user can select the path and the name of the

file to be created. The file is created after the evaluation phase is finished. In

case of low disk memory, an exception will appear.

 Save/Load a model from file

SNIDS supports saving a trained model into a file. This means that users can

save a trained HAN-let or NAN-let software component into a file. Moreover,

the saved model can be loaded into SNIDS. Importing the model saves time as

it skips the training phase. After importing the model, user can test the model

by using a test dataset or cross-validation. SNIDS only accepts the models

exported for HAN-let and NAN-let. The extension for exported/imported files

is “.model”.

 Customize classifiers by selecting various parameters

Users can customize classifiers by choosing different options. This is

possible thanks to the GUI which provides a simple interface to select

algorithm’s parameters. All the classifiers (J48, SVM, RF, and Vote) have

different parameters which can be adjusted by the user. For example, users

can select the option to visualize the decision tree of J48 in HAN-let. Options

51

should be chosen before running the algorithms. If no changes happen, the

algorithms use the default options which are described in WEKA

documentation (WEKA, n.d.).

 Feature selection

This option allows both HAN-let and NAN-let to select the most appropriate

features before classification. Filter and wrapper methods (Hall, 1999; John,

Kohavi and Pfleger, 1994) are available for selecting the features. Filter method

can be selected if user wants fast attribute selection by just passing the training

data through a filter. Wrapper method takes more time to select the

attributes. The search method used in filter method is BestFirst and the

attribute evaluator is CfsSubsetEval. For the wrapper evaluator, the base

classifier is J48 algorithm and the search method is again BestFirst. Regarding

search methods, all the methods available in WEKA produce the same results.

So, BestFirst is selected randomly from the available methods. Feature

selection is implemented in SNIDS so that the dimensionality of the datasets is

reduced. The result is a reduction in classifier’s running time, and improved

DR. In other words, SNIDS can detect intrusions faster by using only the most

significant attributes. Moreover, it keeps the detection percentage at the same

levels as with using all the attributes.

All in all, most of the above functionalities are implemented in SNIDS to improve

the efficiency. SNIDS gives the option to users to customize the classifiers and see the

actual predictions. Although GUI is designed for better user interaction, feature

selection is the most important functionality. This is because it improves classifier’s

detection ability and reduces training time. This makes it suitable for working in real-

time environments. The source code of SNIDS can be found in philok93 (2017).

52

4.4. Chapter Summary

As already mentioned, developing SNIDS is a vital part of this project. Therefore,

the details about implementation are described in this chapter. Information about the

development of HAN-let and NAN-let software components is provided. Basic and

extra functionalities of SNIDS are also explained in detail. Furthermore, the designed

GUI is demonstrated. Users can use the GUI for executing software components easily.

53

Chapter 5 – Testing and Evaluation

5.1. Chapter Overview

This chapter presents the evaluation results of SNIDS. Testing methodology and

performance metrics are explained in the first place. SNIDS’ performance is tested by

running the software components and exporting the results of metrics. Then, the

evaluation of SNIDS’ components is shown. In the last section, SNIDS is compared with

similar IDSes from literature in terms of Accuracy, Detection Rate (DR) and False

Positive (FP) rate.

5.2. SNIDS Testing Methodology

In this project, SNIDS is tested to verify that it works properly. During testing phase,

any unseen bugs can be found. It can be also verified that the software classifies data

into normal and anomaly. Another purpose of testing, is to identify any possible

bottlenecks.

There are two testing methodologies to follow: functional and non-functional. Unit

testing is a functional testing method in which each module of the software is tested

to ensure that it operates correctly. In SNIDS, test cases were created for HAN-let and

NAN-let to test their functionality. JUnit (Junit-About, 2017) was used to test SNIDS’

performance and workflow. It is an external plugin for Eclipse.

Apart from unit testing, evaluation of IDS performance is important. Performance

evaluation is a non-functional method of testing. SNIDS’ detection performance is

checked in terms of DR. In the field of IDS, high DR and low FP are desired. This means

that most of the actual attacks are detected. Additional performance metrics such as

memory consumption and time needed to test the classifiers will be used. Having a

fast tool for classifying network packets is one of the expectations of SNIDS.

5.3. Performance Metrics

Performance evaluation is based on four parameters; True Positive (TP), True

Negative (TN), False Negative (FN) and False Positive (FP). The definitions of them are

54

as follows: 1) TP shows the number of instances that are predicted as an attack

correctly, 2) TN represents the number of instances that are correctly predicted as

normal, 3) FN shows the number of attacking packets which have been incorrectly

classified as normal packets. In other words, it shows the wrong prediction, 4) FP

indicates the number of normal packets which have been incorrectly treated as

attacking packets. These four parameters can be presented in a confusion matrix.

Confusion matrix is a table showing the actual and predicted classifications applied by

a classifier (Provost and Kohavi, 1998). Table 5.1 presents an example of confusion

matrix showing the connection between the 4 parameters (TP, TN, FP, and FN).

Actual

Predicted

Normal Attack

Normal TN FP

Attack FN TP

Table 5.1: Confusion matrix

Four metrics are used for SNIDS’ evaluation. These metrics are based on the above

parameters. The four metrics which were selected from the list of Özgür and Erdem

(2016) and Wu and Banzhaf (2010) are the following:

 True Positive (TP) rate or Detection rate (DR) (%):
TP

TP+FN
 , indicates the rate

of correctly detected attacking packets. High DR means better detection

performance.

 False Positive (FP) rate or False alarm (%):
FP

TN+FP
 , shows the rate of normal

packets which have been incorrectly classified as attacking packets. Low FP

rate is desired for SNIDS.

 Accuracy (%):
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
 , shows the percentage of correct predictions

from the total number of predictions. High accuracy is desired for SNIDS.

 Testing time (sec): the time taken by the classifier to evaluate the dataset. Fast

data classification is required by an IDS.

55

5.4. SNIDS Evaluation Results

 Evaluation Procedure

The evaluation of SNIDS is significant because it will show the effectiveness of the

software components. In order to evaluate the system, a dataset must be used. As

discussed in previous chapters, the NSL-KDD dataset (NSL-KDD Dataset, 2015) will be

used for training and testing SNIDS. This dataset is structured as an ARFF file so that

SNIDS can read it. Except for using NSL-KDD test set, 10-fold cross-validation

(Vanschoren et al., 2014) will be used for testing. This means that the NSL-KDD training

dataset will be divided into 10 random subsets. Then, one subset will be used for

evaluation while the rest 9 will be used for training. This process is repeated 10 times.

