
Lexical Disambiguation

MSc Project 2014-2015 - Progress Report

Christophe François

Supervisor: Dr Allan Ramsay

May 2015

Abstract

Word Sense Disambiguation is an open problem of Natural Language processing which consists
in identifying the sense intended by an ambiguous word used in a sentence. A large number of ap-
proaches have been studied to solve the problem, notably the application of machine learning tech-
niques to WSD. This project aims to apply a graph-based technique that consists in performing the
Personalized PageRank algorithm (PPR) on WordNet definitions, and to improve it by combining
several knowledge resources.

1

Contents
Abstract 1

List of Figures 3

List of Abbreviations 3

1 Introduction 4
1.1 Word Sense Disambiguation . 4
1.2 Aim and objectives of the project . 4
1.3 Structure of the report . 5

2 Background Research 5
2.1 Approaches to the problem of Word Sense Disambiguation 5

2.1.1 Early works in WSD . 5
2.1.2 The Most-Frequent-Sense baseline . 6
2.1.3 Data-driven or Machine Learning methods 6
2.1.4 Knowledge-based approaches . 10

2.2 WordNet, a Lexical Knowledge Base . 11
2.3 A graph-based method using PPR . 12

2.3.1 PageRank and Personalized PageRank 12
2.3.2 Personalized PageRank in WSD . 16

2.4 Matching definitions of different dictionaries . 17

3 Research method 18
3.1 Development tools . 18

3.1.1 Python Natural Language Toolkit . 18
3.1.2 Sparse matrices with SciPy . 19
3.1.3 Access to web pages . 21

3.2 Steps of development . 21
3.2.1 Research and familiarisation with the tools 21
3.2.2 Personalized PageRank on WordNet definitions 22
3.2.3 Matching of definitions from other sources 23
3.2.4 Personalized PageRank on all definitions 23
3.2.5 Improvement of the algorithm . 24
3.2.6 Planning . 24

3.3 Evaluation of the software . 24

4 Project progress 25
4.1 WordNet conversion into a graph . 26
4.2 Personalized PageRank in Python . 26
4.3 Access to Macmillan dictionary definitions . 28
4.4 Next steps . 29

References 30

2

List of Figures

1 Example of k-nn classification, with k=3 . 8
2 Example of SVM on a simple dataset . 9
3 PageRank algorithm applied to a simple graph 12
4 Final state of the previous graph . 14
5 Examples of rank sink in PageRank . 15
6 Simplified subgraph of senses linked by their definitions 16
7 Gantt chart of the project . 25

List of Abbreviations

LKB Lexical Knowledge Base
NLP Natural Language Processing
PPR Personalized PageRank algorithm
TF-IDF Term Frequency - Inverse Document Frequency
WSD Word Sense Disambiguation

Word count: 7038

3

1 Introduction

1.1 Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the task of assigning to a word its intended sense. It's a major
problem in Natural Language Processing (NLP) and has been of concern since the first works in the
area [9].

Natural language is inherently ambiguous, in contrast with formal programming languages that
can be understood by computers. An ambiguity arises when a sentence can have different meanings.
It can be syntactical, when it's due to the structure of the sentence. "I looked at the man with the
telescope", for example, is unclear: did I use a telescope to look at the man, or did I see a man who
had a telescope ?

Here, we're interested in lexical ambiguity, when a word can have several senses depending on
the context of its use. For example, the verb "run" can mean "jog", "campaign", "execute"... The prob-
lem is often easily solved by a human, as we simply interpret the word in a sentence, almost uncon-
sciously: the phrase "I'm running a program on a computer" doesn't leave much room for interpreta-
tion. It's not as easy however for a computer.

WSD is easy to us, but it is an AI-complete problem, which means it is as hard to solve as the
hardest problems of Artificial Intelligence [17]: notably common sense, knowledge representation
and reasoning. It is, however, a necessary part of most NLP tasks. In fact, it was historically conceived
as a fundamental step in machine translation, the automatic translation of a text between two nat-
ural languages. Different senses of a word indeed often must be translated differently: for example,
"run" can, depending on the context, correspond in French to "courir", "faire campagne", etc. Other
applications include text processing, information extraction.

1.2 Aim and objectives of the project

A lot of approaches to WSD have been researched in the past decades. We can divide them in two cat-
egories: machine learning techniques applied to WSD, and knowledge-driven approaches which rely
on the use of a Lexical Knowledge Base (LKB) like WordNet [8]. State-of-the-art knowledge-based
methods consist in processing the underlying graph structure of the LKB [3]. In fact, a recent method
based on the Personalized PageRank algorithm (PPR) has shown very good results [2].

The aim of the project is to develop a program performing automatic lexical disambiguation us-
ing the Personalized PageRank algorithm. It will be achieved with the following steps:

• extract the graph structure of WordNet definitions

4

• extract definitions of several dictionaries and add them to the WordNet graph

• apply the Personalized PageRank algorithm to the graph

• evaluate the software

1.3 Structure of the report

Next section presents several approaches to Word Sense Disambiguation, and more precisely the
approach used for this project. I will then describe tools used in the development of the project, fol-
lowed by its methodology. Finally, I will present the progress I've made in the project so far, and what
the next steps are.

2 Background Research

2.1 Approaches to the problem of Word Sense Disambiguation

In the past decades, there have been a large number of attempts to solve the problem.

2.1.1 Early works in WSD

The first discussions on WSD were made in the context of Machine Translation. The issue arose with
early attempts which performed a simple word by word translation with mixed results: the use of
context is necessary as natural languages are inherently ambiguous. The memorandum of Weaver, in
1949 [21], discusses problems in mechanic translation, and in particular the need for disambiguation.

The use of the context of the word is immediately proposed as a solution to the problem, and the
issue becomes to determine how much context would be necessary to perform the disambiguation
of a word: which is the minimal number of words needed to be certain of the sense of a word? This
number depends on several things: is the word a verb, a noun, a pronoun? How many senses does it
have? Is it in a technical text or is it from a more general domain?

