This is an archived syllabus from 2013-2014
COMP39112 Quantum Computing syllabus 2013-2014
COMP39112 Quantum Computing
Level 3
Credits: 10
Enrolled students: 23
Course leader: Richard Banach
Additional staff: view all staff
Assessment methods
- 100% Written exam
Semester | Event | Location | Day | Time | Group |
---|---|---|---|---|---|
Sem 2 | Lecture | G33 | Wed | 12:00 - 12:00 | - |
Sem 2 | Lecture | G33 | Thu | 16:00 - 16:00 | - |
Overview
Quantum computing is one of the most intriguing of modern developments at the interface of computing, mathematics and physics, whose long term impact is far from clear as yet.Aims
The perspective that quantum phenomena bring to the questions of information and algorithm is quite unlike the conventional one. In particular, selected problems which classically have only slow algorithms, have in the quantum domain, algorithms which are exponentially faster. Most important among these is the factoring of large numbers, whose difficulty underpins the security of the RSA encryption protocol, used for example in the secure socket layer of the internet. If serious quantum computers could ever be built, RSA would become instantly insecure. This course aims to give the student an introduction to this unusual new field.
Syllabus
State Transition Systems. Nondeterministic Transition Systems, Stochastic Transition Systems, and Quantum Transition Systems. The key issues: Exponentiality, Destructive Interference, Measurement. (1)
Review of Linear Algebra. Complex Inner Product Spaces. Eigenvalues and Eigenvectors, Diagonalisation. Tensor Products. (3)
Pure Quantum Mechanics. Quantum states. Unitary Evolution. Observables, Operators and Commutativity. Measurement. Simple Systems. The No-Cloning theorem. The Qubit. (3)
Entanglement. Schrodinger's cat. EPR states. Bell and CHSH Inequalities. The GHZ Argument. Basis copying versus cloning. (1)
Reading Week:
Computer Scientists and Joint CS and Maths: either Griffiths Chs 1-9 or Mermin Chs 1-4. Physicists, and Joint Maths and Phys: Brassard and Bratley Chs 1-4; other Mathematicians: either of the above. (2)
Basic quantum gates. Simple quantum algorithms. Quantum Teleportation. (3)
Examples Class (1)
Quantum Search (Grover's Algorithm). Quantum Fourier Transform. Phase estimation. Quantum Counting. (5)
Quantum Order Finding. Continued Fractions. Quantum Factoring (Shor's Algorithm). (3)
Teaching methods
Lectures
18
Examples classes
Examples classes will be arranged as required
Feedback methods
Feedback is provided face to face or via email, in response to student queries regarding both the course exercises and the course material more generally.Study hours
- Lectures (24 hours)
Employability skills
- Analytical skills
- Innovation/creativity
- Problem solving
- Research
Learning outcomes
On successful completion of this unit, a student will be able to:
Learning outcomes are detailed on the COMP39112 course unit syllabus page on the School of Computer Science's website for current students.
Reading list
Title | Author | ISBN | Publisher | Year |
---|---|---|---|---|
Quantum computing for computer scientists | Yanofsky, Noson S., 1967- | 9780521879965 | Cambridge University Press | 2008. |
Principles of quantum computation and information | Benenti, Giuliano. | 9812388583 | World Scientific | 2004. |
Quantum computation and quantum information | Nielsen, Michael A., 1974- | 9781107002173 | Cambridge University Press | 2010. |
Additional notes
Course unit materials
Links to course unit teaching materials can be found on the School of Computer Science website for current students.