The evaluation procedure is as follows: firstly, the components are trained using

KDDTrain+_20Percent dataset. Then, components are tested using both test dataset

and 10-fold cross-validation. Moreover, feature selection techniques are used in

testing phase. As mentioned in chapter 3, filter and wrapper methods (Hall, 1999;

John, Kohavi and Pfleger, 1994) are the two techniques to be checked. After each

experiment, the results are extracted. This procedure is applied for both HAN-let and

NAN-let.

Regarding feature selection, the attribute evaluator CfsSubsetEval and the

wrapper evaluator WrapperSubsetEval from WEKA API (Witten et al., 2016) are used.

As discussed in the previous chapter, filter method uses CfsSubsetEval as evaluator

and BestFirst as search method. The result from running the filter on

KDDTrain+_20Percent dataset is to select the features 4,5,6,12,26,29,30,37. So, 8

features out of the 41 are chosen. The WrapperSubsetEval method is configured to

run with J48 classifier and BestFirst as search method. After running it, the features

1,3,5,7,15,23,26,34,38 (9 in total) are selected from the dataset. Both results exclude

the ‘class’ column. With regard to the performance of these methods, wrapper

method needed more processing time than filter method. This is due to the use of J48

from wrapper method to evaluate features.

56

 HAN-let Evaluation

This section presents the evaluation of HAN-let. There are 6 test cases. In three

test cases, a testing dataset is used while the rest test cases use 10-fold cross-

validation. Also, in four test cases a feature selection method is applied. The filter

method in feature selection uses 8 features while the wrapper uses 9 features. The

results are shown below:

Test

Using
Test set

Using 10-
fold Cross-
validation

Feature selection Accuracy (% of
correct/ % of
incorrect)

Filter
method (8
attr.)

Wrapper
method (9
attr.)

1 YES 81.05/18.95

2 YES YES 75.59/24.41

3 YES YES 84.12/15.88

4 YES 99.56/0.44

5 YES YES 98.61/1.39

6 YES YES 99.56/0.44

Test # -
Method

DR (%) FP rate (%) Testing time
(sec)

1- Testset 68.9 2.8 0.01

2- Testset 59.7 3.3 0.02

3- Testset 74.6 3.3 0.05

4- Cross Val. 99.6 0.4 11.90

5- Cross Val. 97.6 0.5 7.02

6- Cross Val. 99.6 0.4 12.85

Table 5.2: HAN-let evaluation results

According to the tables above, when using a test set the highest accuracy achieved

is 84.12% in test #3. In that test case, the DR is the highest but the FP rate is by 0.5%

higher than test #1. Regarding testing time, in all testset cases the time is under 1

second so it’s negligible. In cases where 10-fold cross-validation is used, tests #4 and

#6 have the highest accuracy with a percentage of 99.56%. They also have the same

DR and FP rate, 99.6% and 0.4% respectively. This is also presented in the graph below

with all the test cases. Consequently, HAN-let can be used with 9 attributes instead of

41 as it will improve the performance and save memory.

57

 NAN-let Evaluation

This section presents the results obtained from NAN-let evaluation. It follows the

same manner with HAN-let evaluation. There are again six test cases; three using test

dataset and three using 10-fold cross-validation. Moreover, feature selection is

applied in some cases as can be seen below:

Table 5.3: NAN-let evaluation results

0

20

40

60

80

100

120

Accuracy DR FP rate

p
er

ce
n

ta
ge

 (
%

)

HAN-let Results

TS TS+Filter TS+WR CV CV+Filter CV+WR

Test

Using
Test set

Using 10-
fold
Cross-
validation

Feature selection Accuracy (% of
correct/ % of
incorrect)

Filter
method

Wrapper
method

1 YES 76.53/23.47

2 YES YES 75.20/24.80

3 YES YES 82.54/17.46

4 YES 99.65/ 0.35

5 YES YES 98.30/1.70

6 YES YES 99.71/ 0.29

Test # -
Method

DR (%) FP (%) Testing time (sec)

1 - Testset 60.8 2.7 95.36

2 - Testset 58.9 3.2 53.62

3 - Testset 71.5 2.9 22.39

4 - Cross Val. 99.4 0.1 4095.38

5 - Cross Val. 98.9 2.3 1978.90

6 - Cross Val. 99.6 0.2 889.33

Figure 5.1: HAN-let evaluation results in graph

58

As can be clearly seen, the tests #3 and #6 have the best results. Specifically, test

#3 which uses test dataset with 9 attributes has 82.54% accuracy and 71.5% DR. The

FP rate is at similar levels with the other test cases. About test #6, the accuracy is

99.71%, the DR is 99.6% and FP rate is 0.2%. These values are slightly higher than test

#4. The most important metric here is the testing time. The testing time of test #6, the

model with 9 features, was 4.6 times faster than the time needed in test #4. This

means that test #6 is by far faster and has slightly better DR than test #4. The reason

for that is the use of 9 attributes instead of 41 in test #6. Using less attributes reduces

testing time. Also, selecting the most relevant attributes with feature selection seems

to produce slightly better DR.

Generally, testing time in tests #4, #5 and #6 is bigger than the first three cases

because cross-validation is used. This method is repeated 10 times (10 folds). The

classifiers employed in NAN-let play an important role. SVM and RF classifiers need

more time to classify data than J48 (HAN-let). That’s why the two software

components are used in different networks. HAN-let will be employed in HAN for

detecting malicious packets quickly while NAN-let will be employed in NAN for

classifying large number of packets more accurately.

Looking at the first three tests (#1, #2 and #3), test #2 has the worst DR from all

while tests #1 and #3 have a big difference in accuracy and testing time. Test #3 is

faster and more accurate than test #1. Again, the use of 9 features instead of 41 helps

in reducing processing time and improving DR. The graph below shows the results of

NAN-let. Clearly, tests #3 and #6 have the best performance. As a result, NAN-let

should be used with 9 attributes to have higher accuracy and reduce processing time.

59

 Classifiers Comparison

In this section, classifiers used in software components will be compared. The

classifiers to be considered are the following: J48 classifier used in HAN-let, SVM single

classifier, RF single classifier, “Vote classifier combining RF with SVM”, and “Vote

classifier combining two RF classifiers with one SVM classifier”. Starting from J48

algorithm, it is the decision tree classifier used in HAN-let to stop attacks in a HAN.