Consequently, researchers focused on the automatic translation of texts of specific domains, de-
veloping micro-glossaries which limited the senses of a word to those relevant to a domain. For ex-
ample, in a mathematical text, the word "square" could mean the geometric figure or the mathemat-
ical operation, but not the urban area.

Weaver also highlights the statistical character of the problem. Several publications propose
ideas regarding this approach: use of the most frequent sense of a word, estimation of the degree
of polysemy in a text.

5

Those early publications present problems and ideas that are still relevant today; they were how-
ever unable to apply them due to lack of resources [9]. The advancements in the field coincide there-
fore often with the development of large-scale resources like knowledge bases and usable corporas.

2.1.2 The Most-Frequent-Sense baseline

A simple technique of disambiguation, and yet difficult to outperform by more elaborated algo-
rithms, consists in attributing to each ambiguous word the sense that is most often intended by it.

It's easily computed on available sense-annotated corpora (like SemCor [15]), but can be refined
as it is highly domain-dependent.

This baseline is hard to outperform and represents a useful measure of the performance of a WSD
algorithm [17].

2.1.3 Data-driven or Machine Learning methods

With the emergence of larger corpora and more generally resources for natural language processing,
searchers have been able to apply machine learning algorithms to the problem of WSD. In fact, about
every machine learning algorithm have been adapted for WSD.

The most important issue is to define and compute features that can be used for supervised or
unsupervised techniques. I will now describe some of these features before presenting several ma-
chine learning techniques commonly applied to WSD.

The features try to represent most of the information given by the context of the ambiguous word
w. Such features include: [7]:

• words aroundw (in the local context):w−2, w−1, w+1, w+2...

• collocations of words aroundw: (w−2, w−1), (w−1, w+1), (w+1, w+2)...

• triplets of words aroundw: (w−3, w−2, w−1), (w−2, w−1, w+1)...

• part-of-speech information of the local context: p−2, p−1, p+1, p+2...

• broad context information (about terms that are not directly next tow)

Of course, the set of features chosen will depend on the algorithm applied to the problem; exemplar-
based methods for example, described in section 2.1.3.b, tend to perform better on local context than
with broad context (which contains a large number of features compared to the few training points).

6

In the following sections, several algorithms of machine learning applied to WSD are presented.

2.1.3.a Statistical approach, the Naive Bayes classifier

The Naive Bayes algorithm is a probabilistic classifier that applies Bayes’ theorem to perform
classification, with the assumption that features are independent from one another. Bayes’ theorem
is stated below, where A and B are independent events:

P (A|B)P (B) = P (B|A)P (A)

P (A) is the probability of A,P (A|B) is the probability of A when B is true. In machine learning,
we can define for each point the events as its class and the value of its features; assuming indepen-
dent features, we can decompose the conditional probability:

P (C|x1, x2, ..., xn)

whereC is the class of x and thexi are its features, into:

P (C|x1, x2, ..., xn) ∝ P (C)
n∏

i=1

P (xi|C) (1)

The result of the classification is the class that maximizes the value given in (1).

When applied to WSD, the class of a word is the sense associated to it. To disambiguate a word,
we find all occurrences of this word in the corpus, observe their sense and their features to compute
the different probabilities in (1); the algorithm returns the sense with highest probability given the
values of the features of the ambiguous word.

2.1.3.b Exemplar-based method, the nearest neighbour classifier

The k-nearest neighbours (k-nn) algorithm is a classifier that consists in finding, for a given test
example, the k examples of the training set that are closest to it. The algorithm then performs a ma-
jority vote between the neighbours’ classes to return the class of the test example. Figure 1 shows an
example of k-nn classification.

In the neighbourhood of the test example (green) in Figure 1, with k=3, there are two points of
class red and one point of class blue, so the algorithm classifies the test as a point of class red.

7

Figure 1: Example of k-nn classification, with k=3

This algorithm can be applied to WSD. Several techniques have been tried, using different sets
of features (words before and after, part-of-speech information) and different distances to find the
nearest neighbours.

For example, the commonly-used Hamming Distance is the number of features that are different
between two examples. If we use the word before and the word after "like" as the feature set, then the
Hamming distance between "I like trains" and "just like a" is 2, and the Hamming distance between
"I like trains" and "I like puppies" is 1. More elaborated distances can be used for better results [7].

2.1.3.c Support Vector Machines

A Support Vector Machine (SVM) is an algorithm which, in a given dataset, tries to calculate the
hyperplane that separates, with the largest margin, data points into two classes. Figure 2 shows an
example of SVM applied to a simple dataset. The algorithm finds the optimal hyperplane with the
maximum margin between classes red and blue.

By adapting SVM to a multi-class problem (for example with binarisation of all features), we can
apply it to WSD. This technique produces among the best results, compared to other supervised tech-
niques [12].

Although they tend to get better performance, supervised methods are limited by what is called
the knowledge acquisition bottleneck (the lack of annotated corpora): these approaches require large

8

Figure 2: Example of SVM on a simple dataset

corpora for training, which are very expensive to create. Moreover, machine learning techniques are
really dependent on the specificity of the data. Corpora for technical domains do exist (notably in
biology and medicine [19]), but the manual labelling of large corpora for every domain is simply un-
feasible.

Several approaches to relieve the knowledge acquisition bottleneck are being developed since
several years [17]: automatic creation of training data, collection of corpora on the web, automatic
enrichment of knowledge resources... Another way to tackle the issue is to perform unsupervised
methods of disambiguation.

2.1.3.d Unsupervised methods

Unsupervised techniques are not subject to the knowledge acquisition bottleneck as they are ap-
plied to unannotated corpora.

The idea is that words with similar senses have similar contexts, so an unsupervised algorithm
tries to compute clusters corresponding to different senses. It's an open problem known as Word
Sense Induction [16], the objective being to identify automatically different senses of a word instead
of using a manual sense inventory.

