Skip to navigation | Skip to main content | Skip to footer

This is an archived syllabus from 2013-2014

COMP37111 Advanced Computer Graphics syllabus 2013-2014

COMP37111 Advanced Computer Graphics

Level 3
Credits: 10
Enrolled students: 78

Course leader: Toby Howard

Additional staff: view all staff


  • Pre-Requisite (Compulsory): COMP27112

Assessment methods

  • 75% Written exam
  • 25% Practical skills assessment
Sem 1 Lab 3rdLab Thu 11:00 - 11:00 -
Sem 1 w1 Lecture LF15 Tue 15:00 - 15:00 -
Sem 1 w2+ Lecture 1.4 Tue 15:00 - 15:00 -
Themes to which this unit belongs
  • Visual Computing


This course follows on from COMP27112, the 2nd year course "Computer Graphics, and Image Processing", and looks at more advanced topics in Computer Graphics, such as large-scale polygonal modelling techniques, capturing geometry from scanners and cameras, procedural modelling, and sophisticated global and real-time rendering techniques. The course is supported by a 10-week laboratory project in OpenGL.


This Course Unit covers the principles of modern techniques for Computer Graphics modelling and image synthesis, on the assumption that students have already completed the introductory Computer Graphics course (COMP20072). Its principal aim is to introduce students to the ever-expanding repertoire of techniques for defining and rendering images of 3D model data. Particular attention is focussed on the increasing requirements for complex rendering and interaction to occur in real-time.


Introduction and overview (1)

Applications of advanced image synthesis: visualization, animation, games, CAD systems, simulation. The classical graphics pipeline rendering: geometry, tessellation, modelling and viewing transformations, clipping, screen mapping, rasterizing. Global illumination: starting with the image plane, ray tracing. Local versus global illumination.

Model acquisition (2)

Laser scanning; surface fitting; occlusions and hole-filling; acquisition of geometry from photographs and video.

Non-polygonal modelling techniques (2)

Procedural modelling: fractal geometry, modelling with fractals, particle systems, L-systems.

Non-photorealistic rendering (1)

Approaches to rendering that, instead of striving for traditional photorealism, emphasise information content, visualization and understanding. Early work by Gooch & Gooch, and an overview of more recent techniques.

Introduction to global illumination: Ray Tracing (1)

What is GI, why is it important, when and how is it used? Basic ray tracing, primary and secondary rays, shadow feeler rays, reflection and transparency. Recursive algorithm. RT signature. Real-time ray tracing. Monte Carlo ray tracing. Importance sampling, variance reduction methods. Path tracing, bidirectional ray tracing.

Global illumination: Radiosity (1)

Principles: energy exchange between surfaces, implementation approaches, rendering techniques.

Volume rendering (2)

Programmable rendering (1)

The GPU and its architecture. Vertex and pixel shaders.

Real-time rendering (1)

Examples of model complexity, the need for interaction. Culling techniques: back-face, view frustum, portals, occlusion culling. Spatial enumeration, grids, AABBs, HBBs. Level of detail.

Teaching methods


11 in total, 1 per week


There will be one lab exercise programming project.

Feedback methods

Face to face feedback and marking in programming laboratories.

Study hours

  • Lectures (11 hours)

Employability skills

  • Analytical skills
  • Innovation/creativity
  • Project management
  • Problem solving
  • Research

Learning outcomes

On successful completion of this unit, a student will be able to:

Learning outcomes are detailed on the COMP37111 course unit syllabus page on the School of Computer Science's website for current students.

Reading list

Real-Time Rendering, Fourth EditionEric Haines9781138627000A K Peters/CRC Press; 4 edition9 Aug. 2018

Additional notes

Course unit materials

Links to course unit teaching materials can be found on the School of Computer Science website for current students.