SVM single classifier is used only for comparison purposes. Similarly, the RF single

classifier. The “Vote classifier combining RF and SVM” was the first attempt in

combining classifiers to improve DR. However, the “Vote classifier combining two RF

classifiers and one SVM classifier” was finally used in NAN-let. NAN-let’s Vote classifier

is expected to have better accuracy than single classifiers. Classifiers were tested using

both test set and 10-fold cross-validation. Tables 5.4 and 5.5 below show the results:

0

20

40

60

80

100

120

Accuracy DR FP rate

p
er

ce
n

ta
ge

 (
%

)

NAN-let Results

TS TS+Filter TS+WR CV CV+Filter CV+WR

Figure 5.2: NAN-let evaluation results in graph

60

Table 5.4: Classifiers results using cross-validation

Table 5.5: Classifiers results using test dataset

Looking at the results, it is clear that J48 classifier used in HAN-let has one of the

best performances. It has 99.6% and 74.6% DR when using cross-validation and test

dataset respectively. However, the FP rate remains at high levels in comparison with

the other classifiers. This means that in a HAN it will detect many attacks with a small

chance of wrong prediction.

According to the tables, combining two classifiers using the Vote classifier (case

#5) seems to improve DR. When cross-validation is used, “Vote classifier combining

2xRF classifiers and one SVM classifier” has better accuracy than SVM. On the other

hand, RF (case #3) is slightly better than the classifier of case #5. The difference in DR

and FP rate is only 0.1% which is negligible. The outcomes from using the test set

Case # Classifier Cross Val.- Best
Accuracy (%
correct/ %
incorrect)

DR (%) FP (%)

1 J48 (Used in HAN-
let)

99.56/ 0.44 99.6 0.4

2 SVM 97.40/ 2.60 94.9 0.4

3 RF 99.77/ 0.23 99.7 0.1

4 Vote with RF and
SVM

98.09/ 1.91 96.5 0.5

5 Vote with 2xRF
and one SVM
(Used in NAN-let)

99.71/ 0.29 99.6 0.2

Case # Classifier Test set- Best Accuracy
(% correct/ % incorrect)

DR (%) FP
(%)

1 J48 (Used in HAN-
let)

84.12/15.88 (using
wrapper method)

74.6 3.3

2 SVM 78.56/21.44 (using
wrapper method)

64.4 2.8

3 RF 80.54/19.46 (using
wrapper method)

67.9 2.8

4 Vote with RF and
SVM

78.60/21.40 (using
wrapper method)

64.4 2.7

5 Vote with 2xRF
and one SVM
(Used in NAN-let)

82.54/17.46 (using
wrapper method)

71.5 2.9

61

indicate that NAN-let’s Vote classifier outperforms RF (case #3), SVM (case #2) and

“Vote with RF and SVM” (case #4). The values of two out of three metrics show that

NAN-let’s Vote classifier has the best performance. Only FP rate is by 0.2% higher than

the lowest percentage. Having this in mind, it can be argued that combining classifiers

can help in improving the accuracy of the IDS. That’s why NAN-let component uses

Vote classifier to combine RF and SVM classifiers. Yet, when cross-validation is used

RF has slightly better performance than NAN-let’s Vote classifier. The graphs below

illustrate the results of classifiers for the cases of using cross-validation and test

dataset. It can be distinguished that the performance of the classifiers used by both

HAN-let and NAN-let components is the best.

0 20 40 60 80 100 120

Vote with 2xRF and SVM

Vote with RF and SVM

Random Forest

SVM

J48

Percentage (%)

Classifiers comparison using cross-validation

FP rate DR Accuracy

Figure 5.3: Classifiers comparison using cross-validation

62

Figure 5.4: Classifiers comparison using test dataset

 Memory performance

Evaluating the memory performance of SNIDS is part of the evaluation procedure.

Both HAN-let and NAN-let components should have low memory requirements. This

is because they will be employed in devices with low processing and memory

capabilities. For measuring memory consumption, Java VisualVM tool (Java

Documentation, 2016) is used. This software provides detailed information about Java

processes running on a Java Virtual Machine (JVM). Using this tool, SNIDS’ memory

consumption was recorded during running time. The screenshot below shows the

memory consumption of HAN-let. The column “Live Bytes” indicates the memory used

by the component. According to the results, HAN-let needs approximately 7 MB of

memory. That memory usage is measured during the execution of the classifier. It also

calculates the memory used by the objects created by Java libraries and the software

component.

0 10 20 30 40 50 60 70 80 90

Vote with 2xRF and SVM

Vote with RF and SVM

Random Forest

SVM

J48

Percentage (%)

Classifiers comparison using test dataset

FP rate DR Accuracy

63

Figure 5.5: HAN-let memory consumption

Regarding NAN-let, its memory consumption is calculated to be 22 MB

approximately. As can be seen, there is a big difference in memory requirements for

the two components. This is due to the classifiers used. NAN-let uses RF and SVM

classifiers which need more memory for calculations than J48 classifier of HAN-let.

5.5. Comparison with Existing Systems

In this section, SNIDS will be compared to other IDSes obtained from the literature.

The reason for this comparison is to get an idea of how SNIDS’ performance compares

with similar system. The metrics to be used for comparison are Accuracy, DR and FP

Figure 5.6: NAN-let memory consumption

64

rate. However, not all studies provide all the metrics. IDSes along with the results can

be seen below:

Source Classifier Accuracy DR FP

1 Panda et al.
(2012)

END+
Nested
Dichotomies
+Random
Forest

- 99.5% 0.1%

2 Chae et al.
(2013)

J48 with feature
selection

99.794% /
99.763% -
using 22
features /
using 42
features

-

3 Shrivas and
Mishra (2016)

Ensemble C4.5 and
CART

99.67%

4 Kosamkar and
Chaudhari
(2013)

SVM with CFS
(Correlation
Feature Selection)

98.30% 98.62% 1.01%

5 HAN-let
(SNIDS)

J48 with wrapper
method (feature
selection)

99.56% 99.6% 0.4%

6 NAN-let
(SNIDS)

Vote with two RF
and one SVM

99.71% 99.6% 0.2%

Table 5.6: Comparison of IDSes from various studies

According to Table 5.6, there are four studies that propose four different IDSes

using different classifiers. Starting from the first study, it uses a combination of RF with

Nested Dichotomies. The values for DR and FP rate are 99.5% and 0.1% respectively.