We can differentiate context clustering and word clustering. The first computes context vectors,
and groups words with similar vectors (either with a measure of distance between vectors or by con-
sidering the frequency of co-occurrence of words). The second method consists in clustering seman-

9

tically similar words (synonyms notably). In both cases, the output of the algorithm is an ensemble
of clusters corresponding (hopefully) to different senses.

These methods tend to perform less well than other approaches, but the comparison is difficult
since the clustered senses have to be matched with existing sense inventories. However, their inde-
pendence to manual resources gives them interesting potential [17].

2.1.4 Knowledge-based approaches

In parallel to data-driven approaches, techniques relying on the use of Lexical Knowledge Bases (LKB)
were developed.

LKBs are resources that provide semantic information on words. They can be simple machine-
readable dictionaries, which provide senses and their definitions; thesauri, which explicit relation-
ships between words (such as synonyms, antonyms, meronyms, hyponyms); or notably lexicons (such
as WordNet), that combine information of a dictionary and a thesaurus but often provide other in-
formation such as a hierarchy of senses.

The advantage over supervised methods is that knowledge-based approaches don't necessitate
expensive manually labelled corpora, and therefore can be used on a larger scale.

2.1.4.a Overlapping definitions, Lesk algorithm

This simple algorithm [13] consists of counting the number of words that are in both the context
and each definition of the ambiguous word. The chosen sense is the one with the most overlapping
words.

This technique gives mixed results, as it is highly dependent on the formulation of the definition:
the exact same words need to be found to be counted. The results of the algorithm with thus vary a
lot with different dictionaries for example.

2.1.4.b Similarity measure

This sort of technique isn't applicable to a machine-readable dictionary like Lesk algorithm be-
cause it exploits other information given by the LKB.

The similarity for example is a function that makes use of the semantic relationships between
senses to compute a score between 0 and 1. For example, it can be calculated by finding the closest

10

shared ancestor of two words by hypernymy relationship (A is a hypernym of B if A is a type of B, for
example animal is a hypernym of cat).

From here, we can disambiguate a word by finding the sense that maximizes its similarity with
the words found in the context.

2.1.4.c Graph-based approaches

These methods exploit the underlying graph structure of LKBs, extracting it to use an algorithm
developed for graphs.

At this date, state-of-the-art methods consist in the application of the PageRank algorithm to the
graph structure of a LKB [2]. This project aims to apply such an algorithm, which will be described in
the following sections.

2.2 WordNet, a Lexical Knowledge Base

WordNet [8] is an enumerative lexicon, which is both a dictionary of senses with their definitions
and a thesaurus with a hierarchy of said senses. It includes several lexical and semantic relationships
between senses, such as hypernomy, antonymy...

It was developed for the English language at the University of Princeton, where it is still main-
tained, and it is at date the most widely used knowledge-base in WSD. The latest version, WordNet
3.1, provides 117,659 senses to 155,287 words. Those include nouns, verbs, adjectives and adverbs.

The hierarchy of WordNet is composed of synsets, which are sets of words corresponding to a
given sense. Each synset is accompanied by its definition and sometimes examples of usage. For ex-
ample, the synsetdog1n contains the words (or lemmas){dog, domestic_dog, Canis_familiaris},
and corresponds to the dog as a species. The word dog, however, has several senses and belongs ac-
cordingly to several synsets: {dog1n, frump1n, dog3n, ..., chase1v}.

For each synset, WordNet also provides a certain number of relationships to other synsets:

• hypernyms and hyponyms (if A is a kind of B, then B is a hypernym of A and A is a hyponym of
B); for example, dog1n is a hyponym to canine2n but a hypernym to corgi1n.

• holonyms and meronyms (if A is part of a B, then B is a holonym of A and A is a meronym of B);
for example, dog1n is a meronym of pack6n as a member of a group of dogs, and a meronym of
canis1n as a member of the Canis genus.

11

(a) Initial system (b) After 1 iteration

Figure 3: PageRank algorithm applied to a simple graph

Since Wordnet is a widely used tool, several projects exist to improve it. WordNets for several lan-
guages have been developed, creating opportunities for WSD in other languages but also interesting
tools for machine translation.

Although it's very used, there are some limitations to the WordNet lexicon. It is often criticized
for the fine-grainedness of its definitions, which is often far above what one could consider necessary
in the task of WSD [9].

2.3 A graph-based method using PPR

2.3.1 PageRank and Personalized PageRank

PageRank [18] is an algorithm created in 1998 to order web pages by their relative importance. It's
especially known for being the first algorithm used by Google Search, which was in fact initially an
application of PageRank.

The idea is that if a page is important, then a lot of pages will link to it; so the algorithm counts the
number and importance of links that lead to the page. The goal is to emulate the behaviour of a ran-
dom surfer. Starting from a random web page, what is the probability that, after clicking a number
of times, he will arrive to a certain page? That probability is the PageRank of the page.

2.3.1.a Description of the algorithm on a simple graph

Figure 3.a shows a simple graph composed of 4 nodes and 7 edges.

12

The value of a node (so a page) represents the probability that the surfer has clicked on a link
leading to this page. In the PageRank algorithm, this probability is uniform in the initial state. The
edges represent links going from a page to another; the surfer then clicks on a random link of the
page with a uniform probability for each link.

On the graph, we first apply a uniform value of 1
4

to all 4 nodes and apply weights to each edge.
The value of an edge is the inverse of the number of edges coming from the same node; for example,
3 edges originate from the first node and are therefore applied a weight of 1

3
.

During the first iteration, the surfer clicks on a link to another page. The probability that the
surfer is on a given page can be calculated using the probabilities of the previous iteration and the
probability that he clicked on the link leading to the page.