This means that NAN-let’s classifiers are by 0.1% better in DR but FP rate is by 0.1%

higher. Chae et al. (2013) use J48 with feature selection. They achieve an accuracy of

99.79% using 2 features. If it is compared to SNIDS, HAN-let with J48 classifier achieves

99.56% accuracy using only 8 features. The difference is 0.23%. A study from Shrivas

and Mishra (2012) shows that an ensemble of C4.5 and CART has an accuracy of

99.67% (no other metrics available). This percentage is by 0.4% lower compared to

NAN-let’s Vote accuracy. The last study to compare is using SVM classifier with CFS.

Kosamkar and Chaudhari (2013) achieved 98.30% accuracy, 98.62% DR and 1.01% FP

rate. Compared to NAN-let’s results, the value of accuracy is by 1.4% lower while DR

is almost 1% less than NAN-let’s Vote DR. Regarding FP rate, NAN-let’s classifiers

65

achieve far better false alarm rate with 0.2% instead of 1.01% of SVM using CFS. As

can be seen, classifiers used in SNIDS’ components (both HAN-let and NAN-let) have

great performance in comparison with many recent studies. Although a small number

of already proposed methods may achieve slightly better results, SNIDS seems to be

better in many cases.

5.6. Chapter Summary

In this chapter, the results of SNIDS’ evaluation are presented. Firstly, the

evaluation procedure is explained. Then, the results of different metrics are extracted

for both HAN-let and NAN-let. A comparison among the classifiers used in SNIDS’

software components is also presented. Conclusively, combining multiple classifiers

produces better results than single classifiers. Apart from detection performance,

SNIDS memory performance is evaluated and discussed. In the last section, SNIDS’

performance is compared to other IDSes from the literature. Results show that

detection performance of SNIDS’ components is sometimes better in comparison with

existing IDSes.

66

Chapter 6 – Conclusions and Future work

This chapter summarizes the results of the research carried out in this project.

Furthermore, further improvements are suggested.

6.1. Conclusions

The project’s aim was to create a new IDS, called SNIDS, for protecting the AMI.

SNIDS consists of HAN-let and NAN-let software components. HAN-let is for HAN

protection and NAN-let for NAN protection. High DR and low FP rate is desired from

an IDS. Achieving these in SNIDS required studying the literature for existing IDSes and

selecting the most appropriate classifiers. According to many studies, J48, SVM and RF

classifiers had better performance than others. These classifiers were used in HAN-let

and NAN-let. Regarding implementation, it was coded in Java using the WEKA library.

Moreover, a GUI was developed for better user interaction. After finishing the

implementation, SNIDS was evaluated using the NSL-KDD dataset.

According to the results, NAN-let’s Vote classifier has better accuracy, DR and FP

rate than existing IDSes. This means that combining classifiers is more efficient than

using single classifiers. Additionally, results indicate that using a feature selection

method is recommended. Specifically, having only 9 attributes has better

performance than 8 attributes. This is due to the difference in the evaluation

procedure of wrapper and filter methods. As regards NAN-let’s speed, it’s not as fast

as HAN-let. HAN-let uses J48 classifier and it has fast processing time with high DR.

NAN-let uses two classifiers. Thus, it needs more time to classify data.

There were many challenges during the development of SNIDS. Firstly, the

combination of classifiers in NAN-let was a difficult decision. There are many ways to

combine classifiers. Still, Vote method was preferred for its simplicity. Using a

different method could produce different results. Secondly, building a system for

smart devices is a challenge. Smart devices have limited capabilities and that requires

developing HAN-let and NAN-let as efficient as possible. Thirdly, evaluation of the

system is based only on the one available dataset. NSL-KDD is the latest version of the

67

old KDD99 dataset. Having more than one datasets available would show the

performance of SNIDS in different conditions. Also, creating a dataset with the latest

attacks would give a better idea of the real system’s performance. Another challenge

is the evaluation with other IDSes. Many studies from the literature do not provide

the same metrics. This makes it difficult to compare with other systems.

6.2. Future work

In this project, an IDS system consisting of HAN-let and NAN-let software

components was developed. However, further improvements on the tool can be done.

For future work, the author suggests the following:

 Test the software components using real sensor devices. Researchers could

experiment with real smart devices in a HAN or NAN environment. The

software from SNIDS could be uploaded into a sensor. Then, its real detection

performance can be tested.

 Use different datasets for evaluation. As it is known, in the field of IDS there

are not many datasets available. As a result, systems are tested using only the

KDD99 and NSL-KDD datasets. Creating a new dataset containing real network

attacks will help in better evaluation of future IDSes.

 Improve the DR and FP percentages of SNIDS’ classifiers. This could be

achieved by combining classifiers using a different method than the Vote

classifier. Moreover, using different classifiers could have better results. For

example, HAN-let could use a different lightweight classifier for improving

detection.

 Find the optimal parameters for each classifier. Both HAN-let and NAN-let

software components should be configured using the optimal values for their

classifiers. Changing the default values for each classifier could improve their

performance.

68

 Minimize memory consumption of software components. Using a different

programming language and better programming techniques, the memory

consumption could be minimized. This would enable more smart devices with

very low memory to run SNIDS’ software components.

 Improve the implementation of GUI. Implementing all the parameters of each

classifier is not efficient. GUI should have the most important parameters for

each of the classifiers. Also, a better interface design could make the GUI more

user-friendly.

69

References

Ali, M. Q. & Al-Shaer, E. (2015). Randomization-Based Intrusion Detection System
for Advanced Metering Infrastructure*. ACM Transactions on Information and
System Security (TISSEC), 18(2), 7.

Anon, (n.d.). WindowBuilder. [online] Available at:
https://eclipse.org/windowbuilder/ [Accessed 11 Jul. 2017].

Arumugam, M., Thangaraj, P., Sivakumar, P., & Pradeepkumar, P. (2010).
Implementation of two class classifiers for hybrid intrusion detection. In
Communication and Computational Intelligence (INCOCCI), 2010 International
Conference on (pp. 486-490). IEEE.

Beigi-Mohammadi, N., Misic, J., Khazaei, H., & Misic, V. B. (2014). An intrusion
detection system for smart grid neighbourhood area network. In Communications
(ICC), 2014 IEEE International Conference on (pp. 4125-4130). IEEE.

Bennett, C., & Highfill, D. (2008). Networking AMI smart meters. In Energy 2030
Conference, 2008. ENERGY 2008. IEEE (pp. 1-8). IEEE.

Berthier, R., Sanders, W. H., & Khurana, H. (2010). Intrusion detection for
advanced metering infrastructures: Requirements and architectural directions.
In Smart Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on (pp. 350-355). IEEE.