For example, on the graph of Figure 3, we can calculate the probability that the surfer is in each
node after 1 iteration. There is one edge leading to node 1, it originates from node 2:

P
(1)
1 = P

(0)
2 × w2→1 = 0.25× 1 = 0.25

In the same way, for node 2:

P
(1)
2 = P

(0)
1 × w1→2 + P

(0)
3 × w3→2 + P

(0)
4 × w4→2 = 0.46

The values of each node after the first iteration are shown in Figure 3.b. We can generalise the
formula for a node a, if we consider that the weight of a non-existing edge is 0, to:

P
(i+1)
a =

∑
j∈{nodes}

P
(i)
j × wj→a

We repeat this iteration until the equilibrium (or after a certain number of iterations for cases of
non convergence). The final state is shown in Figure 4 for the example graph. The value of each node
is the PageRank.

2.3.1.b Matrix notation

We define the transition matrix in the algorithm as the weighted adjacency matrix of the graph.
The adjacency matrixA is a matricial representation of a graph, of size the number of nodes, defined
by: Ai,j = 1 if there is an edge from node j to node i. For example, for the graph in Figure 3, the
adjacency matrix isA and the transition matrix isM :

13

Figure 4: Final state of the previous graph

A =

0 1 0 0

1 0 1 1

1 0 0 1

1 0 0 0

 , M =

0 1 0 0
1
3

0 1 1
2

1
3

0 0 1
2

1
3

0 0 0

The initial state of the system is stored in a vector v of size the number of nodes, and vi = P

(0)
i .

v =
(
0.25 0.25 0.25 0.25

)
The next state of the system is then obtained by computing the dot product of M by v, Mv. In

the previous example,

Mv =
(
0.25 0.46 0.21 0.08

)
At each iteration, we multiply the result of the previous one byM , so at iteration i, we have cal-

culatedM iv. When the equilibrium is attained at iteration n, then we have computedMnv, which
is the rank vector of the system.

Mnv =
(
0.35 0.35 0.18 0.12

)
2.3.1.c Damping factor

The simple iteration seen in the previous section can give bad results if, notably, there is a node
or a loop in the graph with no outgoing edge. In the case of a single node, as in Figure 5.a, there is a
constant loss of total rank in the graph: at every iteration, the rank of the 3rd is not redistributed, and
the rest of the graph keeps giving it rank. Therefore, the ranking vector of the graph converges to the

14

(a) Rank sink caused by a single node (b) Rank sink caused by a loop

Figure 5: Examples of rank sink in PageRank

null vector.

The other case, shown in Figure 5.b, is that of a loop in the graph with no outgoing edge. As there
is no edge leaving the loop, there is no loss of total rank in the loop. In fact, the incoming edge makes
the total rank of the loop increase for each iteration. In this case, the total rank of the nodes in the
loop converges to 1 whereas the rank of the rest of the graph converges to 0.

Such a closed system is called a rank sink. To overcome the issue, the algorithm is improved with
a damping factorα.

The iteration becomes:

v(i+1) =αMv(i) + (1− α)v(0)

The goal is, again, to reproduce the behaviour of a random surfer; if the surfer is caught in a loop
of links, he will not stay in it but will start again from a random website. The damping factor corre-
sponds to the probability that, at any point in his navigation, he decides not to click on a link but to
go to a random other website. The original paper on PageRank proposes to use α = 0.85 which is
therefore the default value of most applications [18].

2.3.1.d Personalized PageRank

The PageRank model is designed to emulate the behaviour of a random surfer, starting its navi-
gation from a random website. However, a surfer often doesn't consult websites randomly, but with
a certain goal.

15

Figure 6: Simplified subgraph of senses linked by their definitions

The PPR aims to model this behaviour by modifying the initial state in the PageRank algorithm.
The probabilities for each node are not uniform anymore but are weighted, personalized to obtain a
different but more appropriate ranking system. The vector of the initial weights is called the Person-
alization vector.

2.3.2 Personalized PageRank in WSD

PPR can be applied to the graph structure obtained in graph-based approaches to WSD. I will de-
scribe the method that I intend to implement for this project, which is PPR applied to a sense dictio-
nary [5].

One underlying graph structure of a sense inventory is the graph in which nodes correspond to
senses. There is an edge from a node A to a node B if the sense B appears in the definition of A. In
the case of a non-disambiguated dictionary, we don't know which sense is intended by a word in a
definition, so we add all senses of the word to the graph. However, it won't give as good results as the
disambiguated graph [5]. Figure 6 shows a simplified subgraph (constructed around dog1n, as in the
canine species) with WordNet definitions.

We don't apply classic PageRank to the whole graph as it would return a ranking of senses present
in the dictionary, and that is not interesting. There are two methods to use the algorithm for WSD.

The first is to find a subgraph that is relevant to the context of the disambiguation and to perform

16

classic PageRank on it. Several methods have been used to compute that subgraph, for example by
finding the shortest paths between words of the context [4].

The second is to perform PPR on the whole graph, putting weight on terms of the context to find
relevant highest ranking senses; it gives better results as the first technique [5]. This is the approach
I plan to use for my disambiguating software.

2.4 Matching definitions of different dictionaries

To improve performance of PPR applied to a dictionary (notably WordNet), I plan to combine several
sense inventories and extract a graph that contains information about all sources. However, different
sense inventories have a different structure for their senses, and a different classification. Therefore,
it won't be possible to simply take definitions of all sources and put them in the graph, I need to find
correspondences between the senses of each dictionary.

A definition is often composed of one, maybe two sentences. For a given word, we have two sets
of senses with definitions, and the objective is to find matches between the sets. If we consider the
sets of definitions as a corpus and each definition as a document, then the problem becomes to find
similar documents in a corpus, for which several methods exist.

One of them is the measure of Term Frequency - Inverse Document Frequency (TF-IDF) Vector
similarity, which has been shown to give among the best results in measure of sentence similarity
[1].

The TF-IDF is a measure of the importance of a word in a document contained in a corpus. It's the
product of two measures, the Term Frequency and the Inverse Document Frequency.

Term Frequency is the number of occurrences of the word in the document; its importance is ob-
viously directly proportional to this measure. It can also be pondered in regards to the length of the
document, to avoid giving higher scores to terms in longer documents.