Boutemedjet, S., Bouguila, N., & Ziou, D. (2009). A hybrid feature extraction
selection approach for high-dimensional non-Gaussian data clustering. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 31(8), 1429-1443.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Chae, H. S., Jo, B. O., Choi, S. H., & Park, T. K. (2013). Feature selection for
intrusion detection using NSL-KDD. Recent Advances in Computer Science, 184-187.

Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

Chauhan, H., Kumar, V., Pundir, S. and Pilli, E.S. (2013). A comparative study of
classification techniques for intrusion detection. In Computational and Business
Intelligence (ISCBI), 2013 International Symposium on (pp. 40-43). IEEE.

Choudhury, S. and Bhowal, A. (2015). Comparative analysis of machine learning
algorithms along with classifiers for network intrusion detection. In Smart
Technologies and Management for Computing, Communication, Controls, Energy and
Materials (ICSTM), 2015 International Conference on (pp. 89-95). IEEE.

70

Clark, P. (2016). MPs warned of sabotage threat from smart meter hackers.
Financial Times. [online] Available at: https://www.ft.com/content/325f66b8-8177-
11e6-bc52-0c7211ef3198 [Accessed 25 Apr. 2017].

Cleveland, F. M. (2008). Cyber security issues for advanced metering
infrastructure (AMI). In Power and Energy Society General Meeting-Conversion and
Delivery of Electrical Energy in the 21st Century, 2008 IEEE (pp. 1-5). IEEE.

da Silva, A. P. R., Martins, M. H., Rocha, B. P., Loureiro, A. A., Ruiz, L. B., & Wong,
H. C. (2005). Decentralized intrusion detection in wireless sensor networks. In
Proceedings of the 1st ACM international workshop on Quality of service & security in
wireless and mobile networks (pp. 16-23). ACM.

Detections List File. (1999). MIT Lincoln Laboratory: DARPA Intrusion Detection
Evaluation. [online] Available at:
https://www.ll.mit.edu/ideval/docs/detections_1999.html [Accessed 10 Jul. 2017].

Eclipse (2017). Eclipse IDE for Java EE Developers | Packages. [Online] Available
at: http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-
developers/oxygenr [Accessed 30 Jun. 2017].

Energy (2014). Smart grids and meters - Energy - European Commission. [online]
Available at: https://ec.europa.eu/energy/en/topics/markets-and-consumers/smart-
grids-and-meters [Accessed 19 Apr. 2017].

Energy Network Association (2014). Electricity - Smart networks overview. [2015-
08-16]. http://www.energynetworks.org/electricity/smart-grid-portal/overview.html

Foundation, E. (2017). Eclipse IDE. [Online], Available at:
https://www.eclipse.org/downloads/

Giray, S. M., & Polat, A. G. (2013). Evaluation and comparison of classification
techniques for network intrusion detection. In Data Mining Workshops (ICDMW),
2013 IEEE 13th International Conference on (pp. 335-342). IEEE.

Goodspeed, T., Highfill, D. R., & Singletary, B. A. (2009). Low-level Design
Vulnerabilities in Wireless Control Systems Hardware. Proceedings of the SCADA
Security Scientific Symposium 2009 (S4). (p. 3-1–3-26).

Govindarajan, M., & Chandrasekaran, R. M. (2011). Intrusion detection using
neural based hybrid classification methods. Computer networks, 55(8), 1662-1671.

Grepcode.com (2014). GC: weka-dev-3.7.12.jar - GrepCode Java Project Source.
[Online] Available at:
http://grepcode.com/snapshot/repo1.maven.org/maven2/nz.ac.waikato.cms.weka/
weka-dev/3.7.12/ [Accessed 26 Jun. 2017].

http://www.energynetworks.org/electricity/smart-grid-portal/overview.html
https://www.eclipse.org/downloads/

71

Haddadi, F., Khanchi, S., Shetabi, M., & Derhami, V. (2010). Intrusion detection
and attack classification using feed-forward neural network. In Computer and
Network Technology (ICCNT), 2010 Second International Conference on (pp. 262-
266). IEEE.

Hall, M. A. (1999). Correlation-based feature selection for machine learning.

Hall, M. A., & Smith, L. A. (1998). Practical feature subset selection for machine
learning.

Hall, M. A., & Smith, L. A. (1999). Feature Selection for Machine Learning:
Comparing a Correlation-Based Filter Approach to the Wrapper. In FLAIRS conference
(Vol. 1999, pp. 235-239).

Intrusion Detection Attacks Database (1999). MIT Lincoln Laboratory: DARPA
Intrusion Detection Evaluation. [online] Available at:
https://www.ll.mit.edu/ideval/docs/attackDB.html [Accessed 10 Jul. 2017].

Java Documentation (2016). Java VisualVM. [online] Available at:
https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/index.html
[Accessed 24 Jul. 2017].

Jenkins, N. (2010). Distributed generation. The Institution of Engineering and
Technology.

John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset
selection problem. In Machine learning: proceedings of the eleventh international
conference (pp. 121-129).

Jokar, P., Nicanfar, H., & Leung, V. C. (2011). Specification-based intrusion
detection for home area networks in smart grids. In Smart Grid Communications
(SmartGridComm), 2011 IEEE International Conference on (pp. 208-213). IEEE.

JUnit-About (2017). JUnit - About. [ONLINE] Available at: http://junit.org/junit4/.
[Accessed 27 June 2017].

Kalyani, G., & Lakshmi, A. J. (2012). Performance assessment of different
classification techniques for intrusion detection. IOSR Journal of Computer
Engineering (IOSRJCE), 7(5), 25-29.

Kendall, K. K. R. (1999). A database of computer attacks for the evaluation of
intrusion detection systems (Doctoral dissertation, Massachusetts Institute of
Technology).

Kerschbaum, F., Spafford, E. H., & Zamboni, D. (2000). Using embedded sensors
for detecting network attacks. In Proceedings of the 1st ACM Workshop on Intrusion
Detection Systems.

http://junit.org/junit4/

72

Kittler, J., Hatef, M., Duin, R. P., & Matas, J. (1998). On combining classifiers. IEEE
transactions on pattern analysis and machine intelligence, 20(3), 226-239.

Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial
intelligence, 97(1-2), 273-324.

Kohavi, R., & Quinlan, R. (1999). C5. 1.3 Decision Tree Discovery.

Kosamkar, V., & Chaudhari, S. S. (2013). Improved Intrusion Detection System
using C4. 5 Decision Tree and Support Vector Machine (Doctoral dissertation,
Mumbai University).

Koshal, J., & Bag, M. (2012). Cascading of C4. 5 decision tree and support vector
machine for rule based intrusion detection system. International Journal of
Computer Network and Information Security, 4(8), 8.