Inverse Document Frequency is the fraction of documents of the corpus in which the term ap-
pears, which is then logarithmically scaled. This is a measure of the specificity of a term: if it appears
in few documents, then it's probably more important, more relevant than a word appearing in every
document of the corpus.

We can represent the document as a vector. Its features are the terms that appear in the corpus,
and its values are computed using the TF-IDF measure.

17

After calculation of vector representations of each sentence, we can find similar sentences by a
measure of cosine similarity, which is a measure of similarity between vectors. It's the quotient of the
dot product of the vectors and the product of those vectors’ magnitudes. For vectors a and b,

similarity = a.b
‖a‖.‖b‖

3 Research method

3.1 Development tools

3.1.1 Python Natural Language Toolkit

Python Natural Language Toolkit (NLTK) [6] is a Python library that allows to perform several tasks
of natural language processing (NLP).

It contains a large number of modules useful in NLP: several can perform a NLP task such as Part-
of-Speech tagging, Sentiment analysis, etc. Other modules are interfaces that allow easy access to
several corpora and knowledge bases, and mainly WordNet, which is the reason why this project is
developed in Python.

The rest of the section focuses on the WordNet interface provided by NLTK. I will present some
of the functions that allow us to run through the WordNet hierarchy.

18

>>> from nltk.corpus import wordnet as wn

get all synsets containing the input word

>>> wn.synsets(’dog’)

[Synset(’dog.n.01’), Synset(’frump.n.01’), ..., Synset(’chase.v.01’)]

get the definition of a synset

>>> wn.synset(’dog.n.01’).definition()

’a member of the genus Canis (probably descended from ...’

get all lemmas contained in a synset

>>> wn.synset(’dog.n.01’).lemma_names()

[’dog’, ’domestic_dog’, ’Canis_familiaris’]

some semantic relationships are defined for synsets

>>> wn.synset(’dog.n.01’).hypernyms()

[Synset(’canine.n.02’), Synset(’domestic_animal.n.01’)]

>>> wn.synset(’dog.n.01’).hyponyms()

[Synset(’basenji.n.01’), ..., Synset(’dalmatian.n.02’)]

others are defined for lemmas

>>> wn.lemma(’happy.a.01.happy’).antonyms()

[Lemma(’unhappy.a.01.unhappy’)]

>>> wn.lemma(’happy.a.01.happy’).derivationally_related_forms()

[Lemma(’happiness.n.02.happiness’), Lemma(’happiness.n.01.happiness’)]

3.1.2 Sparse matrices with SciPy

Matrices involved in the PPR algorithm applied to word sense disambiguation are very large (their
size is the number of senses in the dictionary), but contain, comparatively, only a little number of
non-zero values. For example in the case of WordNet, the matrix is of size 117, 659× 117, 659. Con-
sidering definitions as sentences of around 10 words, each belonging to one or more synsets, the
number of non-zero values is of magnitude 106, which is very little when the number of cases in the
matrix is of magnitude (105)2 = 1010.

Fortunately, the SciPy library (Scientific Computing Tools for Python [10]) provides support for
sparse matrices, that is, matrices with few non-zero values. I will first present formats for sparse ar-
rays and then some useful functions provided by the library.

19

• the Linked lists (LIL) format is used to construct the matrix; each row is a list, and the matrix is
a list of rows. Entry (i, j) is put in the row of index i and contains the column index j and the
value.

• the Compressed Sparse Row (CSR) format is composed of an array of non-zero values, an array
of column indices of those values and a list of the indices corresponding to the first value (zero
or not) of a row.

• the Compressed Sparse Column (CSC) format is the same as CSR but with an array of row in-
dices and a list of columns indices. Both CSC and CSR are efficient formats for matrix opera-
tions.

Following are some useful functions provided by SciPy:

>>> from nltk.corpus import wordnet as wn

creation of a sparse matrix

>>> A = sparse.lil_matrix([[2,0,0],[1,0,1],[0,1,0]])

>>> A[2,2] = 2

>>> A

<3x3 sparse matrix of type ’<class ’numpy.int32’>’

with 6 stored elements in LInked List format>

visualization of the matrix

>>> A.toarray()

array([[2, 0, 0],

[1, 0, 1],

[0, 1, 2]], dtype=int32)

conversion into other formats

>>> A1 = A.tocsr()

>>> A2 = A.tocsc()

matrix operations

>>> A1 = A1.transpose()

>>> A1.dot(A2).toarray()

array([[5, 0, 1],

[0, 1, 2],

[1, 2, 5]], dtype=int32)

20

3.1.3 Access to web pages

In order to retrieve data from web online dictionaries, we need to extract information in a HTML doc-
ument. This is done using two Python modules: urllib, more particularly urllib.request, and Beautiful
Soup [20].

The first package, provided by default with Python, accesses web pages using their URL and re-
turns the HTML source code of the page.

This code is then parsed using Beautiful Soup, which makes a "soup" out of the HTML document,
that is, a structure that allows easy information retrieval. Following are examples of functions to run
through a HTML document.

>>> from urllib.request import urlopen

>>> from bs4 import BeautifulSoup

access to a HTML page, gets a string of HTML code

>>> html = urlopen("http://www.manchester.ac.uk/").read()

makes the soup

>>> soup = BeautifulSoup(html)

prints ’alt’ attributes from ’img’ tags

>>> for img in soup.find_all(’img’):

print(img[’alt’])

Menu

The University of Manchester

Menu

Search the University of Manchester site

...

3.2 Steps of development

3.2.1 Research and familiarisation with the tools

The first months have been spent on literature survey and learning of the tools involved in the devel-
opment of the software.

The objective was to understand what the issue is, the motivations and difficulties of WSD. Which
approach to choose? What are its advantages, its limitations? How to try and mitigate the latter?

21

The other important part was to familiarize with tools necessary to the development. I never
programed in Python before, and I had to learn to use the NLTK and other Python toolboxes. Fortu-
nately, the NLTK provides a book [6] which contains several tutorials for the modules that compose
it but also for basic programming in Python; so in parallel to the background research, I completed
the exercises proposed in the NLTK book. I also familiarized with other modules such as SciPy and
the Beautiful Soup library which would be useful for certain parts of the software.

3.2.2 Personalized PageRank on WordNet definitions

The first part of my project is to apply PPR to a first version of the graph containing only WordNet
definitions. It involves the conversion of WordNet into a sparse matrix using NLTK, and then the
implementation of the PPR algorithm on Python.

3.2.2.a Conversion of WordNet

The first objective is to create the graph described in Section 2.3.2, on which PPR will be per-
formed. The second objective is to make it into a computable structure, since it will contain 117,659
nodes and millions of edges. A way of representing a graph is to use a matrix A; A is of size N, the
number of nodes, and for two nodes i, j,Aij = 1 if there is an edge going from j to i, so if the synset j
appears in the definition of i. We are going to use the matrix implementation of PPR, so the problem
becomes to directly compute the transition matrix of the initial graph.

It's not sufficient to make it computable, however, since we have to compute a matrix of size
117, 659 × 117, 659. However, it will be mostly empty, so we can use sparse arrays to represent it,
which is possible with SciPy as seen is Section 3.1.2.

Another important issue is to make the conversion computationally efficient, not only in term of
memory but also in term of time, considering a lot of calls to the WordNet corpus will be necessary.
Once the sparse matrix is computed, we can save it in order to save time in later uses.

3.2.2.b Implementation of PPR

There are three steps here: create a function that converts a sentence into a personalization vec-
tor, apply the PPR algorithm and convert the rank vector into a usable structure.

The computation of the personalization vector is very similar to the conversion of WordNet, so I
only need to adapt the implementation of the latter.

22

The implementation of PPR is the most important step, as it will be used for the whole project,
which consists in the improvement of the transition matrix on which PPR is applied. The implemen-
tation necessitates several operations on sparse arrays, which can be tricky.

Finally, the conversion of the rank vector uses similar functions as the conversion of WordNet and
the input sentence.

3.2.3 Matching of definitions from other sources

The first step is to decide which sources will be used, then to actually retrieve definitions from
them. The next steps will be to match them to WordNet definitions and finally to add them to the
graph.

At first I will use the definitions of the Macmillan online dictionary. Depending on the advance-
ment of the project, I may try to retrieve information from Wikipedia, as the first sentence of an arti-
cle is often similar to a general definition of the title term.

In both cases, definition retrieval is performed by accessing the web pages of the dictionary, which
is feasible in Python as explained in Section 3.1.3. An important part of the problem is to store the in-
formation in a structure that makes the matching easier.

I will then implement the techniques seen in Section 2.4 to match definitions of a word with one
another. An important issue is that senses of different sources do not correspond exactly; they may
not be as finely-grained, or simply use different distinctions in the senses. The basis of the system are
WordNet definitions, so senses from other sources that don't have an equivalent in WordNet will be
ignored. On the other hand, senses in WordNet that don't have equivalents in other sources might be
disadvantaged compared to other senses in the PPR algorithm (with longer definitions and therefore
more edges in the graph). They might have to be removed too, in order to not decrease accuracy. We
can imagine that such senses might be very rarely intended and that it wouldn't be too harmful for
performance. This issue will necessitate tests to find the best solution.

Finally, this new set of definitions will be converted into a transition matrix, which will necessitate
the adaptation of the first conversion function to the new structure.

3.2.4 Personalized PageRank on all definitions

As stated in 3.2.2.b, the previous implementation of PPR is still adapted to the modified transition
matrix. Some tests may however be necessary with the parameters of the algorithm (i.e. precision,
damping factor and number of iterations).

23

3.2.5 Improvement of the algorithm

Depending on the time left after the various implementations, I have discussed several ways of im-
proving the algorithm with my supervisor.

3.2.5.a Remove irrelevant words from definitions

Most definitions are complete sentences and therefore present terms that are not related in sense
to the word they define. Articles and pronouns should already be removed as they are not included in
WordNet, but in fact they can still cause problems, for example "he" can be defined as the symbol for
"helium" or a letter of the Hebrew alphabet. Even though, some nouns and mainly verbs are irrelevant
in several definitions, and could be removed for better accuracy, or at least weighted down.

3.2.5.b Bootstrapping of the algorithm

In order to improve performance of the algorithm, I will use my program (PPR with all definitions)
to try and disambiguate the definitions of the various dictionaries used for the transition matrix.

The disambiguation won't be perfect, and we discussed the possibility of leaving ambiguous terms
in the definition depending on the ranks obtained from the PPR: if the rank of the highest ranking
term is too close to the others, the disambiguation is not considered reliable enough and the term is
left ambiguous.

This first step will remove a certain number of unwanted edges in the transition matrix, improv-
ing the accuracy of the algorithm; it can then be used to retry to disambiguate definitions, removing
more edges. We can iterate this process several times, with the hope of improving accuracy each time.

3.2.6 Planning

Figure 7 presents the planning given in the initial report, highlighting tasks that have already been
performed in green and tasks that I am currently working on in red. The planning has been updated
since the initial report, with current progress taken into account and after refinement of the project
subject.

3.3 Evaluation of the software

For a long time, evaluation and comparison of WSD algorithms was difficult, as most tests were per-
formed by their developers who had to choose testing data, sense inventories with which to perform
evaluation. That's the reason for the organisation of the Senseval competition (now SemEval) in 1998

24

Figure 7: Gantt chart of the project

[11]. Organised every 3 years from 1998 to 2010 and yearly from 2012, it's a series of evaluations for
several tasks of semantic analysis, and notably WSD (particularly in the first editions).

The SemEval competition is the reference for observation of state-of-the-art methods in WSD,
and the tasks released for each edition are very useful corpora that can be used for evaluation.