Krebs, B. (2012) FBI: Smart Meter Hacks Likely to Spread. Available from:
http://krebsonsecurity.com/2012/04/fbi-smart-meter-hacks-likely-to-spread/
[Accessed 25 Apr 2017].

Kuncheva, L. I. (2004). Combining pattern classifiers: methods and algorithms.
John Wiley & Sons.

Lan, L., & Vucetic, S. (2009). A multi-task feature selection filter for microarray
classification. In Bioinformatics and Biomedicine, 2009. BIBM'09. IEEE International
Conference on (pp. 160-165). IEEE.

Liaw, A., & Wiener, M. (2002). Classification and regression by random Forest. R
news, 2(3), 18-22.

Mehmood, T. and Rais, H.B.M. (2016). Machine learning algorithms in context of
intrusion detection. In Computer and Information Sciences (ICCOINS), 2016 3rd
International Conference on (pp. 369-373). IEEE.

Meng, W., Ma, R., & Chen, H. H. (2014). Smart grid neighbourhood area
networks: a survey. IEEE Network, 28(1), 24-32.

Meng, Y. X. (2011). The practice on using machine learning for network anomaly
intrusion detection. In Machine Learning and Cybernetics (ICMLC), 2011 International
Conference on (Vol. 2, pp. 576-581). IEEE.

Nguyen, H.A. and Choi, D. (2008). Application of data mining to network intrusion
detection: classifier selection model. In Asia-Pacific Network Operations and
Management Symposium (pp. 399-408). Springer Berlin Heidelberg.

NSL-KDD Dataset. (2015). GitHub-defcom17/NSL_KDD. [online] Available at:
https://github.com/defcom17/NSL_KDD [Accessed 16 Jun. 2017].

73

Olusola, A. A., Oladele, A. S., & Abosede, D. O. (2010). Analysis of KDD’99
intrusion detection dataset for selection of relevance features. In Proceedings of the
World Congress on Engineering and Computer Science (Vol. 1, pp. 20-22).

Özgür, A., & Erdem, H. (2016). A review of KDD99 dataset usage in intrusion
detection and machine learning between 2010 and 2015. PeerJ PrePrints, 4,
e1954v1.

Pan, Y., & Tang, Z. (2014). Ensemble methods in bank direct marketing. In Service
Systems and Service Management (ICSSSM), 2014 11th International Conference on
(pp. 1-5). IEEE.

Panda, M., Abraham, A., & Patra, M. R. (2012). A hybrid intelligent approach for
network intrusion detection. Procedia Engineering, 30, 1-9.

Peddabachigari, S., Abraham, A., Grosan, C. and Thomas, J. (2007). Modelling
intrusion detection system using hybrid intelligent systems. Journal of network and
computer applications, 30(1), pp.114-132.

philok93 (2017). philok93/SNIDS: First release of SNIDS. [online] Available at:
https://doi.org/10.5281/zenodo.848834 [Accessed 25 Aug. 2017].

Provost, F., & Kohavi, R. (1998). Guest editors' introduction: On applied research
in machine learning. Machine learning, 30(2), 127-132.

Sedjelmaci, H., & Senouci, S. M. (2016). Smart grid Security: A new approach to
detect intruders in a smart grid Neighborhood Area Network. In Wireless Networks
and Mobile Communications (WINCOM), 2016 International Conference on (pp. 6-
11). IEEE.

Shrivas, A. K., & Mishra, P. K. (2016). Intrusion Detection System for Classification
of Attacks with Cross Validation. Probe, 2(209), U2R.

So-In, C., Mongkonchai, N., Aimtongkham, P., Wijitsopon, K. and Rujirakul, K.
(2014). An evaluation of data mining classification models for network intrusion
detection. In Digital Information and Communication Technology and it's
Applications (DICTAP), 2014 Fourth International Conference on (pp. 90-94). IEEE.

Stolfo, S. J., Fan, W., Lee, W., Prodromidis, A., & Chan, P. K. (2000). Cost-based
modeling for fraud and intrusion detection: Results from the JAM project. In DARPA
Information Survivability Conference and Exposition, 2000. DISCEX'00. Proceedings
(Vol. 2, pp. 130-144). IEEE.

Stolfo, S., Fan, W., & Lee, W. (1999) KDD-CUP-99 Task Description. http://KDD.
ics. uci. edu/databases/kddcup99/task, html.

Sung, A. H. (1998). Ranking importance of input parameters of neural networks.
Expert Systems with Applications, 15(3), 405-411.

74

Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., & Feuston, B. P.
(2003). Random forest: a classification and regression tool for compound
classification and QSAR modeling. Journal of chemical information and computer
sciences, 43(6), 1947-1958.

Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of
the KDD CUP 99 data set. In Computational Intelligence for Security and Defense
Applications, 2009. CISDA 2009. IEEE Symposium on (pp. 1-6). IEEE.

Tong, W., Lu, L., Li, Z., Lin, J., & Jin, X. (2016). A Survey on Intrusion Detection
System for Advanced Metering Infrastructure. In Instrumentation & Mea

Tony De Vita, Jr. (2014). ‘The Advantage of Using Eclipse IDE for JAVA
Programming’, HubPages, 31 July 2014. Available at:
https://hubpages.com/technology/The-Advantage-of-Using-Eclipse-IDE-for-JAVA-
Programming (Accessed: 20 June 2017)

Vanschoren, J., Van Rijn, J. N., Bischl, B., & Torgo, L. (2014). OpenML: networked
science in machine learning. ACM SIGKDD Explorations Newsletter, 15(2), 49-60.

Vapnik, V. N. (2000). The nature of statistical learning theory, ser. Statistics for
engineering and information science. New York: Springer, 21, 1003-1008.

weka (2015). weka- ARFF (stable version). [Online] Available at:
https://weka.wikispaces.com/ARFF+(stable+version)

WEKA (n.d.) WEKA API. [Online], Available at:
http://weka.sourceforge.net/doc.stable-3-8/ [Accessed June 2017].

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining: Practical
machine learning tools and techniques. Morgan Kaufmann.

Wu, S. X., & Banzhaf, W. (2010). The use of computational intelligence in
intrusion detection systems: A review. Applied Soft Computing, 10(1), 1-35.

Wu, S.Y. and Yen, E. (2009). Data mining-based intrusion detectors. Expert
Systems with Applications, 36(3), pp.5605-5612.