I will use those corpora to evaluate the performance of my software. In particular, the Senseval-2
corpus, which uses WordNet definitions, is readily available with NLTK. However, the latest version of
the toolbox uses the 3.0 version of WordNet, while Senseval-2 uses the 1.7 version (as it was organised
in 2001), with different senses. The solution is either to find a mapping that links senses from both
versions of WordNet, or to find a way to access WordNet 1.7 with NLTK and use it as a basis for the
algorithm.

The evaluation is to be performed on every step of development: with WordNet definitions, after
addition of other dictionaries and after improvement of the algorithm.

4 Project progress

The planning in section 3.2.6 shows which tasks I've already completed for the project. In this section
I will present with more details what I have implemented for the disambiguation software.

25

4.1 WordNet conversion into a graph

I have implemented a Python module that contains all functions relative to the conversion of Word-
Net into a graph. They use several Python libraries: NLTK, SciPy and Pickle (a library provided by
Python to save data structures onto the hard drive). The following functions are implemented:

• makeGraph(): the main function of the package, which performs the conversion. It takes no
argument and returns the transition matrix (as defined in section 2.3.2) and a dictionary that
maps synsets and their indices in the matrix.

• saveGraph(graph, indices, gf ile, if ile): a function that saves the graph onto the hard drive
in pickle format. It takes the graph, its indices map, and the path to the files in which we want
to save them as arguments. It returns no value.

• loadGraph(gf ile, if ile): a function that retrieves the transition matrix and its indices dictio-
nary from the files given in arguments. It returns the graph and the indices that have been
found in the files.

• inverseIndices(indices): a function that inverses the keys and their values in a dictionary.
It's used here to get a dictionary that attaches the synset to each index; it takes a dictionary
as argument (here the indices map) and returns the reverse dictionary. The reverse map of
indices will be used to read the result of the PPR algorithm

importation of my module

>>> import wordnet2graph as wn2g

conversion of WordNet into a graph

>>> graph, indices = wn2g.makeGraph()

>>> graph

<117659x117659 sparse matrix of type ’<class ’numpy.float64’>’

with 6324961 stored elements in Compressed Sparse Column format>

>>> indices

{’mare_liberum.n.01’: 85975, ’choreograph.v.02’: 19104, ...}

4.2 Personalized PageRank in Python

I then implemented the PPR algorithm for sparse matrices. I used the algorithm described in [14]
(only the actual PPR, not the pre-processing of the transition matrix); the result is a Python module
containing the following functions, accordingly to Section 3.2.2.b:

26

• makePersV ector(sentence, indices, size): a function that turns a string sentence into a
personalization vector, which is a sparse matrix in this implementation. The size argument
is the size of the vector, which is the number of sense nodes in the graph (here, for WordNet,
size = 117, 659). It returns the personalization vector for the input sentence.

• personalizedPageRank(graph, persV ector, damping,max_iter, precision): the actual
implementation of PPR. damping is the damping factor, precision is the value that deter-
mines if the algorithm can terminate at after the current iteration,max_iter is the maximal
number of iterations if theprecision is never attained (which is not likely). It returns the rank-
ing vector which is the output of PPR, and a sparse matrix here. Default values for damping,
max_iter and precision are respectively 0.85, 50 and 10−12

• the module also contains some functions to help visualize the results. They all take the ranking
vector and the indices dictionary as arguments. For the moment I implementedwordPageRank,
which also takes a word in input and returns a dictionary that maps all senses of the word to
their respective rank in the output of PPR. I also implemented getDefinition, which takes a
word in input and returns the synset of this word with highest rank and its definition (mostly
for human visualization). I may implement other similar functions depended on what will be
needed in further development (for example for evaluation using the Senseval corpus).

The following code shows results obtained with the program.

creation of the personalization vector

>>> persVector = ppr.makePersVector(’dogs bark’, indices, 117659)

>>> persVector

<1x117659 sparse matrix of type ’<class ’numpy.float64’>’

with 17 stored elements in Compressed Sparse Row format>

application of PPR with default parameters

>>> rankVector = ppr.personalizedPageRank(graph, persVector)

>>> rankVector

<117659x1 sparse matrix of type ’<class ’numpy.float64’>’

with 117290 stored elements in Compressed Sparse Row format>

visualization of the results

>>> ppr.getDefinition(’dog’, rankVector, indices)

(’dog.n.01’, ’a member of the genus Canis (probably descended ...’)

Although I have not yet performed a real evaluation with SemEval, I have made some tests and
some interesting observations. Whether the disambiguation is correct or not, ranks of senses of a

27

given word are often very close. However, when some words from the definition of the sense are
found in the context of the ambiguous word, the algorithm performs far better, with a large gap be-
tween the correct sense and the others; the addition of other sources to the graph should therefore
allow a better performance

The following examples illustrate the limitations of the current algorithm. The expected result
was the synset dog1n, that is, dog in the sense of animal species.

• 'dogs’ in 'dogs bark’ is correctly disambiguated

• 'dogs bark at cats’ result in a wrong disambiguation, and in fact gives a sense of 'dog’ that seems
totally unrelated to the sentence: cad1n, defined as 'someone who is morally reprehensible’.

• however, 'dogs bark cats’ is correctly disambiguated

Since WordNet doesn't support prepositions, the second and third sentences should give the
same results. However, when we look for synsets for 'at’, WordNet returns 2 synsets: astatine1n, the
chemical element of symbal At, andat2n, a currency from Laos. The word 'at’, which shouldn't be con-
sidered here, adds two definitions to the personalization vector! It seems therefore very interesting
to find a way to remove irrelevant words from the context and definitions.

4.3 Access to Macmillan dictionary definitions

I have implemented a function getDefinition(word) that, for the input word, accesses the corre-
sponding page of the Macmillan online dictionary and analyses the HTML source code to extract the
definitions of the word. The definitions are returned as a list of strings, one for each definition. An
example of use is shown below.

>>> macmillan.getDefinition(’dog’)

[’ an animal kept as a pet, for guarding buildings, or for hunting.

A young dog is called a puppy’, ’ someone who is not attractive,

especially a woman’, ’ someone who gives information about people

to the police or to another authority’, ’ something that is of

bad quality or very unsuccessful’]

What I haven't implemented yet is an automatic iteration on WordNet lemmas to extract all def-
initions of Macmillan. Some tweaks will need to be made for WordNet lemmas composed of several
words (like hot_dog), which are separated by a dash in Macmillan's URLs, for words that can belong
to different parts of speech, and of course for words that are not present in the Macmillan dictionary.
However it shouldn't take long once I find an interesting structure to store the definitions and match
them to WordNet.

28

4.4 Next steps

Once the definitions retrieval is done, the next step in the development will be to match those def-
initions with WordNet's. This involves the implementation of sentences matching techniques such
as seen in Section 2.4.

In parallel, I will adapt the software to Senseval-2 in order to evaluate it. Files from WordNet 3.0
and WordNet 1.7 share the same syntax and file structure so it might be possible to use the files of
the 1.7 version to try and evaluate the program. If it doesn't work, I will need to map the senses from
WordNet 3.0 to WordNet 1.7 for words used in Senseval-2; however, if I have to do it manually, it will
only be possible for the Lexical Sample task (where only a given set of words are sense-tagged), which
is less interesting than the All-words task (where all words are sense-tagged).

I will finally be able to apply PPR to the graph of all definitions, and evaluate it, before trying to
improve the software with the approaches seen in Section 3.2.5.

References

[1] Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen. The evaluation of Sentence Similarity
measures. In Data Warehousing and Knowledge Discovery, pages 305–316. Springer, 2008.

[2] Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa. Random walks for knowledge-based Word
Sense Disambiguation. Computational Linguistics, 40(1):57–84, 2014.

[3] Eneko Agirre, Oier Lopez De Lacalle, Aitor Soroa, and Informatika Fakultatea. Knowledge-based
WSD and specific domains: Performing better than generic supervised WSD. In IJCAI, pages
1501–1506. Citeseer, 2009.

[4] Eneko Agirre and Aitor Soroa. Using the multilingual central repository for graph-based Word
Sense Disambiguation. In LREC, 2008.

[5] Eneko Agirre and Aitor Soroa. Personalizing PageRank for Word Sense Disambiguation. In Pro-
ceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics,
pages 33–41. Association for Computational Linguistics, 2009.

[6] Steven Bird, Ewan Klein, and Edward Loper. Natural language processing with Python. " O'Reilly
Media, Inc.", 2009.

[7] Gerard Escudero, Lluís Màrquez, and German Rigau. Naive Bayes and exemplar-based ap-
proaches to Word Sense Disambiguation revisited. arXiv preprint cs/0007011, 2000.

[8] Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

29

[9] Nancy Ide and Jean Véronis. Introduction to the special issue on Word Sense Disambiguation:
the state of the art. Computational linguistics, 24(1):2–40, 1998.

[10] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python,
2001–.

[11] Adam Kilgarriff. Senseval: An exercise in evaluating Word Sense Disambiguation programs. In
Proc. of the first international conference on language resources and evaluation, pages 581–588. Cite-
seer, 1998.

[12] Yoong Keok Lee, Hwee Tou Ng, and Tee Kiah Chia. Supervised Word Sense Disambiguation
with support vector machines and multiple knowledge sources. In Senseval-3: third international
workshop on the evaluation of systems for the semantic analysis of text, pages 137–140, 2004.

[13] Michael Lesk. Automatic Sense Disambiguation using machine readable dictionaries: how to
tell a pine cone from an ice cream cone. In Proceedings of the 5th annual international conference on
Systems documentation, pages 24–26. ACM, 1986.

[14] Takanori Maehara, Takuya Akiba, Yoichi Iwata, and Ken-ichi Kawarabayashi. Computing Per-
sonalized PageRank quickly by exploiting graph structures. Proceedings of the VLDB Endowment,
7(12), 2014.

[15] George A Miller, Claudia Leacock, Randee Tengi, and Ross T Bunker. A semantic concordance. In
Proceedings of the workshop on Human Language Technology, pages 303–308. Association for Com-
putational Linguistics, 1993.

[16] Mohammad Nasiruddin. A state of the art of Word Sense Induction: A way towards Word Sense
Disambiguation for under-resourced languages. In Proceedings of RECITAL 2013, pages 192–205.
ATALA, 2013.

[17] Roberto Navigli. Word Sense Disambiguation: A survey. ACM Computing Surveys (CSUR),
41(2):10, 2009.

[18] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation rank-
ing: Bringing order to the web. 1999.

[19] Diana Raileanu, Paul Buitelaar, Spela Vintar, and Jörg Bay. Evaluation corpora for Sense Disam-
biguation in the medical domain. In LREC, 2002.

[20] Leonard Richardson. Beautiful Soup documentation, 2007.

[21] Warren Weaver. Translation. Machine translation of languages, 14:15–23, 1955.

30

	Abstract
	List of Figures
	List of Abbreviations
	Introduction
	Word Sense Disambiguation
	Aim and objectives of the project
	Structure of the report

	Background Research
	Approaches to the problem of Word Sense Disambiguation
	Early works in WSD
	The Most-Frequent-Sense baseline
	Data-driven or Machine Learning methods
	Knowledge-based approaches

	WordNet, a Lexical Knowledge Base
	A graph-based method using PPR
	PageRank and Personalized PageRank
	Personalized PageRank in WSD

	Matching definitions of different dictionaries

	Research method
	Development tools
	Python Natural Language Toolkit
	Sparse matrices with SciPy
	Access to web pages

	Steps of development
	Research and familiarisation with the tools
	Personalized PageRank on WordNet definitions
	Matching of definitions from other sources
	Personalized PageRank on all definitions
	Improvement of the algorithm
	Planning

	Evaluation of the software

	Project progress
	WordNet conversion into a graph
	Personalized PageRank in Python
	Access to Macmillan dictionary definitions
	Next steps

	References