Yang, Q., & Li, F. (2006). Support vector machine for intrusion detection based on
LSI feature selection. In Intelligent Control and Automation, 2006. WCICA 2006. The
Sixth World Congress on (Vol. 1, pp. 4113-4117). IEEE.

Zhang, J., & Zulkernine, M. (2006). A hybrid network intrusion detection
technique using random forests. In Availability, Reliability and Security, 2006. ARES
2006. The First International Conference on (pp. 8-pp). IEEE.

https://hubpages.com/technology/The-Advantage-of-Using-Eclipse-IDE-for-JAVA-Programming
https://hubpages.com/technology/The-Advantage-of-Using-Eclipse-IDE-for-JAVA-Programming
https://weka.wikispaces.com/ARFF+(stable+version)
http://weka.sourceforge.net/doc.stable-3-8/

75

Zhang, Y., Wang, L., Sun, W., Green II, R. C., & Alam, M. (2011). Distributed
intrusion detection system in a multi-layer network architecture of smart grids. IEEE
Transactions on Smart Grid, 2(4), 796-808.

76

Appendix A

SNIDS Use Case

The execution procedure of SNIDS is described. Also, some screenshots from

SNIDS software are shown.

Execution procedure:

User is assumed that wants to run the NAN-let component of SNIDS, using the

default options and evaluate it with a testing dataset. Firstly, user chooses the NAN-

let radio button. Then, user must import the training dataset from “File->Import train

data” (Figure A.1.1). The next step is to choose the test method. However, test dataset

is the default evaluation method so user just needs to import the test dataset. This

can be done by going to “File->Import test data”. After importing datasets, the last

step is to click the “Start” button. Pressing the button will execute NAN-let (SVM and

RF combined with Vote). The screen in Figure A.1.2 will be shown which means the

program is running using default options. After a couple of minutes, the results will be

displayed (Figure A.1.3). If user wants to execute the same experiment for HAN-let, it

needs to select the “HAN-let” radio button and press the “Start” button. For

terminating the program, user must click the “Exit” button.

77

Figure A.1: 1) Main screen of SNIDS (Top row), 2) Running NAN-let
(Middle row) and 3) Results of NAN-let (Bottom row)

78

Below are the screenshots of HAN-let options (left side), General options (right

side) and NAN-let options (second row).

Source code of SNIDS can be found in philok93 (2017).

79

SNIDS Options

The parameters to be selected by the user are explained below. The options for

each classifier are obtained from WEKA library (Witten et al., 2016).

HAN-let Options:

Option Description

Unpruned tree Whether pruning is performed.

Do not collapse tree Whether parts are removed that do not
reduce training error.

Confidence threshold for pruning The confidence factor used for pruning
(smaller values incur more pruning).

Use reduced error pruning Whether reduced-error pruning is used
instead of C.4.5 pruning.

Number of folds (for error pruning) Determines the amount of data used
for reduced-error pruning. One-fold is
used for pruning, the rest for growing
the tree.

Binary splits only Whether to use binary splits on nominal
attributes when building the trees.

No subtree raising Whether to consider the subtree raising
operation when pruning.

Laplace smoothing for predicted
probabilities

Whether counts at leaves are smoothed
based on Laplace.

Do not use MDL correction for info gain
on numeric attributes

Whether MDL correction is used when
finding splits on numeric attributes.

Do not make split point actual value If true, the split point is not relocated to
an actual data value. This can yield
substantial speed-ups for large datasets
with numeric attributes.

Set minimum number of instances per
leaf

The minimum number of instances per
leaf.

Seed for random data shuffling The seed used for randomizing the data
when reduced-error pruning is used.

Visualize tree Visualizes the decision tree created by
the classifier. A new popup window will
appear showing the tree.

NAN-let (SVM) options:

Option Description

Kernel function degree (d) The degree of the kernel.

Gamma (g) The gamma to use, if 0 then
1/max_index is used.

80

Coef0 in kernel function The coefficient to use.

Cost (C) for C-SVC, epsilon-SVR, and nu-
SVR

The cost parameter C for C-SVC,
epsilon-SVR and nu-SVR.

Set cache memory size in MB The cache size in MB.

Random seed The random number seed to be used.

Tolerance of termination criterion The tolerance of the termination
criterion.

Kernel type The type of kernel to use.

Missing value replacement Whether to turn off automatic
replacement of missing values.
WARNING: set to true only if the data
does not contain missing values.

Use the shrinking heuristics Whether to use the shrinking heuristic.

Generate probability estimates for
classification

Whether to generate probability
estimates instead of -1/+1 for
classification problems.

NAN-let (Random Forest) options:

Option Description

Number of iterations The number of iterations to be
performed.

Number of attributes to randomly
investigate

Sets the number of randomly chosen
attributes. If 0, int(log_2(#predictors) +
1) is used.

Minimum number of instances per leaf Sets the minimum number of instances
per leaf.

Seed for random number generator The random number seed to be used.

Max tree depth (0 for unlimited) The maximum depth of the tree, 0 for
unlimited.

Print the individual classifiers in the
output

Print the individual classifiers in the
output.

Break ties randomly when several
attributes look equally good

Break ties randomly when several
attributes look equally good.

Debug mode If set to true, classifier may output
additional info to the console.

Execute in parallel Whether to use multiple slots (threads)
for constructing the ensemble.

Calculate the out of bag error Whether the out-of-bag error is
calculated.

Compute and output attribute
importance (mean impurity decrease
method)

Compute attribute importance via
mean impurity decrease

81

Output complexity-based statistics
when out-of-bag evaluation is
performed

Whether to output complexity-based
statistics when out-of-bag evaluation is
performed.

82

Appendix B

KDD99 Dataset

Below, the attack types of KDD99 Dataset are explained. The information was

taken from Olusola et al. (2010) and Stolfo et al. (1999).

Feature name Description Type

1 duration length (number of seconds) of
the connection

continuous

2 protocol_type type of the protocol, e.g. TCP,
UDP, etc.

discrete

3 service network service on the
destination, e.g., http, telnet,
etc.

discrete

4 src_bytes number of data bytes from
source to destination

continuous

5 dst_bytes number of data bytes from
destination to source

continuous

6 flag normal or error status of the
connection

discrete

7 land 1 if connection is from/to the
same host/port; 0 otherwise

discrete

8 wrong_fragment number of “wrong” fragments continuous

9 urgent number of urgent packets continuous

10 hot number of “hot” indicators continuous

11 num_failed_logins number of failed login
attempts

continuous

12 logged_in 1 if successfully logged in; 0
otherwise

discrete

13 num_compromised number of “compromised”
conditions

continuous

14 root_shell 1 if root shell is obtained; 0
otherwise

discrete

15 su_attempted 1 if “su root” command
attempted; 0 otherwise

discrete

16 num_root number of “root” accesses continuous

17 num_file_creations number of file creation
operations

continuous

18 num_shells number of shell prompts continuous

19 num_access_files number of operations on
access control files

continuous

20 num_outbound_cmds number of outbound
commands in an ftp session

continuous

21 is_hot_login 1 if the login belongs to the
“hot” list; 0 otherwise

discrete

83

22 is_guest_login 1 if the login is a “guest” login;
0 otherwise

discrete

23 count number of connections to the
same host as the current
connection in the past two
seconds

continuous

24 serror_rate % of connections that have
“SYN” errors

continuous

25 rerror_rate % of connections that have
“REJ” errors

continuous

26 same_srv_rate % of connections to the same
service

continuous

27 diff_srv_rate % of connections to different
services

continuous

28 srv_count number of connections to the
same service as the current
connection in the past two
seconds

continuous

29 srv_serror_rate % of connections that have
“SYN” errors

continuous

30 srv_rerror_rate % of connections that have
“REJ” errors

continuous

31 srv_diff_host_rate % of connections to different
hosts

continuous

32 dst_host_count

count of connections having
the same destination host

continuous

33 dst_host_srv_count

count of connections having
the same destination host and
using the same service

continuous

34 dst_host_same_srv_rate

% of connections having the
same destination host and
using
the same service

continuous

35 dst_host_diff_srv_rate % of different services on the
current host

continuous

36 dst_host_same_src_port_rate

% of connections to the current
host having the same src port

continuous

37 dst_host_srv_diff_host_rate

% of connections to the same
service coming from different
hosts

continuous

38 dst_host_serror_rate

% of connections to the current
host that have an S0 error

continuous

39 dst_host_srv_serror_rate

% of connections to the current
host
and specified service that have
an

continuous

84

S0 error

40 dst_host_rerror_rate

% of connections to the current
host that have an RST error

continuous

41 dst_host_srv_rerror_rate

% of connections to the current
host and specified service that
have an RST error

continuous

85

Description of attacks

The table below summarizes the attacks into 4 categories: DOS, R2L, U2R and

Probing attacks. The description for each attack type is derived from Kendall (1999),

MIT Lincoln Laboratory (1999), and Detections List File (1999).

DOS attacks Description

Land The Land attack occurs when an attacker sends a spoofed SYN
packet in which the source address is the same as the
destination address

Neptune A Neptune is a DoS attack to which every TCP/IP
implementation is vulnerable (to some degree). Each half-
open TCP connection made to a machine causes the 'tcpd'
server to add a record to the data structure that stores
information describing all pending connections. This data
structure is of finite size, and it can be made to overflow by
intentionally creating too many partially-open connections.
The half-open connections data structure on the victim server
system will eventually fill and the system will be unable to
accept any new incoming connections until the table is
emptied out.

Back In this denial of service attack against the Apache web server,
an attacker submits requests with URL's containing many
frontslashes. As the server tries to process these requests it
will slow down and becomes unable to process other
requests.

Pod (Ping of
Death)

The Ping of Death is a DoS attack that affects many older
operating systems. It has been widely reported that some
systems will react in an unpredictable fashion when receiving
oversized IP packets.

Smurf In the "smurf" attack, attackers use ICMP echo request
packets directed to IP broadcast addresses from remote
locations to create a denial-of-service attack.

Teardrop The teardrop exploit is a denial of service attack that exploits
a flaw in the implementation of older TCP/IP stacks. Some
implementations of the IP fragmentation re-assembly code
on these platforms does not properly handle overlapping IP
fragments.

U2R attacks Description

buffer_overflow Buffer overflows occur when a program copies too much data
into a static buffer without checking to make sure that the data
will fit.

86

Loadmodule The Loadmodule attack is a User to Root attack against SunOS
4.1 systems that use the xnews window system. The
loadmodule program within SunOS 4.1.x is used by the xnews
window system server to load two dynamically loadable kernel
drivers into the currently running system and to create special
devices in the /dev directory to use those modules. Because of a
bug in the way the loadmodule program sanitizes its
environment, unauthorized users can gain root access on the
local machine

Perl The Perl attack is a User to Root attack that exploits a bug in
some Perl implementations. Suidperl is a version of Perl that
supports saved set-user-ID and set-group-ID scripts. In early
versions of suidperl the interpreter does not properly relinquish
its root privileges when changing its effective user and group
IDs. On a system that has the suidperl, or sperl, program
installed and supports saved set-user-ID and saved set-group-ID,
anyone with access to an account on the system can gain root
access

Rootkit Multi-day scenario where a user installs one or more
components of a rootkit.

R2L attacks Description

Imap The Imap attack exploits a buffer overflow in the Imap server of
Redhat Linux 4.2 that allows remote attackers to execute arbitrary
instructions with root privileges.

ftp_write The Ftp-write attack is a Remote to Local User attack that takes
advantage of a common anonymous ftp misconfiguration. The
anonymous ftp root directory and its subdirectories should not be
owned by the ftp account or be in the same group as the ftp
account. If any of these directories are owned by ftp or are in the
same group as the ftp account and are not write protected, an
intruder will be able to add files (such as an rhosts file) and
eventually gain local access to the system.

guess_passwd Try to guess password via telnet for an account.

multihop Multi-day scenario in which a user first breaks into one machine.

phf The Phf attack abuses a badly written CGI script to execute
commands with the privilege level of the http server. Any CGI
program which relies on the CGI function escape_shell_cmd() to
prevent exploitation of shell-based library calls may be vulnerable
to attack.

spy Multi-day scenario in which a user breaks into a machine with the
purpose of finding important information where the user tries to
avoid detection. Uses several different exploit methods to gain
access.

87

warezclient Users downloading illegal software which was previously posted
via anonymous FTP by the warezmaster.

warezmaster Anonymous FTP upload of Warez (usually illegal copies of
copyrighted software) onto FTP server.

Probing
attacks

Description

Nmap Network mapping using the nmap tool. Mode of exploring
network will vary options include SYN.

Portsweep Surveillance sweep through many ports to determine which
services are supported on a single host.

Ipsweep An Ipsweep attack is a surveillance sweep to determine which
hosts are listening on a network. This information is useful to an
attacker in staging attacks and searching for vulnerable machines.
(mit)

Satan Network probing tool which looks for well-known weaknesses. It
operates at three different levels.

